organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1244-o1245

Ethyl 3-amino-5-anilino-4-cyano­thio­phene-2-carboxyl­ate

aChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, dChemistry Department, Faculty of Science, Mini University, 61519 El-Minia, Egypt, eSchool of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

(Received 1 July 2013; accepted 5 July 2013; online 13 July 2013)

In the title compound, C14H13N3O2S, the dihedral angle between the thio­phene and phenyl rings is 24.95 (8)°. The mol­ecular structure is consolidated by intra­molecular N—H⋯O and C—H⋯S inter­actions. The crystal structure features N—H⋯N and N—H⋯O hydrogen bonds forming centrosymmetric R22(12) dimers, which are linked into a two-dimensional network parallel to (011) with an S(6)R22S(6) motif. In addition, ππ stacking inter­actions [centroid–centroid distance = 3.7013 (12) Å] occur between the thio­phene and phenyl rings of adjacent mol­ecules.

Related literature

For pharmaceutical and industrial applications of amino-thio­phene-containingg compounds, see: Inversen et al. (2000[Inversen, L. F., Anderson, H. S., Branner, S., Moretensen, S. P., Peters, G. H., Norris, K., Olsen, O. H., Jeppesen, C. B., Lundt, B. F., Ripka, W., Moller, K. B. & Moller, N. P. H. (2000). J. Biol. Chem. 275, 10300-10307.]); Webb et al. (2000[Webb, T. R., Melman, N., Lvovskiy, D., Ji, X. & Jacobson, K. A. (2000). Bioorg. Med. Chem. Lett. 10, 31-34.]). For the synthesis of multi-substituted thiphene compounds, see: El-Sharkawy et al. (2012[El-Sharkawy, K. A., El-Sayed, N. N. E. & Zaki, M. Y. (2012). Int. Res. J. Pure Appl. Chem. 2, 91-104.]); Huang et al. (2011[Huang, X.-G., Liu, J., Ren, J., Wang, T., Chen, W. & Zeng, B.-B. (2011). Tetrahedron, 67, 6202-6205.]). For the crystal structure of a related compound, see: Mabkhot et al. (2013[Mabkhot, Y. N., Alatibi, F., Barakat, A., Choudhary, M. I. & Yousuf, S. (2013). Acta Cryst. E69, o1049.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13N3O2S

  • Mr = 287.34

  • Monoclinic, P 21 /c

  • a = 8.6121 (15) Å

  • b = 10.6579 (15) Å

  • c = 14.328 (3) Å

  • β = 92.580 (3)°

  • V = 1313.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 100 K

  • 0.55 × 0.04 × 0.03 mm

Data collection
  • Rigaku AFC12 (Right, Saturn724+) diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.887, Tmax = 1.000

  • 8995 measured reflections

  • 2996 independent reflections

  • 2728 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.088

  • S = 1.07

  • 2996 reflections

  • 194 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3NA⋯O2 0.87 (2) 2.25 (2) 2.8671 (19) 128.0 (17)
N1—H1N⋯N2i 0.84 (2) 2.23 (2) 3.026 (2) 158.1 (16)
N3—H3NB⋯O2ii 0.86 (2) 2.24 (2) 3.0985 (18) 175.9 (17)
C10—H10⋯S1 0.95 2.55 3.1463 (17) 121
Symmetry codes: (i) -x, -y+2, -z; (ii) [-x, y+{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: CrystalClear-SM Expert (Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Multisubstituted thiophenes, particularly their amino derivatives which are widely used as active bio-molecules as inhibitors of several enzymes (Inversen et al., 2000; Webb et al., 2000). Moreover, carbonitril amino thiophen containingg compounds have been used as anticonvulsant and CNS antidepressant agents (El-Sharkawy et al., 2012; Huang et al., 2011). Based on such findings and further to our on going study in the synthesis of potential biologically active compouds, we herein report the synthesis and crystal structure of the title compound.

