organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Fluoro-N-(2-methyl-3-oxo-1-thia-4-aza­spiro­[4.5]dec-4-yl)-3-phenyl-1H-indole-2-carboxamide

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, 34116 Beyazit, Istanbul, Turkey, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 4 July 2013; accepted 4 July 2013; online 10 July 2013)

In the title compound, C24H24FN3O2S, the 1,3-thia­zolidine ring adopts an envelope conformation with the S atom as the flap, while the cyclo­hexane ring is in a chair conformation. In the crystal, mol­ecules are linked by N—H⋯O and C—H⋯F hydrogen bonds, forming a three-dimensional network. The unit cell contains six voids of 57 Å3, but the residual electron density (highest peak = 0.23 e Å−3 and deepest hole = −0.19 e Å−3) in the difference Fourier map suggests no solvent mol­ecule occupies this void.

Related literature

For the anti­tubercular and anti­viral activity of variously substituted N-(1-thia-4-aza­spiro­[4.5]dec-4-yl)carboxamides, see: Cihan-Üstündağ & Çapan (2012[Cihan-Üstündağ, G. & Çapan, G. (2012). Mol. Divers. 16, 525-539.]); Göktas et al. (2012[Göktas, F., Vanderlinden, E., Naesens, L., Cesur, N. & Cesur, Z. (2012). Bioorg. Med. Chem. 20, 7155-7159.]); Güzel et al. (2006[Güzel, Ö., İlhan, E. & Salman, A. (2006). Monatsh. Chem. 137, 795-801.]); Ulusoy (2002[Ulusoy, N. (2002). Arzneim.-Forsch. Drug. Res. 52, 565-571.]); Vanderlinden et al. (2010[Vanderlinden, E., Göktas, F., Cesur, Z., Froeyen, M., Reed, M. L., Russell, C. J., Cesur, N. & Naesens, L. (2010). J. Virol. 84, 4277-4288.]). For puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C24H24FN3O2S

  • Mr = 437.53

  • Hexagonal, P 65

  • a = 13.2082 (18) Å

  • c = 23.584 (4) Å

  • V = 3563.2 (13) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 296 K

  • 0.68 × 0.49 × 0.40 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.905, Tmax = 0.935

  • 37961 measured reflections

  • 4922 independent reflections

  • 3348 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.100

  • S = 0.96

  • 4922 reflections

  • 288 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2399 Freidel pairs

  • Flack parameter: −0.01 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 (3) 2.08 (3) 2.903 (4) 160 (2)
N2—H2A⋯O1ii 0.85 (2) 2.07 (2) 2.760 (3) 137 (2)
C10—H10A⋯F1iii 0.93 2.54 3.453 (5) 167
Symmetry codes: (i) [y+1, -x+y+1, z+{\script{1\over 6}}]; (ii) [x-y, x-1, z-{\script{1\over 6}}]; (iii) [-y, x-y-1, z-{\script{1\over 3}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Despite remarkable advances, tuberculosis and viral diseases continue to be the leading causes of death worldwide. Recent research on variously substituted N-(1-thia-4-azaspiro[4.5]dec-4-yl)carboxamides has revealed encouraging antitubercular (Cihan-Üstündağ & Çapan, 2012; Güzel et al. 2006; Ulusoy, 2002) and antiviral (Göktas et al., 2012; Vanderlinden et al., 2010) activity. Full characterization of the active core may yield invaluable data for the design of relevant compounds with enhanced action. Thus, we herein report the X-ray diffraction analysis of the title compound (I).

In (I), (Fig. 1), the 1,3 thiazolidine ring (S1/N3/C16/C17/C19) adopts an envelope conformation [the puckering parameters (Cremer & Pople, 1975) are Q(2) = 0.228 (3) Å and ϕ(2) = 351.3 (8)°] with the S1 atom as the flap atom. The cyclohexane ring (C19–C24) exhibits a chair conformation with the puckering parameters of QT = 0.554 (4) Å, θ = 180.0° and ϕ = 180 (15)°. The indole ring system (N1/C1–C7/C14) is essentially planar, with the maximum deviations of 0.014 (2) Å for N1 and 0.012 (3) Å for C5. The phenyl (C8–C13) and 1,3-thiazolidine (S1/N3/C16/C17/C19) rings are inclined at the dihedral angles of 56.14 (15) and 57.03 (12) °, respectively, to the indole ring system. The torsion angle of the N3–N2–C15–C14 bridge between the indole ring and the thiazolidine ring system is -165.8 (2) °.

In the crystal structure, N—H···O and C—H···F hydrogen bonds connect the adjacent molecules to each other, forming a three dimensional network. In addtion, π-π and C—H···π interactions are not observed.

Related literature top

For the antitubercular and antiviral activity of variously substituted N-(1-thia-4-azaspiro[4.5]dec-4-yl)carboxamides, see: Cihan-Üstündağ & Çapan (2012); Göktas et al. (2012); Güzel et al. (2006); Ulusoy (2002); Vanderlinden et al. (2010). For puckering analysis, see: Cremer & Pople (1975).

Experimental top

A mixture of 5-fluoro-3-phenyl-1H-indole-2-carbohydrazide (0.0025 mol), cyclohexanone (0.003 mol) and 2-mercaptopropionic acid (0.01 mol) was refluxed in 20 ml dry benzene for 5 h using a Dean-Stark water separator. Excess benzene was evaporated in vacuo. The resulting residue was triturated with saturated NaHCO3 solution until CO2 evolution ceased and was refrigerated overnight. The solid thus obtained was washed with water, filtered, dried, and recrystallized from ethanol.

Yield: 77%, mp.: 507–509 K. IR(KBr): υmax 3227 (N—H), 1690 (C=O), 1662 (C=O) cm-1. 1H-NMR (DMSO-d6/500 MHz): δ 1.03–1.09 (m, 1H, CH2-sp.*), 1.32–1.45 (m, 5H, 2-CH3, CH2-sp.), 1.55–1.77 (m, 7H, CH2-sp.), 3.87 (br. d, 1H, J=6.3 Hz, C2—H -sp.), 7.15 (td, 1H, J=9.4, 2.4 Hz, H6-ind.), 7.23 (dd, 1H, J=9.7, 1.9 Hz, H4-ind.), 7.35 (t, 1H, J=7.3 Hz, 3-C6H5(H4)-ind.), 7.45 (t, 2H, J=7.3 Hz, 3-C6H5(H3,H5)-ind.), 7.50–7.57 (m, 3H, H7, 3-C6H5 (H2,H6)-ind.), 10.06 (s, 1H, CONH), 12.00 (s, 1H, NH) p.p.m.. MS (APCI+) m/z(%) 438 ((M+H)+, 43), (APCI–) m/z(%) 436 ((M—H)-, 100). Analysis calculated for C24H24FN3O2S: C 65.88, H 5.53, N 9.60, S 7.33%. Found: C 65.55, H 5.20, N 9.44, S 7.69%. (*sp.=spirodecane, br.=broad, ind.=indole).

Refinement top

H atoms bonded to C atoms were positioned geometrically with C—H = 0.93 - 0.98 Å, and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). The H atoms of the two amide groups were found in a difference Fourier map, restrained with N—H = 0.86 (2) Å and refined with Uiso = 1.2Ueq(N). The unit cell contains six voids of 57 Å3, but the residual electron density (highest peak = 0.23 e.Å-3 and deepest hole = -0.19 e.Å-3) in the difference Fourier map suggests no solvent molecule occupies this void.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The structure of the title molecule with the atom labelling scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the packing and hydrogen bondings of the title compound, down the [110]-axis. H atoms not participating in hydrogen bonding have been omitted for clarity.
5-Fluoro-N-(2-methyl-3-oxo-1-thia-4-azaspiro[4.5]dec-4-yl)-3-phenyl-1H-indole-2-carboxamide top
Crystal data top
C24H24FN3O2SDx = 1.223 Mg m3
Mr = 437.53Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P65Cell parameters from 3314 reflections
Hall symbol: P 65θ = 1.7–24.3°
a = 13.2082 (18) ŵ = 0.17 mm1
c = 23.584 (4) ÅT = 296 K
V = 3563.2 (13) Å3Prism, colourless
Z = 60.68 × 0.49 × 0.40 mm
F(000) = 1380
Data collection top
Stoe IPDS 2
diffractometer
4922 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3348 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.059
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 1.8°
ω–scansh = 1516
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1616
Tmin = 0.905, Tmax = 0.935l = 2929
37961 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0551P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
4922 reflectionsΔρmax = 0.23 e Å3
288 parametersΔρmin = 0.19 e Å3
4 restraintsAbsolute structure: Flack (1983), 2399 Freidel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (8)
Crystal data top
C24H24FN3O2SZ = 6
Mr = 437.53Mo Kα radiation
Hexagonal, P65µ = 0.17 mm1
a = 13.2082 (18) ÅT = 296 K
c = 23.584 (4) Å0.68 × 0.49 × 0.40 mm
V = 3563.2 (13) Å3
Data collection top
Stoe IPDS 2
diffractometer
4922 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
3348 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.935Rint = 0.059
37961 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100Δρmax = 0.23 e Å3
S = 0.96Δρmin = 0.19 e Å3
4922 reflectionsAbsolute structure: Flack (1983), 2399 Freidel pairs
288 parametersAbsolute structure parameter: 0.01 (8)
4 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.14962 (8)0.40748 (8)0.02744 (4)0.0985 (3)
F10.46476 (17)0.29139 (16)0.34676 (8)0.1106 (8)
O11.03682 (16)0.23902 (16)0.20319 (6)0.0747 (6)
O21.05778 (17)0.10407 (18)0.08858 (8)0.0808 (7)
N10.8840 (2)0.04416 (18)0.26571 (8)0.0635 (7)
N20.91194 (19)0.17601 (19)0.12881 (7)0.0608 (7)
N31.00273 (18)0.24151 (18)0.09113 (8)0.0609 (7)
C10.7870 (2)0.0441 (2)0.29191 (9)0.0617 (9)
C20.7796 (3)0.1096 (3)0.33995 (11)0.0793 (10)
C30.6684 (3)0.1925 (3)0.35702 (13)0.0895 (13)
C40.5723 (3)0.2078 (2)0.32737 (11)0.0792 (10)
C50.5760 (2)0.1454 (2)0.28088 (11)0.0690 (9)
C60.6880 (2)0.0611 (2)0.26178 (9)0.0585 (8)
C70.7284 (2)0.0200 (2)0.21584 (9)0.0565 (8)
C80.6543 (2)0.0362 (2)0.17393 (9)0.0613 (8)
C90.5750 (3)0.0575 (3)0.14063 (11)0.0862 (11)
C100.5091 (3)0.0395 (5)0.09960 (14)0.1120 (16)
C110.5207 (4)0.0666 (5)0.09194 (16)0.114 (2)
C120.5970 (3)0.1599 (4)0.12420 (16)0.1037 (16)
C130.6620 (3)0.1432 (3)0.16482 (12)0.0796 (11)
C140.8473 (2)0.0809 (2)0.21937 (9)0.0575 (8)
C150.9402 (2)0.1718 (2)0.18413 (9)0.0579 (8)
C161.0671 (2)0.1961 (3)0.07269 (10)0.0715 (10)
C171.1532 (4)0.2742 (3)0.02812 (15)0.1084 (16)
C181.2528 (5)0.2705 (5)0.0215 (3)0.218 (4)
C191.0107 (3)0.3462 (2)0.06577 (10)0.0685 (9)
C200.9079 (3)0.3128 (3)0.02508 (12)0.0823 (10)
C210.9134 (4)0.4214 (3)0.00119 (14)0.1053 (16)
C220.9213 (5)0.5057 (4)0.04366 (19)0.1259 (19)
C231.0202 (4)0.5387 (3)0.08365 (16)0.1170 (18)
C241.0156 (3)0.4300 (3)0.11059 (12)0.0937 (13)
H1A0.9546 (16)0.058 (2)0.2688 (11)0.067 (8)*
H20.845900.097900.359400.0950*
H2A0.8520 (18)0.1166 (18)0.1151 (9)0.063 (8)*
H30.658700.238300.388800.1070*
H50.508400.157600.262700.0830*
H90.566000.131300.145700.1030*
H10A0.456600.101900.077300.1340*
H11A0.476200.076800.064400.1370*
H120.604800.233200.118800.1240*
H130.713200.206400.187000.0950*
H171.111300.237000.006900.1300*
H18A1.305400.311800.052100.2610*
H18B1.288800.306400.013900.2610*
H18C1.235100.190600.021600.2610*
H20A0.909600.263300.004800.0990*
H20B0.834900.268700.045600.0990*
H21A0.981000.459600.025900.1270*
H21B0.844100.398000.024000.1270*
H22A0.930700.575800.025500.1510*
H22B0.848700.470800.064900.1510*
H23A1.017300.587900.113400.1410*
H23B1.093500.583300.063500.1410*
H24A1.084300.454200.134000.1130*
H24B0.947200.390700.134700.1130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.1004 (6)0.0842 (5)0.1055 (5)0.0421 (5)0.0484 (5)0.0345 (4)
F10.0989 (14)0.0883 (12)0.1143 (13)0.0241 (11)0.0351 (11)0.0409 (10)
O10.0642 (11)0.0767 (12)0.0567 (9)0.0154 (10)0.0039 (8)0.0082 (8)
O20.0818 (13)0.0784 (13)0.0904 (12)0.0462 (11)0.0147 (10)0.0192 (11)
N10.0608 (14)0.0695 (14)0.0537 (10)0.0276 (12)0.0009 (10)0.0105 (9)
N20.0578 (13)0.0649 (14)0.0453 (10)0.0199 (11)0.0062 (9)0.0057 (9)
N30.0656 (13)0.0643 (12)0.0511 (9)0.0311 (11)0.0139 (9)0.0098 (9)
C10.0725 (17)0.0609 (15)0.0513 (12)0.0330 (14)0.0071 (11)0.0068 (11)
C20.088 (2)0.0773 (19)0.0683 (15)0.0381 (17)0.0029 (14)0.0177 (13)
C30.104 (3)0.083 (2)0.0765 (16)0.0429 (19)0.0204 (18)0.0353 (15)
C40.084 (2)0.0590 (17)0.0740 (16)0.0203 (15)0.0233 (16)0.0131 (13)
C50.0689 (17)0.0574 (15)0.0720 (14)0.0250 (14)0.0138 (12)0.0078 (12)
C60.0667 (16)0.0547 (14)0.0533 (11)0.0297 (13)0.0059 (11)0.0003 (10)
C70.0622 (16)0.0521 (14)0.0495 (11)0.0244 (12)0.0046 (10)0.0012 (10)
C80.0562 (14)0.0718 (17)0.0486 (11)0.0266 (13)0.0102 (10)0.0048 (11)
C90.0690 (19)0.096 (2)0.0760 (17)0.0281 (17)0.0107 (14)0.0130 (16)
C100.069 (2)0.164 (4)0.080 (2)0.041 (3)0.0156 (16)0.026 (2)
C110.093 (3)0.188 (5)0.081 (2)0.085 (3)0.008 (2)0.023 (3)
C120.093 (3)0.141 (3)0.099 (2)0.075 (3)0.016 (2)0.036 (2)
C130.0762 (19)0.089 (2)0.0787 (16)0.0451 (17)0.0079 (14)0.0121 (14)
C140.0609 (15)0.0605 (14)0.0473 (11)0.0275 (13)0.0029 (10)0.0031 (10)
C150.0623 (16)0.0579 (14)0.0502 (12)0.0275 (13)0.0005 (11)0.0027 (10)
C160.0710 (18)0.0785 (19)0.0609 (14)0.0343 (16)0.0118 (12)0.0110 (13)
C170.124 (3)0.112 (3)0.112 (2)0.076 (2)0.062 (2)0.048 (2)
C180.226 (6)0.162 (5)0.314 (8)0.134 (5)0.208 (6)0.127 (5)
C190.0854 (19)0.0647 (16)0.0541 (12)0.0366 (14)0.0192 (12)0.0118 (11)
C200.100 (2)0.0845 (19)0.0726 (15)0.0537 (18)0.0079 (15)0.0168 (14)
C210.134 (3)0.113 (3)0.092 (2)0.079 (2)0.019 (2)0.036 (2)
C220.178 (4)0.115 (3)0.127 (3)0.105 (3)0.058 (3)0.046 (3)
C230.176 (4)0.081 (2)0.103 (3)0.071 (3)0.032 (3)0.0072 (19)
C240.135 (3)0.0724 (19)0.0700 (16)0.049 (2)0.0241 (17)0.0028 (13)
Geometric parameters (Å, º) top
S1—C171.785 (4)C17—C181.350 (9)
S1—C191.831 (4)C19—C241.508 (4)
F1—C41.370 (4)C19—C201.536 (5)
O1—C151.219 (3)C20—C211.531 (5)
O2—C161.218 (4)C21—C221.501 (6)
N1—C11.374 (3)C22—C231.489 (8)
N1—C141.378 (3)C23—C241.543 (5)
N2—N31.392 (3)C2—H20.9300
N2—C151.366 (3)C3—H30.9300
N3—C161.335 (4)C5—H50.9300
N3—C191.461 (3)C9—H90.9300
N1—H1A0.86 (3)C10—H10A0.9300
N2—H2A0.85 (2)C11—H11A0.9300
C1—C61.404 (4)C12—H120.9300
C1—C21.399 (4)C13—H130.9300
C2—C31.382 (5)C17—H170.9800
C3—C41.373 (6)C18—H18A0.9600
C4—C51.358 (4)C18—H18B0.9600
C5—C61.409 (4)C18—H18C0.9600
C6—C71.426 (3)C20—H20A0.9700
C7—C141.363 (4)C20—H20B0.9700
C7—C81.480 (4)C21—H21A0.9700
C8—C131.382 (4)C21—H21B0.9700
C8—C91.396 (4)C22—H22A0.9700
C9—C101.399 (6)C22—H22B0.9700
C10—C111.344 (8)C23—H23A0.9700
C11—C121.368 (7)C23—H23B0.9700
C12—C131.376 (6)C24—H24A0.9700
C14—C151.471 (3)C24—H24B0.9700
C16—C171.513 (5)
C17—S1—C1994.27 (18)C21—C22—C23112.9 (5)
C1—N1—C14108.2 (2)C22—C23—C24111.6 (3)
N3—N2—C15117.8 (2)C19—C24—C23111.2 (2)
N2—N3—C16118.2 (2)C1—C2—H2122.00
N2—N3—C19118.8 (3)C3—C2—H2122.00
C16—N3—C19122.1 (2)C2—C3—H3120.00
C1—N1—H1A126.5 (16)C4—C3—H3120.00
C14—N1—H1A121.9 (17)C4—C5—H5122.00
N3—N2—H2A116.4 (15)C6—C5—H5122.00
C15—N2—H2A118.2 (15)C8—C9—H9120.00
C2—C1—C6122.6 (3)C10—C9—H9120.00
N1—C1—C2129.5 (3)C9—C10—H10A119.00
N1—C1—C6107.9 (2)C11—C10—H10A120.00
C1—C2—C3116.4 (3)C10—C11—H11A120.00
C2—C3—C4120.4 (3)C12—C11—H11A119.00
F1—C4—C5117.8 (3)C11—C12—H12121.00
C3—C4—C5124.9 (3)C13—C12—H12121.00
F1—C4—C3117.3 (2)C8—C13—H13119.00
C4—C5—C6116.3 (3)C12—C13—H13119.00
C1—C6—C5119.4 (2)S1—C17—H17102.00
C1—C6—C7107.2 (2)C16—C17—H17102.00
C5—C6—C7133.4 (3)C18—C17—H17102.00
C6—C7—C14106.6 (2)C17—C18—H18A110.00
C8—C7—C14127.3 (2)C17—C18—H18B109.00
C6—C7—C8126.1 (2)C17—C18—H18C109.00
C9—C8—C13117.3 (3)H18A—C18—H18B110.00
C7—C8—C9120.3 (2)H18A—C18—H18C109.00
C7—C8—C13122.4 (2)H18B—C18—H18C109.00
C8—C9—C10119.6 (4)C19—C20—H20A109.00
C9—C10—C11120.9 (4)C19—C20—H20B109.00
C10—C11—C12120.9 (5)C21—C20—H20A109.00
C11—C12—C13118.7 (4)C21—C20—H20B109.00
C8—C13—C12122.6 (3)H20A—C20—H20B108.00
N1—C14—C7110.2 (2)C20—C21—H21A109.00
N1—C14—C15116.0 (2)C20—C21—H21B109.00
C7—C14—C15133.8 (2)C22—C21—H21A109.00
O1—C15—N2122.0 (2)C22—C21—H21B109.00
N2—C15—C14116.1 (2)H21A—C21—H21B108.00
O1—C15—C14121.9 (2)C21—C22—H22A109.00
O2—C16—N3125.4 (3)C21—C22—H22B109.00
O2—C16—C17124.1 (3)C23—C22—H22A109.00
N3—C16—C17110.5 (3)C23—C22—H22B109.00
C16—C17—C18118.0 (4)H22A—C22—H22B108.00
S1—C17—C16107.3 (3)C22—C23—H23A109.00
S1—C17—C18122.8 (4)C22—C23—H23B109.00
S1—C19—C20111.40 (19)C24—C23—H23A109.00
S1—C19—C24110.8 (2)C24—C23—H23B109.00
N3—C19—C20110.4 (2)H23A—C23—H23B108.00
S1—C19—N3101.7 (2)C19—C24—H24A109.00
N3—C19—C24111.3 (2)C19—C24—H24B109.00
C20—C19—C24110.9 (3)C23—C24—H24A109.00
C19—C20—C21111.3 (3)C23—C24—H24B109.00
C20—C21—C22111.3 (3)H24A—C24—H24B108.00
C19—S1—C17—C1616.7 (3)C5—C6—C7—C14178.9 (3)
C19—S1—C17—C18158.5 (4)C5—C6—C7—C80.6 (4)
C17—S1—C19—N318.3 (2)C1—C6—C7—C140.5 (3)
C17—S1—C19—C2099.3 (2)C6—C7—C8—C958.0 (4)
C17—S1—C19—C24136.7 (3)C6—C7—C14—N11.2 (3)
C1—N1—C14—C15177.1 (2)C6—C7—C14—C15176.9 (3)
C1—N1—C14—C71.4 (3)C14—C7—C8—C9124.0 (3)
C14—N1—C1—C61.0 (3)C14—C7—C8—C1354.3 (4)
C14—N1—C1—C2179.2 (3)C8—C7—C14—N1177.1 (2)
N3—N2—C15—O113.9 (4)C8—C7—C14—C154.8 (5)
C15—N2—N3—C1676.9 (3)C6—C7—C8—C13123.7 (3)
C15—N2—N3—C19113.8 (3)C7—C8—C13—C12177.1 (3)
N3—N2—C15—C14165.8 (2)C9—C8—C13—C121.2 (5)
C16—N3—C19—C24135.4 (3)C13—C8—C9—C101.0 (5)
N2—N3—C16—O24.5 (4)C7—C8—C9—C10177.4 (3)
C16—N3—C19—S117.3 (3)C8—C9—C10—C110.3 (6)
N2—N3—C16—C17174.6 (2)C9—C10—C11—C120.2 (7)
C19—N3—C16—C175.7 (4)C10—C11—C12—C130.0 (7)
N2—N3—C19—C2455.8 (4)C11—C12—C13—C80.8 (6)
C19—N3—C16—O2173.4 (3)C7—C14—C15—N223.2 (4)
N2—N3—C19—S1173.89 (16)C7—C14—C15—O1157.1 (3)
C16—N3—C19—C20101.1 (3)N1—C14—C15—O124.9 (4)
N2—N3—C19—C2067.8 (3)N1—C14—C15—N2154.8 (2)
C6—C1—C2—C30.6 (4)O2—C16—C17—C1827.3 (6)
C2—C1—C6—C7179.9 (3)N3—C16—C17—S19.7 (3)
N1—C1—C2—C3179.1 (3)N3—C16—C17—C18153.6 (4)
N1—C1—C6—C5178.4 (2)O2—C16—C17—S1171.2 (3)
C2—C1—C6—C51.4 (4)S1—C19—C20—C2168.8 (3)
N1—C1—C6—C70.3 (3)N3—C19—C20—C21179.0 (3)
C1—C2—C3—C40.2 (5)C24—C19—C20—C2155.1 (4)
C2—C3—C4—C50.8 (5)S1—C19—C24—C2369.3 (4)
C2—C3—C4—F1179.9 (3)N3—C19—C24—C23178.3 (3)
F1—C4—C5—C6179.4 (2)C20—C19—C24—C2354.9 (4)
C3—C4—C5—C61.5 (4)C19—C20—C21—C2254.2 (5)
C4—C5—C6—C7180.0 (3)C20—C21—C22—C2354.4 (5)
C4—C5—C6—C11.8 (4)C21—C22—C23—C2454.4 (5)
C1—C6—C7—C8177.8 (2)C22—C23—C24—C1954.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.86 (3)2.08 (3)2.903 (4)160 (2)
N2—H2A···O1ii0.85 (2)2.07 (2)2.760 (3)137 (2)
C10—H10A···F1iii0.932.543.453 (5)167
Symmetry codes: (i) y+1, x+y+1, z+1/6; (ii) xy, x1, z1/6; (iii) y, xy1, z1/3.

Experimental details

Crystal data
Chemical formulaC24H24FN3O2S
Mr437.53
Crystal system, space groupHexagonal, P65
Temperature (K)296
a, c (Å)13.2082 (18), 23.584 (4)
V3)3563.2 (13)
Z6
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.68 × 0.49 × 0.40
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.905, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
37961, 4922, 3348
Rint0.059
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.100, 0.96
No. of reflections4922
No. of parameters288
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.19
Absolute structureFlack (1983), 2399 Freidel pairs
Absolute structure parameter0.01 (8)

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.86 (3)2.08 (3)2.903 (4)160 (2)
N2—H2A···O1ii0.85 (2)2.07 (2)2.760 (3)137 (2)
C10—H10A···F1iii0.932.543.453 (5)167
Symmetry codes: (i) y+1, x+y+1, z+1/6; (ii) xy, x1, z1/6; (iii) y, xy1, z1/3.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund). This work was supported by the Scientific Research Projects Coordination Unit of İstanbul University (project No. T-471/25062004).

References

First citationCihan-Üstündağ, G. & Çapan, G. (2012). Mol. Divers. 16, 525–539.  Web of Science PubMed Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGöktas, F., Vanderlinden, E., Naesens, L., Cesur, N. & Cesur, Z. (2012). Bioorg. Med. Chem. 20, 7155–7159.  Web of Science PubMed Google Scholar
First citationGüzel, Ö., İlhan, E. & Salman, A. (2006). Monatsh. Chem. 137, 795–801.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationUlusoy, N. (2002). Arzneim.-Forsch. Drug. Res. 52, 565–571.  CAS Google Scholar
First citationVanderlinden, E., Göktas, F., Cesur, Z., Froeyen, M., Reed, M. L., Russell, C. J., Cesur, N. & Naesens, L. (2010). J. Virol. 84, 4277–4288.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds