organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3,4-Dimethylthieno[2,3-b]thiophene-2,5dicarbonitrile

Yahia Nasser Mabkhot,^a[‡] S. S. Al-Showiman,^a Assem Barakat,^{a,b} M. Iqbal Choudhary^{c,a} and Sammer Yousuf^{c*}

^aDepartment of Chemistry, College of Science, King Saud University, PO Box 2455, Rivadh 11451, Saudi Arabia, ^bDepartment of Chemistry, Faculty of Science, Alexandria University, PO Box 426, Ibrahimia- 21321 Alexandria, Egypt, and ^cH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan Correspondence e-mail: dr.sammer.yousuf@gmail.com

Received 24 June 2013; accepted 29 June 2013

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.004 Å; R factor = 0.055; wR factor = 0.132; data-to-parameter ratio = 19.1.

The asymmetric unit of the title compound, $C_{10}H_6N_2S_2$, contains two crystallographically independent but conformationally similar molecules. The fused thiophene ring cores are almost planar [maximum deviation = 0.027 (3) Å] with the thiophene rings forming dihedral angles of $0.5 (4)^{\circ}$ in one molecule and $1.91 (4)^{\circ}$ in the other. The crystal packing is stabilized only by van der Waals interactions.

Related literature

For the biological activity of thiophene derivatives, see: Mabkhot et al. (2013); Mishra et al. (2011). For the synthesis of fused heterocyclic compounds, see: Cornel & Kirsch (2001); Mashraqui et al. (1999). For crystal data for related thiophene compounds, see: Gunasekaran et al. (2009); Mashraqui et al. (2004).

Experimental

Crystal data $C_{10}H_6N_2S_2$

 $M_r = 218.31$

Triclinic, P1	V = 984.5 (3) Å ³
a = 7.2573 (11) Å	Z = 4
b = 10.1538 (15) Å	Mo $K\alpha$ radiation
c = 13.665 (2) Å	$\mu = 0.50 \text{ mm}^{-1}$
$\alpha = 94.467 \ (3)^{\circ}$	T = 273 K
$\beta = 99.120 \ (4)^{\circ}$	$0.37 \times 0.15 \times 0.11 \text{ mm}$
$\gamma = 95.850 \ (4)^{\circ}$	

Data collection

Bruker SMART APEX CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\rm min} = 0.838, T_{\rm max} = 0.947$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.055$	257 parameters
wR(F ²) = 0.132	H-atom parameters constrained
S = 0.99 4912 reflections	$\Delta \rho_{\text{max}} = 0.37 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.24 \text{ e } \text{\AA}^{-3}$

 $R_{\rm int} = 0.053$

13821 measured reflections 4912 independent reflections 3074 reflections with $I > 2\sigma(I)$

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).

The authors extend their appreciation to the Deanship of Scientific Research at the King Saud University (Rivadh) for funding this study through the research grant No. RGP-VPP-007.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5077).

References

- Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cornel, A. & Kirsch, G. (2001). J. Heterocycl. Chem. 38, 1167-1171.
- Gunasekaran, B., Sureshbabu, R., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o2455.
- Mabkhot, Y. N., Barakat, A., Al-Majid, A. & Choudhary, M. I. (2013). Int. J. Mol. Sci. 14, 5712-5722
- Mashraqui, S. H., Asharf, M., Hariharasubrahmanian, H., Kellogg, R. K. & Meetsma, A. (2004). J. Mol. Struct. 689, 107-113.
- Mashraqui, S. H., Hariharasubrahmanian, H. & Kumar, S. (1999). Synthesis, pp. 2030-2033.
- Mishra, R., Jha, K. K., Kumar, S. & Tomer, S. (2011). Pharma Chem. 3, 38-54. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

[‡] Additional correspondence author, e-mail: yahia@ksu.edu.sa.

supporting information

Acta Cryst. (2013). E69, o1272 [doi:10.1107/S1600536813017960]

3,4-Dimethylthieno[2,3-b]thiophene-2,5-dicarbonitrile

Yahia Nasser Mabkhot, S. S. Al-Showiman, Assem Barakat, M. Iqbal Choudhary and Sammer Yousuf

S1. Comment

Thiophene moieties containing heterocyclic compounds are known to have a number of biological activities, including anti-inflammatory, anti-oxidant and anti-glycation properties *etc*. (Mabkhot *et al.*, 2013; Mishra *et al.* 2011). The title compound is a thiophene derivative, composed of two fused thiophene rings. It was synthesized as part of our ongoing research towards the synthesis of novel chemical entities with diverse biological activities.

The title, compound $C_{10}H_6N_2S_2$, contains two independent (S1–S2/C1–C6 and S3–S4/C11–C16) in the asymmetric unit (Fig. 1). Structurally it is similar to the previous reported compound diethyl 3,4-*bis*(acetoxymethyl)thieno-[2,3-*b*]thiophene-2,5-dicarboxylate (Gunasekaran *et al.*, 2009) with the difference that four acetoxy methyl substituents has been replaced by two nitrile and two methyl substituents. The fused thiophene ring cores are almost planar [maximum deviation 0.027 (3) Å for atom C16] as indicated by the dihedral angles formed by the thiophene rings of 0.5 (4)° in one molecule and 1.91 (4)° in the other. The crystal packing (Fig. 2) is stabilized only by van der Waals interactions.

S2. Experimental

The title compound was synthesized by following the procedure described in the literature (Mashraqui *et al.*, 1999; Cornel *et al.*, 2001). The compound was crystallized by using a mixture of dimethyl formamide (DMF) and dichloromethane (CH₂Cl₂) (1:1 ν/ν) at room temperature to obtain light brown crystals. M. p. 498 K. Anal. calcd. for C₁₀H₆N₂S₂: C, 55.04; H, 2.75; N, 12.84. Found: C, 54.82; H, 2.92; N, 12.97.

Spectral Data: IR (KBr, cm⁻¹): 2964, 2213 cm-1; ¹H-NMR (400 MHz, CDCl₃): δ 2.69 (s, 6H, CH₃); ¹³C-NMR (100 MHz, CDCl₃): δ 14.8 (2 CH₃), 108.5 (2 CAr), 113.3 (2 CN), 134.1 (CAr), 143.1 (2 CAr), 150.8 p.p.m. (CAr).

S3. Refinement

H Atoms were positioned geometrically and refined as riding, with C—H = 0.96 Å and with $U_{iso}(H) = 1.5 U_{eq}(C)$.

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.

Figure 2

Partial packing diagram of the title compound. Hydrogen atoms are omitted for clarity.

3,4-Dimethylthieno[2,3-b]thiophene-2,5-dicarbonitrile

Crystal data
$C_{10}H_6N_2S_2$
$M_r = 218.31$
Triclinic, $P\overline{1}$
Hall symbol: -P 1
a = 7.2573 (11) Å
<i>b</i> = 10.1538 (15) Å
c = 13.665 (2) Å
$\alpha = 94.467 (3)^{\circ}$
$\beta = 99.120 \ (4)^{\circ}$
$\gamma = 95.850 \ (4)^{\circ}$
V = 984.5 (3) Å ³

Z = 4 F(000) = 448 $D_x = 1.473 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1631 reflections $\theta = 1.5-28.4^{\circ}$ $\mu = 0.50 \text{ mm}^{-1}$ T = 273 KBlock, brown $0.37 \times 0.15 \times 0.11 \text{ mm}$ Data collection

Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scan Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2000) $T_{min} = 0.838, T_{max} = 0.947$ <i>Pafinament</i>	13821 measured reflections 4912 independent reflections 3074 reflections with $I > 2\sigma(I)$ $R_{int} = 0.053$ $\theta_{max} = 28.4^{\circ}, \theta_{min} = 1.5^{\circ}$ $h = -9 \rightarrow 9$ $k = -13 \rightarrow 13$ $l = -18 \rightarrow 18$
Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier
$R[F^2 > 2\sigma(F^2)] = 0.055$ wR(F ²) = 0.132	Hydrogen site location: inferred from neighbouring sites
S = 0.99	H-atom parameters constrained
4912 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0565P)^2]$
257 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.37 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , and the provide the provide the provided the provided to t

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	v	Ζ	$U_{\rm iso}^*/U_{\rm eq}$	
<u>S1</u>	0.18703 (11)	0.32325 (7)	0.83846 (5)	0.0460 (2)	
S2	0.24419 (10)	0.62763 (7)	0.91346 (5)	0.0435 (2)	
S3	0.38935 (11)	1.16617 (7)	0.61752 (6)	0.0477 (2)	
S4	0.37946 (11)	0.89010 (8)	0.70279 (5)	0.0473 (2)	
N1	0.1667 (4)	-0.0317 (3)	0.8989 (2)	0.0718 (9)	
N2	0.3550 (4)	0.8848 (3)	1.1405 (2)	0.0706 (9)	
N3	0.2705 (5)	1.3690 (3)	0.4034 (3)	0.0902 (11)	
N4	0.2415 (4)	0.5277 (3)	0.6753 (2)	0.0827 (10)	
C1	0.1990 (4)	0.2211 (3)	0.9361 (2)	0.0424 (7)	
C2	0.2290 (4)	0.2874 (3)	1.0280 (2)	0.0381 (6)	
C3	0.2441 (3)	0.4276 (2)	1.02172 (19)	0.0336 (6)	
C4	0.2755 (4)	0.5432 (3)	1.0910 (2)	0.0384 (6)	
C5	0.2804 (4)	0.6552 (3)	1.0431 (2)	0.0396 (7)	
C6	0.2251 (4)	0.4597 (3)	0.9243 (2)	0.0371 (6)	
C7	0.1799 (4)	0.0807 (3)	0.9144 (2)	0.0520 (8)	
C8	0.2489 (4)	0.2224 (3)	1.1236 (2)	0.0471 (7)	

H8A	0.2582	0.1294	1.1097	0.071*
H8B	0.1410	0.2332	1.1547	0.071*
H8C	0.3601	0.2632	1.1674	0.071*
C9	0.3013 (4)	0.5424 (3)	1.20166 (19)	0.0447 (7)
H9A	0.3111	0.6320	1.2319	0.067*
H9B	0.4138	0.5039	1.2246	0.067*
H9C	0.1954	0.4909	1.2196	0.067*
C10	0.3195 (4)	0.7857 (3)	1.0941 (2)	0.0474 (7)
C11	0.2885 (4)	1.1564 (3)	0.4924 (2)	0.0457 (7)
C12	0.2220 (4)	1.0317 (3)	0.4497 (2)	0.0410 (7)
C13	0.2546 (3)	0.9366 (3)	0.52151 (18)	0.0341 (6)
C14	0.2139 (4)	0.7963 (3)	0.5223 (2)	0.0389 (6)
C15	0.2732 (4)	0.7597 (3)	0.6151 (2)	0.0441 (7)
C16	0.3434 (4)	0.9965 (3)	0.6131 (2)	0.0378 (6)
C17	0.2795 (5)	1.2748 (3)	0.4434 (3)	0.0590 (9)
C18	0.1286 (4)	0.9979 (3)	0.34337 (19)	0.0452 (7)
H18A	0.1082	1.0783	0.3128	0.068*
H18B	0.0102	0.9451	0.3412	0.068*
H18C	0.2077	0.9486	0.3081	0.068*
C19	0.1235 (4)	0.6996 (3)	0.4357 (2)	0.0453 (7)
H19A	0.1213	0.6108	0.4554	0.068*
H19B	0.1938	0.7076	0.3822	0.068*
H19C	-0.0028	0.7184	0.4140	0.068*
C20	0.2548 (4)	0.6297 (3)	0.6466 (2)	0.0546 (8)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0602 (5)	0.0394 (4)	0.0360 (4)	0.0018 (3)	0.0067 (3)	-0.0035 (3)
S2	0.0552 (5)	0.0359 (4)	0.0397 (4)	0.0042 (3)	0.0079 (3)	0.0063 (3)
S3	0.0538 (5)	0.0395 (4)	0.0488 (5)	0.0045 (3)	0.0102 (4)	-0.0032 (3)
S4	0.0534 (5)	0.0508 (5)	0.0343 (4)	0.0019 (4)	0.0001 (3)	0.0040 (3)
N1	0.100(2)	0.0396 (16)	0.075 (2)	-0.0008 (16)	0.0267 (18)	-0.0085 (15)
N2	0.096 (2)	0.0385 (16)	0.074 (2)	0.0009 (15)	0.0168 (18)	-0.0122 (15)
N3	0.126 (3)	0.067 (2)	0.096 (3)	0.034 (2)	0.044 (2)	0.036 (2)
N4	0.094 (2)	0.059 (2)	0.083 (2)	-0.0117 (17)	-0.0187 (18)	0.0285 (18)
C1	0.0446 (16)	0.0374 (16)	0.0437 (17)	0.0029 (13)	0.0064 (13)	-0.0007 (13)
C2	0.0362 (15)	0.0378 (15)	0.0390 (16)	0.0041 (12)	0.0023 (12)	0.0039 (13)
C3	0.0340 (14)	0.0327 (14)	0.0331 (15)	0.0031 (11)	0.0038 (11)	0.0025 (12)
C4	0.0351 (15)	0.0411 (16)	0.0375 (16)	0.0034 (12)	0.0030 (12)	0.0016 (13)
C5	0.0426 (16)	0.0355 (15)	0.0387 (16)	0.0024 (12)	0.0038 (13)	-0.0002 (13)
C6	0.0396 (15)	0.0341 (15)	0.0364 (16)	0.0044 (12)	0.0046 (12)	-0.0001 (12)
C7	0.063 (2)	0.0372 (17)	0.055 (2)	0.0003 (15)	0.0145 (16)	-0.0051 (15)
C8	0.0604 (19)	0.0353 (16)	0.0450 (18)	0.0048 (14)	0.0022 (14)	0.0143 (14)
C9	0.0579 (18)	0.0425 (16)	0.0303 (15)	0.0027 (14)	0.0015 (13)	-0.0020 (13)
C10	0.0543 (18)	0.0351 (16)	0.0538 (19)	0.0085 (14)	0.0114 (15)	0.0007 (15)
C11	0.0480 (17)	0.0458 (18)	0.0489 (18)	0.0131 (14)	0.0175 (14)	0.0102 (15)
C12	0.0351 (15)	0.0507 (18)	0.0424 (17)	0.0122 (13)	0.0152 (13)	0.0097 (14)

supporting information

C13	0.0290 (13)	0.0421 (16)	0.0314 (15)	0.0047 (12)	0.0072 (11)	0.0005 (12)
C14	0.0345 (14)	0.0447 (17)	0.0368 (16)	0.0044 (12)	0.0060 (12)	0.0004 (13)
C15	0.0454 (16)	0.0437 (17)	0.0422 (17)	0.0028 (13)	0.0050 (13)	0.0048 (14)
C16	0.0367 (15)	0.0398 (15)	0.0370 (16)	0.0055 (12)	0.0077 (12)	-0.0003 (12)
C17	0.070 (2)	0.050(2)	0.067 (2)	0.0178 (17)	0.0297 (19)	0.0122 (18)
C18	0.0427 (16)	0.063 (2)	0.0307 (15)	0.0129 (14)	0.0007 (13)	0.0102 (14)
C19	0.0459 (17)	0.0402 (16)	0.0440 (17)	-0.0025 (13)	0.0009 (13)	-0.0084 (13)
C20	0.057 (2)	0.050 (2)	0.052 (2)	-0.0026 (16)	-0.0051 (15)	0.0129 (16)

Geometric parameters (Å, °)

S1—C6	1.714 (3)	C8—H8A	0.9600
S1—C1	1.750 (3)	C8—H8B	0.9600
S2—C6	1.716 (3)	C8—H8C	0.9600
S2—C5	1.745 (3)	С9—Н9А	0.9600
S3—C16	1.716 (3)	С9—Н9В	0.9600
S3—C11	1.741 (3)	С9—Н9С	0.9600
S4—C16	1.703 (3)	C11—C12	1.360 (4)
S4—C15	1.742 (3)	C11—C17	1.423 (4)
N1—C7	1.136 (4)	C12—C13	1.439 (3)
N2—C10	1.130 (4)	C12—C18	1.501 (4)
N3—C17	1.140 (4)	C13—C16	1.377 (3)
N4—C20	1.137 (4)	C13—C14	1.427 (4)
C1—C2	1.351 (4)	C14—C15	1.365 (4)
C1—C7	1.421 (4)	C14—C19	1.495 (4)
C2—C3	1.428 (3)	C15—C20	1.420 (4)
C2—C8	1.502 (4)	C18—H18A	0.9600
C3—C6	1.384 (3)	C18—H18B	0.9600
C3—C4	1.425 (4)	C18—H18C	0.9600
C4—C5	1.356 (4)	C19—H19A	0.9600
C4—C9	1.495 (4)	C19—H19B	0.9600
C5—C10	1.428 (4)	С19—Н19С	0.9600
C6—S1—C1	89.13 (13)	H9B—C9—H9C	109.5
C6—S2—C5	88.80 (13)	N2-C10-C5	175.0 (4)
C16—S3—C11	88.88 (14)	C12—C11—C17	125.3 (3)
C16—S4—C15	88.73 (13)	C12—C11—S3	115.1 (2)
C2—C1—C7	126.0 (3)	C17—C11—S3	119.6 (2)
C2—C1—S1	114.5 (2)	C11—C12—C13	110.0 (3)
C7—C1—S1	119.5 (2)	C11—C12—C18	125.1 (3)
C1—C2—C3	110.7 (2)	C13—C12—C18	124.9 (3)
C1—C2—C8	124.6 (3)	C16—C13—C14	111.9 (2)
C3—C2—C8	124.6 (2)	C16—C13—C12	112.0 (2)
C6—C3—C4	111.9 (2)	C14—C13—C12	136.0 (3)
C6—C3—C2	112.3 (2)	C15—C14—C13	110.0 (2)
C4—C3—C2	135.9 (2)	C15—C14—C19	123.4 (3)
C5—C4—C3	110.8 (2)	C13—C14—C19	126.5 (3)
C5—C4—C9	124.2 (3)	C14—C15—C20	127.2 (3)

C3—C4—C9	125.0 (2)	C14—C15—S4	114.8 (2)
C4—C5—C10	123.0 (3)	C20—C15—S4	118.0 (2)
C4—C5—S2	114.7 (2)	C13—C16—S4	114.5 (2)
C10—C5—S2	122.2 (2)	C13—C16—S3	114.0 (2)
C3—C6—S1	113.3 (2)	S4—C16—S3	131.48 (17)
C3—C6—S2	113.8 (2)	N3—C17—C11	179.2 (4)
S1—C6—S2	132.84 (17)	C12—C18—H18A	109.5
N1-C7-C1	178.6 (4)	C12—C18—H18B	109.5
C2—C8—H8A	109.5	H18A—C18—H18B	109.5
C^2 — C^8 — H^8B	109.5	C12-C18-H18C	109.5
H8A - C8 - H8B	109.5	H18A - C18 - H18C	109.5
$C_2 - C_8 - H_8C$	109.5	H18B - C18 - H18C	109.5
	109.5	$C_{14} C_{10} H_{104}$	109.5
	109.5	C14 - C19 - H19R	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5		109.5
C4 = C9 = H9A	109.5	ПІ9А—С19—ПІ9В	109.5
	109.5		109.5
H9A—C9—H9B	109.5	HI9A—C19—H19C	109.5
C4—C9—H9C	109.5	H19B—C19—H19C	109.5
Н9А—С9—Н9С	109.5	N4—C20—C15	177.4 (4)
			/
C6—S1—C1—C2	0.4 (2)	C16—S3—C11—C12	0.6 (2)
C6—S1—C1—C7	-178.9 (2)	C16—S3—C11—C17	180.0 (2)
C7—C1—C2—C3	179.1 (3)	C17—C11—C12—C13	-179.8 (3)
S1—C1—C2—C3	-0.1 (3)	S3—C11—C12—C13	-0.4 (3)
C7—C1—C2—C8	0.5 (5)	C17—C11—C12—C18	0.3 (5)
\$1—C1—C2—C8	-178.6 (2)	S3-C11-C12-C18	179.7 (2)
C1—C2—C3—C6	-0.3 (3)	C11—C12—C13—C16	0.0 (3)
C8—C2—C3—C6	178.3 (2)	C18—C12—C13—C16	179.8 (2)
C1—C2—C3—C4	-179.5 (3)	C11—C12—C13—C14	178.1 (3)
C8—C2—C3—C4	-1.0 (5)	C18—C12—C13—C14	-2.0(5)
C6—C3—C4—C5	-0.6 (3)	C16—C13—C14—C15	0.6 (3)
C2—C3—C4—C5	178.7 (3)	C12—C13—C14—C15	-177.5 (3)
C6-C3-C4-C9	179.9 (2)	C16—C13—C14—C19	-178.2(2)
$C_{2} - C_{3} - C_{4} - C_{9}$	-0.9(5)	C12-C13-C14-C19	37(5)
$C_3 - C_4 - C_5 - C_{10}$	-176.6(3)	C_{13} C_{14} C_{15} C_{20}	178.6 (3)
C9-C4-C5-C10	30(4)	C19 - C14 - C15 - C20	-25(5)
C_{3} C_{4} C_{5} S_{2}	0.9(3)	C_{13} C_{14} C_{15} S_{20}	-0.4(3)
C9-C4-C5-S2	-1795(2)	C19 - C14 - C15 - S4	1785(2)
$C_{1}^{6} = C_{1}^{6} = C_{2}^{6} = C_{2}^{6}$	-0.8(2)	$C_{16} = S_{4} = C_{15} = C_{14}$	170.3(2)
$C_{0} = S_{2} = C_{0} = C_{1}$	176.8(2)	$C_{16} = S_4 = C_{15} = C_{14}$	-1700(2)
$C_0 = S_2 = C_3 = C_{10}$	1/0.0(3)	$C_{10} = 54 = C_{13} = C_{20}$	-179.0(2)
C4 - C3 - C6 - S1	180.00(18)	C12 - C13 - C16 - S4	-0.0(3)
C2-C3-C6-S1	0.5 (3)	C12-C13-C16-S4	1//.9/(1/)
C4 - C3 - C6 - S2	0.0 (3)	C14 - C13 - C16 - S3	-178.12 (18)
C2—C3—C6—S2	-1/9.51 (18)	C12—C13—C16—S3	0.5 (3)
C1—S1—C6—C3	-0.5(2)	C15—S4—C16—C13	0.3 (2)
C1 - S1 - C6 - S2	179.6 (2)	C15—S4—C16—S3	177.3 (2)
C5—S2—C6—C3	0.5 (2)	C11—S3—C16—C13	-0.6 (2)
C5—S2—C6—S1	-179.6 (2)	C11—S3—C16—S4	-177.5 (2)