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles reported in a closely related compound (Mabkhot et al., 2013). In the title molecule, the thiophene and phenyl rings make a dihedral angle of 24.95 (8)° with each other. The molecular structure is consolidated by intramolecular interactions N3—H3NA···O2 and C10—H10···S1 (Tab. 1). The crystal structure is stabilized by N1—H1N···N2 and N3—H3NB···O2 hydrogen bonds (Table 1, Figs. 2 & 3). Furthermore, π-π stacking interactions [Cg1···Cg2 (x, 3/2 - y, -1/2 + z) = 3.7013 (12) Å] between the centroids (Cg1 and Cg2, respectively) of the thiophene and phenyl rings of the consecutive molecules, contribute to the stabilization of the molecular packing of the title compound.

Related literature top

For pharmaceutical and industrial applications of amino-thiophene-containingg compounds, see: Inversen et al. (2000); Webb et al. (2000). For the synthesis of multi-substituted thiphene compounds, see: El-Sharkawy et al. (2012); Huang et al. (2011). For the crystal structure of a related compound, see: Mabkhot et al. (2013).

Experimental top

A solution of ethyl chloroacetate (54 ml, 5 mmol) in ethanol (20 ml) was added to a stirred solution of potassium 2,2-dicyano-1-(phenylamino)ethenethiolate (1.19 g, 5 mmol) in distilled water (20 ml) at room temperature. The reaction mixture was heated at 333 – 343 K for about 2 h. The precipitated ethyl 3-amino-4-cyano-5-(phenylamino)thiophene-2-carboxylate was was filtered off, dried and recrystallized from benzene to give high quality crystals (m.p.: 546–548 K) suitable for X-ray analysis in an excellent yield (76%).

Refinement top

The C-bound H atoms were placed geometrically with C—H = 0.95–0.99 Å and were refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). N-bound H atoms were located in a difference Fourier map and were refined freely.

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2012); cell refinement: CrystalClear-SM Expert (Rigaku, 2012); data reduction: CrystalClear-SM Expert (Rigaku, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the a axis of the packing diagram of the title compound showing hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonds have been omitted for clarity.
[Figure 3] Fig. 3. A view along the b axis of the packing diagram of the title compound showing hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonds have been omitted for clarity.
Ethyl 3-amino-5-anilino-4-cyanothiophene-2-carboxylate top
Crystal data top
C14H13N3O2SF(000) = 600
Mr = 287.34Dx = 1.453 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 4552 reflections
a = 8.6121 (15) Åθ = 2.4–30.2°
b = 10.6579 (15) ŵ = 0.25 mm1
c = 14.328 (3) ÅT = 100 K
β = 92.580 (3)°Rod, light brown
V = 1313.8 (4) Å30.55 × 0.04 × 0.03 mm
Z = 4
Data collection top
Rigaku AFC12 (Right, Saturn724+)
diffractometer
2996 independent reflections
Radiation source: Rotating Anode2728 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.025
profile data from ω–scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2012)
h = 711
Tmin = 0.887, Tmax = 1.000k = 1013
8995 measured reflectionsl = 1817
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 W = 1/[Σ2(FO2) + (0.036P)2 + 0.9009P] WHERE P = (FO2 + 2FC2)/3
S = 1.07(Δ/σ)max = 0.001
2996 reflectionsΔρmax = 0.32 e Å3
194 parametersΔρmin = 0.26 e Å3
Crystal data top
C14H13N3O2SV = 1313.8 (4) Å3
Mr = 287.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.6121 (15) ŵ = 0.25 mm1
b = 10.6579 (15) ÅT = 100 K
c = 14.328 (3) Å0.55 × 0.04 × 0.03 mm
β = 92.580 (3)°
Data collection top
Rigaku AFC12 (Right, Saturn724+)
diffractometer
2996 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2012)
2728 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 1.000Rint = 0.025
8995 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.32 e Å3
2996 reflectionsΔρmin = 0.26 e Å3
194 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.24094 (5)0.56107 (3)0.02889 (3)0.0127 (1)
O10.25546 (13)0.32279 (10)0.06700 (7)0.0146 (3)
O20.09078 (14)0.36573 (10)0.19090 (7)0.0165 (3)
N10.19895 (16)0.80331 (12)0.08703 (9)0.0139 (4)
N20.03010 (18)0.94889 (13)0.10133 (9)0.0198 (4)
N30.01723 (17)0.62007 (13)0.20023 (9)0.0147 (4)
C10.16973 (18)0.71241 (14)0.02243 (10)0.0122 (4)
C20.08009 (18)0.73139 (14)0.05985 (10)0.0128 (4)
C30.06672 (18)0.62244 (14)0.11815 (10)0.0126 (4)
C40.14784 (19)0.52211 (14)0.07826 (10)0.0130 (4)
C50.01734 (19)0.85067 (15)0.08401 (10)0.0143 (4)
C60.15918 (18)0.39930 (14)0.11823 (10)0.0129 (4)
C70.2663 (2)0.19549 (14)0.10206 (11)0.0168 (4)
C80.3668 (2)0.12347 (15)0.03187 (11)0.0199 (5)
C90.28921 (18)0.79947 (14)0.17173 (10)0.0130 (4)
C100.3166 (2)0.69024 (14)0.22309 (11)0.0162 (4)
C110.4088 (2)0.69608 (15)0.30549 (11)0.0191 (5)
C120.4702 (2)0.80873 (15)0.33839 (11)0.0176 (5)
C130.43678 (19)0.91814 (15)0.28866 (11)0.0164 (4)
C140.34788 (19)0.91355 (15)0.20580 (11)0.0153 (4)
H3NA0.004 (2)0.554 (2)0.2350 (14)0.024 (5)*
H1N0.158 (2)0.8734 (18)0.0753 (12)0.012 (4)*
H3NB0.039 (2)0.6900 (19)0.2278 (13)0.018 (5)*
H7A0.313600.195200.163800.0200*
H7B0.161800.157100.108900.0200*
H8A0.471900.159000.028900.0300*
H8B0.371400.035200.050800.0300*
H8C0.322400.129400.029800.0300*
H100.273000.612700.202300.0190*
H110.430100.621300.339800.0230*
H120.534300.811100.394100.0210*
H130.475100.996400.311600.0200*
H140.326600.988600.171800.0180*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0162 (2)0.0097 (2)0.0119 (2)0.0022 (1)0.0026 (1)0.0003 (1)
O10.0197 (6)0.0098 (5)0.0139 (5)0.0033 (4)0.0035 (4)0.0016 (4)
O20.0231 (6)0.0123 (5)0.0138 (5)0.0014 (4)0.0039 (4)0.0009 (4)
N10.0181 (7)0.0095 (6)0.0136 (6)0.0043 (5)0.0033 (5)0.0007 (5)
N20.0284 (8)0.0151 (7)0.0153 (7)0.0043 (6)0.0062 (6)0.0022 (5)
N30.0196 (8)0.0114 (7)0.0128 (6)0.0016 (5)0.0035 (5)0.0004 (5)
C10.0126 (8)0.0106 (7)0.0136 (7)0.0009 (6)0.0017 (6)0.0006 (5)
C20.0140 (8)0.0116 (7)0.0127 (7)0.0011 (6)0.0001 (6)0.0011 (5)
C30.0134 (8)0.0110 (7)0.0134 (7)0.0005 (6)0.0019 (6)0.0006 (6)
C40.0151 (8)0.0128 (7)0.0108 (7)0.0008 (6)0.0017 (6)0.0002 (5)
C50.0162 (8)0.0157 (8)0.0108 (7)0.0011 (6)0.0015 (6)0.0026 (6)
C60.0138 (8)0.0129 (7)0.0121 (7)0.0004 (6)0.0010 (6)0.0021 (5)
C70.0235 (9)0.0106 (7)0.0161 (7)0.0037 (6)0.0022 (6)0.0026 (6)
C80.0262 (9)0.0149 (8)0.0184 (8)0.0057 (7)0.0025 (7)0.0012 (6)
C90.0144 (8)0.0142 (7)0.0105 (7)0.0016 (6)0.0007 (6)0.0011 (6)
C100.0217 (9)0.0121 (7)0.0147 (7)0.0010 (6)0.0001 (6)0.0013 (6)
C110.0264 (9)0.0161 (8)0.0148 (7)0.0048 (7)0.0002 (7)0.0021 (6)
C120.0193 (9)0.0209 (8)0.0123 (7)0.0028 (6)0.0017 (6)0.0006 (6)
C130.0169 (8)0.0158 (8)0.0164 (7)0.0016 (6)0.0003 (6)0.0014 (6)
C140.0183 (8)0.0128 (7)0.0147 (7)0.0004 (6)0.0003 (6)0.0019 (6)
Geometric parameters (Å, º) top
S1—C11.7266 (16)C7—C81.507 (2)
S1—C41.7497 (16)C9—C141.396 (2)
O1—C61.3552 (19)C9—C101.392 (2)
O1—C71.4512 (19)C10—C111.394 (2)
O2—C61.2264 (18)C11—C121.386 (2)
N1—C11.356 (2)C12—C131.390 (2)
N1—C91.412 (2)C13—C141.384 (2)
N2—C51.147 (2)C7—H7A0.9900
N3—C31.353 (2)C7—H7B0.9900
N1—H1N0.84 (2)C8—H8A0.9800
N3—H3NB0.86 (2)C8—H8B0.9800
N3—H3NA0.87 (2)C8—H8C0.9800
C1—C21.395 (2)C10—H100.9500
C2—C31.432 (2)C11—H110.9500
C2—C51.418 (2)C12—H120.9500
C3—C41.386 (2)C13—H130.9500
C4—C61.434 (2)C14—H140.9500
C1—S1—C491.55 (7)N1—C9—C14116.86 (13)
C6—O1—C7114.99 (11)C9—C10—C11119.14 (14)
C1—N1—C9130.11 (13)C10—C11—C12121.38 (15)
C1—N1—H1N115.8 (12)C11—C12—C13119.04 (15)
C9—N1—H1N114.1 (12)C12—C13—C14120.25 (15)
C3—N3—H3NA115.7 (13)C9—C14—C13120.54 (14)
H3NA—N3—H3NB117.9 (19)O1—C7—H7A110.00
C3—N3—H3NB118.7 (13)O1—C7—H7B110.00
S1—C1—C2111.26 (11)C8—C7—H7A110.00
N1—C1—C2123.52 (14)C8—C7—H7B110.00
S1—C1—N1125.20 (11)H7A—C7—H7B109.00
C1—C2—C5121.79 (14)C7—C8—H8A109.00
C3—C2—C5124.39 (13)C7—C8—H8B109.00
C1—C2—C3113.73 (13)C7—C8—H8C109.00
C2—C3—C4111.05 (13)H8A—C8—H8B110.00
N3—C3—C2123.23 (14)H8A—C8—H8C109.00
N3—C3—C4125.71 (14)H8B—C8—H8C109.00
S1—C4—C3112.41 (11)C9—C10—H10120.00
S1—C4—C6122.03 (11)C11—C10—H10120.00
C3—C4—C6125.56 (14)C10—C11—H11119.00
N2—C5—C2177.72 (16)C12—C11—H11119.00
O2—C6—C4124.52 (14)C11—C12—H12120.00
O1—C6—C4112.58 (12)C13—C12—H12120.00
O1—C6—O2122.90 (13)C12—C13—H13120.00
O1—C7—C8106.81 (12)C14—C13—H13120.00
N1—C9—C10123.53 (14)C9—C14—H14120.00
C10—C9—C14119.57 (14)C13—C14—H14120.00
C4—S1—C1—N1179.31 (14)C1—C2—C3—C40.1 (2)
C4—S1—C1—C20.86 (12)N3—C3—C4—C61.4 (3)
C1—S1—C4—C6179.95 (13)N3—C3—C4—S1179.43 (13)
C1—S1—C4—C30.82 (13)C2—C3—C4—S10.55 (17)
C7—O1—C6—O22.8 (2)C2—C3—C4—C6179.75 (15)
C7—O1—C6—C4177.50 (13)C3—C4—C6—O1175.42 (14)
C6—O1—C7—C8175.31 (13)C3—C4—C6—O24.3 (3)
C9—N1—C1—C2178.43 (15)S1—C4—C6—O13.71 (19)
C9—N1—C1—S10.2 (2)S1—C4—C6—O2176.63 (13)
C1—N1—C9—C14155.95 (16)N1—C9—C10—C11179.34 (15)
C1—N1—C9—C1026.5 (3)C14—C9—C10—C113.1 (2)
N1—C1—C2—C3179.20 (14)N1—C9—C14—C13179.64 (14)
S1—C1—C2—C5175.79 (12)C10—C9—C14—C132.0 (2)
N1—C1—C2—C52.7 (2)C9—C10—C11—C121.7 (3)
S1—C1—C2—C30.72 (17)C10—C11—C12—C131.0 (3)
C5—C2—C3—C4176.30 (15)C11—C12—C13—C142.2 (2)
C1—C2—C3—N3178.81 (14)C12—C13—C14—C90.8 (2)
C5—C2—C3—N34.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3NA···O20.87 (2)2.25 (2)2.8671 (19)128.0 (17)
N1—H1N···N2i0.84 (2)2.23 (2)3.026 (2)158.1 (16)
N3—H3NB···O2ii0.86 (2)2.24 (2)3.0985 (18)175.9 (17)
C10—H10···S10.952.553.1463 (17)121
Symmetry codes: (i) x, y+2, z; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H13N3O2S
Mr287.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.6121 (15), 10.6579 (15), 14.328 (3)
β (°) 92.580 (3)
V3)1313.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.55 × 0.04 × 0.03
Data collection
DiffractometerRigaku AFC12 (Right, Saturn724+)
diffractometer
Absorption correctionMulti-scan
(CrystalClear-SM Expert; Rigaku, 2012)
Tmin, Tmax0.887, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8995, 2996, 2728
Rint0.025
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.088, 1.07
No. of reflections2996
No. of parameters194
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.26

Computer programs: CrystalClear-SM Expert (Rigaku, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3NA···O20.87 (2)2.25 (2)2.8671 (19)128.0 (17)
N1—H1N···N2i0.84 (2)2.23 (2)3.026 (2)158.1 (16)
N3—H3NB···O2ii0.86 (2)2.24 (2)3.0985 (18)175.9 (17)
C10—H10···S10.952.553.1463 (17)121.00
Symmetry codes: (i) x, y+2, z; (ii) x, y+1/2, z1/2.
 

Acknowledgements

Erciyes University, Sohag University and Southampton University are gratefully acknowledged for supporting this study.

References

First citationEl-Sharkawy, K. A., El-Sayed, N. N. E. & Zaki, M. Y. (2012). Int. Res. J. Pure Appl. Chem. 2, 91–104.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHuang, X.-G., Liu, J., Ren, J., Wang, T., Chen, W. & Zeng, B.-B. (2011). Tetrahedron, 67, 6202–6205.  Web of Science CrossRef CAS Google Scholar
First citationInversen, L. F., Anderson, H. S., Branner, S., Moretensen, S. P., Peters, G. H., Norris, K., Olsen, O. H., Jeppesen, C. B., Lundt, B. F., Ripka, W., Moller, K. B. & Moller, N. P. H. (2000). J. Biol. Chem. 275, 10300–10307.  Web of Science PubMed Google Scholar
First citationMabkhot, Y. N., Alatibi, F., Barakat, A., Choudhary, M. I. & Yousuf, S. (2013). Acta Cryst. E69, o1049.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWebb, T. R., Melman, N., Lvovskiy, D., Ji, X. & Jacobson, K. A. (2000). Bioorg. Med. Chem. Lett. 10, 31–34.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1244-o1245
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds