organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1328-o1329

1-Ethyl-4′-(1H-indol-3-ylcarbon­yl)-1′-methyl-2,2′′-dioxodi­spiro­[indoline-3,2′-pyrrolidine-3′,3′′-indoline]-4′-carbo­nitrile di­methyl sulfoxide monosolvate

aSri Ram Engineering College, Chennai 602 024, India, bOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India, and cDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 3 July 2013; accepted 23 July 2013; online 27 July 2013)

In the title compound, C31H25N5O3·C2H6OS, the three indole/indoline units are all essentially planar with maximum deviations of 0.0172 (3), 0.053 (2) and 0.07 (2) Å. The pyrrolidine ring adopts an envelope conformation with the C atoms bearing the 1-ethyl-2-oxo­indole substituent (in which the five-membered ring adopts a twisted conformation) as the flap. The dimethyl sulfoxide solvent mol­ecule is disordered over two positions, with an occupancy factor ratio of 0.871 (4):0.129 (4). The solvent components are linked to the heterocyclic mol­ecule via C—H⋯O and C—H⋯S hydrogen bonds. In the crystal, the solvent components are linked to the heterocyclic molecule via C—H⋯O and C—H⋯S inter­actions, forming R22(10) ring motifs. The mol­ecules are further connected into a chain along the a-axis direction via N—H⋯O hydrogen bonds.

Related literature

For applications of indole derivatives, see: Barden (2011[Barden, T. C. (2011). Top Heterocycl. Chem. 26, 31-46.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C31H25N5O3·C2H6OS

  • Mr = 593.70

  • Orthorhombic, P b c a

  • a = 14.078 (5) Å

  • b = 20.416 (5) Å

  • c = 20.789 (5) Å

  • V = 5975 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 295 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.955, Tmax = 0.970

  • 26724 measured reflections

  • 5139 independent reflections

  • 3447 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.120

  • S = 1.03

  • 5139 reflections

  • 431 parameters

  • 48 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O4 0.84 (3) 1.89 (3) 2.714 (3) 166 (2)
N1—H1A⋯O2i 0.84 (3) 2.10 (3) 2.887 (3) 155 (2)
C22—H22⋯S1ii 0.93 2.85 3.717 (3) 157
C32—H32A⋯O3iii 0.96 2.60 3.219 (4) 123
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Indole containing compounds are best known for their medicinal properties in the pharmaceutical industry. In modern times, analogs based on indole are significant players in a diverse array of markets such as dyes, plastics, agriculture, vitamin supplements, over-the-counterdrugs, flavour enhancers and perfumery (Barden, 2011).

In the crystal structure of title compound, C31H25N5O3.C2H6OS, (Fig. 1), there is a dispiro centers system, which consists of two oxindole rings, an indole ring and a pyrrolidine ring. In crystals organic heterocycles moiety and solvent molecules connected by two intermolecular C–H···S and C–H···O hydrogen bonds (Table 1). The dimethyl sulfoxide solvent molecule is disordered over two positions with site occupancy factors 0.871 (4) and 0.129 (4).

The pyrrolidine ring (N3/C12/C13/C14/C10) adopts an envelope conformation with puckering parameters, q2 = 0.402 (2)Å, ϕ(2) = 331.4 (3)°, and with atom C13 deviating by 0.256 (2)Å from the mean plane passing through the rest of the ring atoms (Cremer & Pople, 1975). The carbonitrile group is nearly perpendicular to pyrrolidine ring, as indicated by the torsion angle C12-C10-C11-N2 = 87.4 (2)°. The indole system A makes dihedral angles of 53.13 (15)° and 86.11 (6)° with the oxindole ring systems B & C, respectively. It clearly shows that ring systems A and C are almost perpendicular to each other. Also the dihedral angle between oxindole B and C is 54.40 (5)°. The twisted conformation of the five membered pyrrole ring in oxindole ring system C is observed through the puckering analysis [q2 = 0.074 (2) Å and ϕ(2) = 277.1 (18)°].

The indole and oxindole ring systems A, B and C are planar with maximum deviations of 0.0172 (3)Å, 0.053 (2)Å and 0.07 (2)Å for the atoms C4, C14 and C26 from the LS planes. The bond lengths of O2-C16, C16-N4 in oxindole unit B and O3-C23, C23-N5 in oxindole unit C show electron delocalization over atoms O2, C16, N4, O3, C23 and N5.

The cyano bond distance C11N2 agrees well with the reported value of 1.138 (7)Å (Allen et al., 1987). The sum of the angles around atom N5 (359.86°) is in accordance with sp2 hybridization, whereas the sum of the angles around atom N3 (337.75°) is in accordance with sp3 one. The oxygen atoms attached to C16 and C23 are coplanar with the oxindole ring system B & C as indicated by the torsion angles O2-C16-N4-C18 = -177.3 (2)° and O3-C23-N5-C24 = -176.3 (2)°, respectively.

In the crystal structure, pairs of molecules are linked by intermolecular C–H···O and C–H···S hydrogen bonds to generate R22(10) ring motifs (Bernstein et al., 1995). The molecules are further connected into a chain along the a axis via N–H···O intermolecular hydrogen bonds. The packing view of the title compound is shown in Fig. 2. (Macrae et al., 2008).

Related literature top

For applications of indole derivatives, see: Barden (2011). For puckering parameters, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A mixture of 1-ethyl-isatin (1 mmol), sarcosine (1 mmol) and 3-(1H-indol-3-yl)-3-oxo-2-(2-oxoindoline-3-ylidene)propane nitrile (1 mmol) were refluxed in ethanol (10 ml). After completion of the reaction as evidenced by TLC analysis, the reaction mixture was poured into ice-water, the resulting solid was filtered off and purified by column chromatography using ethyl acetate : petroleum ether (6 : 4) as an eluent to afford pure spirooxiindoles in 82% yield.

Refinement top

Positions of hydrogen atoms were localized from the difference electron density maps and their distances were geometrically constrained. The H atoms bound to the C atoms were treated as riding atoms,with C–H = 0.93Å and Uiso(H) = 1.2Ueq(C) for aromatic, C–H = 0.97Å and Uiso(H) = 1.2Ueq(C) for methylene and C–H = 0.96Å and Uiso(H) = 1.5Ueq(C) for methyl groups. The rotation angles for methyl groups were optimized by least squares. The N bonded H atoms were refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The part of molecular structure of the title compound, showing the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are present as a small spheres of arbitary radius. Only major moiety of solvent is shown.
[Figure 2] Fig. 2. The packing structure of the title compound viewed along the c axis. H atoms not included in H-bonding have omited for clarity.
1-Ethyl-4'-(1H-indol-3-ylcarbonyl)-1'-methyl-2,2''-dioxodispiro[indoline-3,2'-pyrrolidine-3',3''-indoline]-4'-carbonitrile dimethyl sulfoxide monosolvate top
Crystal data top
C31H25N5O3·C2H6OSF(000) = 2496
Mr = 593.70Dx = 1.320 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5139 reflections
a = 14.078 (5) Åθ = 2.2–25.0°
b = 20.416 (5) ŵ = 0.16 mm1
c = 20.789 (5) ÅT = 295 K
V = 5975 (3) Å3Block, colourless
Z = 80.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5139 independent reflections
Radiation source: fine-focus sealed tube3447 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω and ϕ scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1615
Tmin = 0.955, Tmax = 0.970k = 1624
26724 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0509P)2 + 2.1171P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
5139 reflectionsΔρmax = 0.25 e Å3
431 parametersΔρmin = 0.27 e Å3
48 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0015 (2)
Crystal data top
C31H25N5O3·C2H6OSV = 5975 (3) Å3
Mr = 593.70Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.078 (5) ŵ = 0.16 mm1
b = 20.416 (5) ÅT = 295 K
c = 20.789 (5) Å0.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5139 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3447 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.970Rint = 0.035
26724 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04248 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.25 e Å3
5139 reflectionsΔρmin = 0.27 e Å3
431 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.65192 (17)0.06281 (11)0.33748 (10)0.0472 (6)
C20.5854 (2)0.02329 (12)0.36920 (13)0.0661 (7)
H20.52060.03080.36480.079*
C30.6188 (3)0.02699 (14)0.40713 (16)0.0868 (10)
H30.57540.05360.42850.104*
C40.7148 (3)0.03925 (14)0.41453 (15)0.0853 (10)
H40.73410.07400.44030.102*
C50.7820 (2)0.00148 (13)0.38480 (13)0.0683 (8)
H50.84660.00950.38980.082*
C60.74840 (18)0.04948 (11)0.34678 (10)0.0501 (6)
C70.73904 (17)0.13393 (11)0.27982 (10)0.0482 (6)
H70.75730.16790.25270.058*
C80.64624 (16)0.11757 (10)0.29381 (10)0.0434 (5)
C90.55927 (17)0.14783 (11)0.27187 (10)0.0470 (6)
C100.56313 (15)0.20484 (10)0.22079 (10)0.0407 (5)
C110.62745 (17)0.25514 (11)0.24702 (11)0.0468 (6)
C120.46423 (16)0.23568 (11)0.20902 (11)0.0503 (6)
H12A0.41750.21660.23780.060*
H12B0.46630.28260.21630.060*
C130.52858 (15)0.21989 (10)0.10596 (10)0.0399 (5)
C140.59516 (14)0.18003 (9)0.15212 (10)0.0374 (5)
C150.36806 (17)0.26636 (12)0.11622 (13)0.0619 (7)
H15A0.38950.31070.12100.093*
H15B0.30960.26060.13930.093*
H15C0.35800.25710.07150.093*
C160.57207 (16)0.10561 (10)0.14492 (10)0.0413 (5)
C170.69758 (15)0.18221 (10)0.13168 (9)0.0382 (5)
C180.72407 (15)0.12012 (11)0.11078 (10)0.0433 (5)
C190.81171 (18)0.10731 (13)0.08455 (12)0.0598 (7)
H190.82810.06550.07070.072*
C200.87455 (19)0.15900 (15)0.07958 (13)0.0695 (8)
H200.93440.15190.06190.083*
C210.85034 (17)0.22058 (14)0.10016 (13)0.0617 (7)
H210.89400.25450.09640.074*
C220.76217 (16)0.23289 (12)0.12629 (10)0.0482 (6)
H220.74630.27480.14010.058*
C230.57066 (16)0.28945 (11)0.09338 (11)0.0461 (5)
C240.57243 (16)0.23597 (11)0.00259 (11)0.0480 (6)
C250.52630 (15)0.19253 (11)0.03842 (10)0.0426 (5)
C260.49175 (17)0.13434 (12)0.01454 (12)0.0536 (6)
H260.45800.10570.04080.064*
C270.5084 (2)0.11921 (15)0.05004 (13)0.0680 (8)
H270.48590.08010.06710.082*
C280.5577 (2)0.16173 (16)0.08827 (13)0.0713 (8)
H280.56990.15020.13080.086*
C290.58995 (18)0.22098 (14)0.06587 (12)0.0632 (7)
H290.62240.24990.09260.076*
C300.6331 (2)0.35405 (14)0.00144 (14)0.0722 (8)
H30A0.61720.39090.02880.087*
H30B0.60250.36090.03980.087*
C310.7364 (2)0.35289 (15)0.00822 (14)0.0824 (9)
H31A0.76730.34360.03190.124*
H31B0.75710.39470.02390.124*
H31C0.75230.31960.03900.124*
C320.8172 (3)0.05035 (18)0.2089 (2)0.0967 (14)0.871 (4)
H32A0.87410.05590.18400.145*0.871 (4)
H32B0.82650.06840.25110.145*0.871 (4)
H32C0.80280.00450.21250.145*0.871 (4)
C330.6338 (4)0.0748 (3)0.2305 (3)0.1150 (16)0.871 (4)
H33A0.62390.02840.23380.173*0.871 (4)
H33B0.65470.09160.27120.173*0.871 (4)
H33C0.57530.09570.21850.173*0.871 (4)
S10.72223 (14)0.09108 (5)0.17075 (6)0.0784 (5)0.871 (4)
C32'0.735 (3)0.0416 (12)0.2131 (13)0.098 (3)0.129 (4)
H32D0.75690.01720.17650.147*0.129 (4)
H32E0.78840.06070.23490.147*0.129 (4)
H32F0.70210.01270.24200.147*0.129 (4)
C33'0.569 (3)0.0689 (17)0.2306 (18)0.109 (4)0.129 (4)
H33D0.57290.02200.23310.164*0.129 (4)
H33E0.56810.08700.27320.164*0.129 (4)
H33F0.51170.08100.20840.164*0.129 (4)
S1'0.6645 (11)0.0983 (4)0.1898 (6)0.101 (2)0.129 (4)
N10.79922 (17)0.09409 (9)0.31071 (10)0.0512 (5)
N20.67536 (17)0.29310 (10)0.27061 (10)0.0656 (6)
N30.43995 (12)0.22165 (8)0.14198 (9)0.0441 (5)
N40.64895 (14)0.07659 (10)0.11969 (9)0.0475 (5)
N50.59495 (13)0.29407 (9)0.03049 (9)0.0506 (5)
O10.48161 (12)0.13018 (9)0.29122 (9)0.0708 (5)
O20.49819 (11)0.07829 (7)0.15947 (8)0.0540 (4)
O30.57737 (12)0.33293 (7)0.13313 (8)0.0601 (5)
O40.69303 (17)0.05270 (9)0.11415 (10)0.0955 (7)
H1A0.8589 (18)0.0966 (11)0.3091 (12)0.054 (8)*
H4A0.6529 (17)0.0356 (13)0.1161 (12)0.062 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0615 (16)0.0409 (12)0.0393 (12)0.0039 (11)0.0042 (11)0.0048 (10)
C20.077 (2)0.0549 (15)0.0662 (17)0.0057 (14)0.0170 (14)0.0055 (13)
C30.113 (3)0.0589 (18)0.088 (2)0.0037 (18)0.029 (2)0.0228 (16)
C40.122 (3)0.0550 (17)0.079 (2)0.0146 (18)0.009 (2)0.0199 (15)
C50.085 (2)0.0548 (16)0.0655 (17)0.0089 (15)0.0058 (15)0.0032 (13)
C60.0648 (17)0.0405 (13)0.0448 (13)0.0022 (11)0.0040 (12)0.0036 (10)
C70.0530 (15)0.0473 (13)0.0444 (13)0.0065 (11)0.0049 (11)0.0037 (10)
C80.0472 (15)0.0441 (12)0.0389 (12)0.0044 (11)0.0013 (10)0.0014 (10)
C90.0485 (15)0.0509 (13)0.0418 (13)0.0049 (11)0.0087 (11)0.0026 (10)
C100.0398 (13)0.0415 (12)0.0408 (12)0.0001 (10)0.0053 (9)0.0028 (9)
C110.0543 (16)0.0471 (13)0.0389 (12)0.0006 (12)0.0039 (11)0.0016 (10)
C120.0481 (15)0.0512 (14)0.0515 (14)0.0070 (11)0.0088 (11)0.0056 (11)
C130.0345 (12)0.0399 (12)0.0451 (12)0.0002 (9)0.0026 (9)0.0006 (9)
C140.0343 (12)0.0373 (11)0.0405 (12)0.0001 (9)0.0042 (9)0.0016 (9)
C150.0467 (16)0.0659 (16)0.0732 (18)0.0148 (12)0.0017 (13)0.0018 (13)
C160.0412 (14)0.0379 (11)0.0449 (13)0.0015 (10)0.0005 (10)0.0003 (10)
C170.0364 (13)0.0438 (12)0.0344 (11)0.0027 (10)0.0006 (9)0.0008 (9)
C180.0385 (14)0.0508 (13)0.0405 (12)0.0051 (11)0.0012 (10)0.0010 (10)
C190.0507 (17)0.0676 (17)0.0611 (16)0.0177 (13)0.0089 (12)0.0044 (13)
C200.0408 (16)0.095 (2)0.0724 (18)0.0072 (15)0.0150 (13)0.0071 (16)
C210.0399 (15)0.0752 (18)0.0701 (17)0.0080 (13)0.0053 (13)0.0116 (15)
C220.0421 (14)0.0542 (14)0.0483 (13)0.0060 (11)0.0020 (11)0.0037 (11)
C230.0412 (14)0.0433 (13)0.0539 (14)0.0019 (10)0.0023 (11)0.0040 (11)
C240.0385 (14)0.0616 (15)0.0438 (13)0.0058 (11)0.0035 (10)0.0041 (11)
C250.0349 (13)0.0492 (13)0.0439 (12)0.0052 (10)0.0032 (10)0.0029 (10)
C260.0485 (15)0.0563 (15)0.0562 (15)0.0023 (11)0.0063 (11)0.0068 (12)
C270.0685 (19)0.0746 (19)0.0609 (18)0.0085 (15)0.0121 (14)0.0219 (15)
C280.0685 (19)0.100 (2)0.0459 (15)0.0131 (17)0.0011 (14)0.0111 (16)
C290.0514 (16)0.090 (2)0.0482 (15)0.0054 (14)0.0008 (12)0.0055 (14)
C300.068 (2)0.0710 (18)0.0780 (19)0.0083 (14)0.0082 (15)0.0260 (15)
C310.075 (2)0.090 (2)0.082 (2)0.0139 (17)0.0022 (16)0.0151 (17)
C320.122 (4)0.069 (2)0.099 (3)0.013 (2)0.021 (3)0.023 (2)
C330.141 (4)0.100 (3)0.104 (3)0.005 (3)0.031 (4)0.025 (3)
S10.1168 (12)0.0372 (5)0.0811 (7)0.0140 (6)0.0054 (7)0.0141 (4)
C32'0.130 (6)0.070 (5)0.094 (5)0.000 (5)0.010 (5)0.030 (5)
C33'0.131 (8)0.086 (7)0.111 (7)0.001 (8)0.019 (8)0.017 (7)
S1'0.125 (5)0.072 (4)0.107 (5)0.004 (4)0.006 (5)0.020 (4)
N10.0474 (14)0.0503 (12)0.0558 (13)0.0038 (10)0.0075 (11)0.0002 (9)
N20.0839 (17)0.0565 (13)0.0565 (13)0.0127 (12)0.0081 (11)0.0086 (11)
N30.0367 (11)0.0452 (10)0.0505 (11)0.0051 (8)0.0016 (8)0.0018 (8)
N40.0482 (13)0.0377 (11)0.0565 (12)0.0047 (10)0.0022 (9)0.0080 (9)
N50.0497 (12)0.0499 (11)0.0523 (12)0.0026 (9)0.0026 (9)0.0098 (9)
O10.0512 (11)0.0866 (13)0.0746 (12)0.0016 (9)0.0207 (9)0.0231 (10)
O20.0473 (10)0.0415 (9)0.0732 (11)0.0066 (7)0.0078 (8)0.0011 (8)
O30.0705 (12)0.0417 (9)0.0683 (11)0.0048 (8)0.0002 (9)0.0053 (8)
O40.145 (2)0.0573 (12)0.0838 (15)0.0281 (12)0.0163 (13)0.0165 (11)
Geometric parameters (Å, º) top
C1—C61.399 (3)C20—H200.9300
C1—C21.401 (3)C21—C221.378 (3)
C1—C81.442 (3)C21—H210.9300
C2—C31.377 (4)C22—H220.9300
C2—H20.9300C23—O31.216 (3)
C3—C41.383 (5)C23—N51.355 (3)
C3—H30.9300C24—C291.373 (3)
C4—C51.368 (4)C24—C251.391 (3)
C4—H40.9300C24—N51.407 (3)
C5—C61.389 (3)C25—C261.376 (3)
C5—H50.9300C26—C271.397 (3)
C6—N11.380 (3)C26—H260.9300
C7—N11.339 (3)C27—C281.366 (4)
C7—C81.379 (3)C27—H270.9300
C7—H70.9300C28—C291.373 (4)
C8—C91.445 (3)C28—H280.9300
C9—O11.219 (3)C29—H290.9300
C9—C101.577 (3)C30—N51.467 (3)
C10—C111.474 (3)C30—C311.468 (4)
C10—C121.547 (3)C30—H30A0.9700
C10—C141.580 (3)C30—H30B0.9700
C11—N21.138 (3)C31—H31A0.9600
C12—N31.463 (3)C31—H31B0.9600
C12—H12A0.9700C31—H31C0.9600
C12—H12B0.9700C32—S11.764 (4)
C13—N31.456 (3)C32—H32A0.9600
C13—C251.512 (3)C32—H32B0.9600
C13—C231.561 (3)C32—H32C0.9600
C13—C141.569 (3)C33—S11.790 (5)
C14—C171.504 (3)C33—H33A0.9600
C14—C161.561 (3)C33—H33B0.9600
C15—N31.464 (3)C33—H33C0.9600
C15—H15A0.9600S1—O41.472 (2)
C15—H15B0.9600C32'—S1'1.60 (3)
C15—H15C0.9600C32'—H32D0.9600
C16—O21.218 (2)C32'—H32E0.9600
C16—N41.341 (3)C32'—H32F0.9600
C17—C221.382 (3)C33'—S1'1.70 (3)
C17—C181.391 (3)C33'—H33D0.9600
C18—C191.374 (3)C33'—H33E0.9600
C18—N41.394 (3)C33'—H33F0.9600
C19—C201.381 (4)S1'—O41.871 (14)
C19—H190.9300N1—H1A0.84 (2)
C20—C211.371 (4)N4—H4A0.84 (3)
C6—C1—C2118.1 (2)C21—C20—H20119.4
C6—C1—C8107.0 (2)C19—C20—H20119.4
C2—C1—C8134.9 (2)C20—C21—C22120.9 (2)
C3—C2—C1118.1 (3)C20—C21—H21119.5
C3—C2—H2120.9C22—C21—H21119.5
C1—C2—H2120.9C21—C22—C17119.2 (2)
C2—C3—C4122.1 (3)C21—C22—H22120.4
C2—C3—H3118.9C17—C22—H22120.4
C4—C3—H3118.9O3—C23—N5125.8 (2)
C5—C4—C3121.5 (3)O3—C23—C13125.4 (2)
C5—C4—H4119.2N5—C23—C13108.72 (19)
C3—C4—H4119.2C29—C24—C25121.9 (2)
C4—C5—C6116.4 (3)C29—C24—N5128.0 (2)
C4—C5—H5121.8C25—C24—N5110.06 (19)
C6—C5—H5121.8C26—C25—C24119.6 (2)
N1—C6—C5128.8 (3)C26—C25—C13131.4 (2)
N1—C6—C1107.4 (2)C24—C25—C13108.89 (19)
C5—C6—C1123.7 (2)C25—C26—C27118.5 (2)
N1—C7—C8110.6 (2)C25—C26—H26120.7
N1—C7—H7124.7C27—C26—H26120.7
C8—C7—H7124.7C28—C27—C26120.3 (3)
C7—C8—C1105.5 (2)C28—C27—H27119.9
C7—C8—C9129.2 (2)C26—C27—H27119.9
C1—C8—C9125.2 (2)C27—C28—C29122.0 (3)
O1—C9—C8121.9 (2)C27—C28—H28119.0
O1—C9—C10118.1 (2)C29—C28—H28119.0
C8—C9—C10119.94 (19)C24—C29—C28117.5 (3)
C11—C10—C12109.13 (18)C24—C29—H29121.2
C11—C10—C9106.63 (17)C28—C29—H29121.2
C12—C10—C9112.08 (17)N5—C30—C31113.9 (2)
C11—C10—C14112.47 (17)N5—C30—H30A108.8
C12—C10—C14104.15 (16)C31—C30—H30A108.8
C9—C10—C14112.44 (16)N5—C30—H30B108.8
N2—C11—C10176.2 (2)C31—C30—H30B108.8
N3—C12—C10106.32 (17)H30A—C30—H30B107.7
N3—C12—H12A110.5C30—C31—H31A109.5
C10—C12—H12A110.5C30—C31—H31B109.5
N3—C12—H12B110.5H31A—C31—H31B109.5
C10—C12—H12B110.5C30—C31—H31C109.5
H12A—C12—H12B108.7H31A—C31—H31C109.5
N3—C13—C25117.96 (18)H31B—C31—H31C109.5
N3—C13—C23112.90 (17)O4—S1—C32108.70 (19)
C25—C13—C23100.88 (17)O4—S1—C33105.2 (2)
N3—C13—C14102.13 (16)C32—S1—C3397.3 (2)
C25—C13—C14112.90 (16)S1'—C32'—H32D109.5
C23—C13—C14110.34 (17)S1'—C32'—H32E109.5
C17—C14—C16101.62 (16)H32D—C32'—H32E109.5
C17—C14—C13112.62 (17)S1'—C32'—H32F109.5
C16—C14—C13108.76 (16)H32D—C32'—H32F109.5
C17—C14—C10121.29 (17)H32E—C32'—H32F109.5
C16—C14—C10109.83 (16)S1'—C33'—H33D109.5
C13—C14—C10102.46 (15)S1'—C33'—H33E109.5
N3—C15—H15A109.5H33D—C33'—H33E109.5
N3—C15—H15B109.5S1'—C33'—H33F109.5
H15A—C15—H15B109.5H33D—C33'—H33F109.5
N3—C15—H15C109.5H33E—C33'—H33F109.5
H15A—C15—H15C109.5C32'—S1'—C33'94.8 (17)
H15B—C15—H15C109.5C32'—S1'—O476.2 (12)
O2—C16—N4125.7 (2)C33'—S1'—O4114.4 (14)
O2—C16—C14126.84 (19)C7—N1—C6109.5 (2)
N4—C16—C14107.43 (19)C7—N1—H1A125.1 (17)
C22—C17—C18118.7 (2)C6—N1—H1A125.3 (17)
C22—C17—C14132.5 (2)C13—N3—C12107.13 (17)
C18—C17—C14108.56 (18)C13—N3—C15114.81 (18)
C19—C18—C17122.6 (2)C12—N3—C15112.82 (18)
C19—C18—N4127.8 (2)C16—N4—C18112.51 (19)
C17—C18—N4109.64 (19)C16—N4—H4A121.9 (17)
C18—C19—C20117.4 (2)C18—N4—H4A124.8 (17)
C18—C19—H19121.3C23—N5—C24110.86 (19)
C20—C19—H19121.3C23—N5—C30123.2 (2)
C21—C20—C19121.2 (2)C24—N5—C30125.8 (2)
C6—C1—C2—C30.8 (4)C22—C17—C18—N4179.31 (19)
C8—C1—C2—C3178.4 (3)C14—C17—C18—N43.7 (2)
C1—C2—C3—C40.0 (4)C17—C18—C19—C200.2 (4)
C2—C3—C4—C50.6 (5)N4—C18—C19—C20178.8 (2)
C3—C4—C5—C60.2 (4)C18—C19—C20—C210.1 (4)
C4—C5—C6—N1178.7 (2)C19—C20—C21—C220.3 (4)
C4—C5—C6—C10.7 (4)C20—C21—C22—C170.0 (4)
C2—C1—C6—N1179.6 (2)C18—C17—C22—C210.4 (3)
C8—C1—C6—N10.2 (2)C14—C17—C22—C21174.0 (2)
C2—C1—C6—C51.2 (3)N3—C13—C23—O345.5 (3)
C8—C1—C6—C5178.2 (2)C25—C13—C23—O3172.3 (2)
N1—C7—C8—C10.2 (2)C14—C13—C23—O368.1 (3)
N1—C7—C8—C9179.1 (2)N3—C13—C23—N5132.22 (19)
C6—C1—C8—C70.3 (2)C25—C13—C23—N55.4 (2)
C2—C1—C8—C7179.5 (3)C14—C13—C23—N5114.21 (19)
C6—C1—C8—C9179.2 (2)C29—C24—C25—C264.0 (3)
C2—C1—C8—C91.5 (4)N5—C24—C25—C26175.3 (2)
C7—C8—C9—O1175.8 (2)C29—C24—C25—C13173.3 (2)
C1—C8—C9—O12.8 (3)N5—C24—C25—C137.4 (2)
C7—C8—C9—C105.0 (3)N3—C13—C25—C2652.2 (3)
C1—C8—C9—C10176.37 (19)C23—C13—C25—C26175.6 (2)
O1—C9—C10—C11126.3 (2)C14—C13—C25—C2666.7 (3)
C8—C9—C10—C1154.5 (2)N3—C13—C25—C24130.97 (19)
O1—C9—C10—C126.9 (3)C23—C13—C25—C247.6 (2)
C8—C9—C10—C12173.86 (18)C14—C13—C25—C24110.2 (2)
O1—C9—C10—C14110.0 (2)C24—C25—C26—C273.1 (3)
C8—C9—C10—C1469.2 (2)C13—C25—C26—C27173.4 (2)
C11—C10—C12—N3126.58 (19)C25—C26—C27—C280.2 (4)
C9—C10—C12—N3115.54 (19)C26—C27—C28—C292.0 (4)
C14—C10—C12—N36.3 (2)C25—C24—C29—C281.8 (4)
N3—C13—C14—C17168.92 (16)N5—C24—C29—C28177.4 (2)
C25—C13—C14—C1763.4 (2)C27—C28—C29—C241.2 (4)
C23—C13—C14—C1748.6 (2)C8—C7—N1—C60.1 (3)
N3—C13—C14—C1679.25 (19)C5—C6—N1—C7178.3 (2)
C25—C13—C14—C1648.4 (2)C1—C6—N1—C70.1 (2)
C23—C13—C14—C16160.48 (17)C25—C13—N3—C12167.45 (18)
N3—C13—C14—C1036.98 (18)C23—C13—N3—C1275.4 (2)
C25—C13—C14—C10164.67 (17)C14—C13—N3—C1243.1 (2)
C23—C13—C14—C1083.29 (19)C25—C13—N3—C1566.4 (2)
C11—C10—C14—C1727.0 (3)C23—C13—N3—C1550.7 (2)
C12—C10—C14—C17145.03 (19)C14—C13—N3—C15169.20 (17)
C9—C10—C14—C1793.4 (2)C10—C12—N3—C1331.4 (2)
C11—C10—C14—C16145.00 (18)C10—C12—N3—C15158.72 (18)
C12—C10—C14—C1696.96 (19)O2—C16—N4—C18177.3 (2)
C9—C10—C14—C1624.6 (2)C14—C16—N4—C182.5 (2)
C11—C10—C14—C1399.54 (19)C19—C18—N4—C16178.1 (2)
C12—C10—C14—C1318.50 (19)C17—C18—N4—C160.7 (3)
C9—C10—C14—C13140.06 (17)O3—C23—N5—C24176.3 (2)
C17—C14—C16—O2175.5 (2)C13—C23—N5—C241.4 (2)
C13—C14—C16—O265.6 (3)O3—C23—N5—C300.3 (4)
C10—C14—C16—O245.8 (3)C13—C23—N5—C30177.3 (2)
C17—C14—C16—N44.4 (2)C29—C24—N5—C23176.9 (2)
C13—C14—C16—N4114.59 (19)C25—C24—N5—C233.8 (3)
C10—C14—C16—N4134.02 (18)C29—C24—N5—C307.2 (4)
C16—C14—C17—C22179.6 (2)C25—C24—N5—C30172.1 (2)
C13—C14—C17—C2263.4 (3)C31—C30—N5—C23102.0 (3)
C10—C14—C17—C2258.4 (3)C31—C30—N5—C2482.7 (3)
C16—C14—C17—C184.8 (2)C32—S1—O4—S1'131.2 (7)
C13—C14—C17—C18111.40 (19)C33—S1—O4—S1'27.8 (6)
C10—C14—C17—C18126.82 (19)C32'—S1'—O4—S159.2 (13)
C22—C17—C18—C190.5 (3)C33'—S1'—O4—S1148.3 (16)
C14—C17—C18—C19175.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O40.84 (3)1.89 (3)2.714 (3)166 (2)
N1—H1A···O2i0.84 (3)2.10 (3)2.887 (3)155 (2)
C22—H22···S1ii0.932.853.717 (3)157
C32—H32A···O3iii0.962.603.219 (4)123
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+3/2, y+1/2, z; (iii) x+3/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O40.84 (3)1.89 (3)2.714 (3)166 (2)
N1—H1A···O2i0.84 (3)2.10 (3)2.887 (3)155 (2)
C22—H22···S1ii0.932.853.717 (3)157
C32—H32A···O3iii0.962.603.219 (4)123
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+3/2, y+1/2, z; (iii) x+3/2, y1/2, z.
 

Acknowledgements

The authors gratefully acknowledge Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBarden, T. C. (2011). Top Heterocycl. Chem. 26, 31–46.  CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1328-o1329
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds