organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1320-o1321

N′-Phenyl-N′-[3-(2,4,5-tri­phenyl-2,5-di­hydro-1H-pyrazol-3-yl)quinoxalin-2-yl]benzohydrazide

aLaboratoire National de Contrôle des Médicaments, D M P, Ministère de la Santé, Madinat Al Irnane, BP 6206, Rabat, Morocco, bLaboratoire de Chimie Thérapeutique, Faculté de Médecine et de Pharmacie de Rabat-Souissi, Université Mohamed V, BP 6203, Rabat, Morocco, cLaboratoire de Chimie Organique Hétérocyclique URAC21, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, dInstitute of Nanomaterials and Nanotechnology, MASCIR, Rabat, Morocco, and eLaboratoire de Chimie du Solide Appliquée, Université Mohammed V-Agdal, Faculté des Sciences, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: k_karrouchi@yahoo.fr

(Received 16 July 2013; accepted 19 July 2013; online 27 July 2013)

The mol­ecule of the title compound, C42H32N6O, is built up from one pyrazole ring linked to three phenyl rings and to an approximately planar [maximum deviation = 0.0455 (15) Å] quinoxaline system connected to a phenyl­benzohydrazide group. The pyrazole ring assumes an envelope conformation, the C atom attached to the quinoxalin-3-yl ring system being the flap atom. The dihedral angle between the two phenyl rings of the phenyl­benzohydrazide group is of 58.27 (9)°. The mean plane through the pyrazole ring is nearly perpendicular to the quinoxaline ring system and to the phenyl ring attached to the opposite side, forming dihedral angles of 82.58 (7) and 87.29 (9)°, respectively. An intra­molecular C—H⋯O hydrogen bond is present. In the crystal, mol­ecules are linked by pairs of N—H⋯N hydrogen bonds, forming inversion dimers, which are further connected by C—H⋯N hydrogen bonds into chains parallel to the b axis.

Related literature

For the biological activity of quinoxaline derivatives, see: El-Sabbagh et al. (2009[El-Sabbagh, O. I., El-Sadek, M. E., Lashine, S. M., Yassin, S. H. & El-Nabtity, S. M. (2009). Med. Chem. Res. 18 9, 782-797.]); Bemis & Duffy (2005[Bemis, G. W. & Duffy, J. P. (2005). Patent WO 2005/056547 A2.]); Corona et al. (2008[Corona, P., Carta, A., Loriga, M., Vitale, G. & Paglietti, G. (2008). Eur. J. Med. Chem. 44, 1579-1591.]); Ghadage & Shirote (2011[Ghadage, R. V. & Shirote, P. J. (2011). J. Chem. Pharm. Res. 3, 260-266.]); Yang et al. (2012[Yang, Y., Zhang, S., Wu, B., Ma, M., Chen, X., Qin, X., He, M., Hussain, S., Jing, C., Ma, B. & Zhu, C. (2012). ChemMedChem, 7, 823-835.]).

[Scheme 1]

Experimental

Crystal data
  • C42H32N6O

  • Mr = 636.74

  • Monoclinic, P 21 /n

  • a = 12.0127 (3) Å

  • b = 19.4679 (5) Å

  • c = 15.2083 (4) Å

  • β = 106.045 (1)°

  • V = 3418.09 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.41 × 0.32 × 0.21 mm

Data collection
  • Bruker X8 APEXII area-detector diffractometer

  • 39727 measured reflections

  • 8306 independent reflections

  • 4919 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.117

  • S = 1.00

  • 8306 reflections

  • 443 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3 0.98 2.28 3.2425 (19) 169
N6—H6N⋯N4i 0.89 2.30 3.1754 (18) 172
C16—H16⋯N2ii 0.93 2.56 3.4799 (19) 172
Symmetry codes: (i) -x, -y, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Quinoxalinone and its derivatives are used in organic synthesis for building natural and designed synthetic compounds and have been frequently utilized as suitable skeletons for the design of biologically active compounds. For instance, they are known for their potent activity as anti-inflammatory agents (El-Sabbagh et al., 2009), inhibitors of the kinase protein (Bemis et al., 2005), anti-cancer agents (Corona et al., 2008), anti-microbial agents (Ghadage & Shirote, 2011) and are particularly effective in the treatment of diabetes and its complications (Yang et al., 2012). Our research group targeted at the development of novel quinoxalinone derivatives such as the title compound that may prove to be better agents in terms of efficacy and safety.

The molecule of the title compound displays a five membered pyrazol-5-yl ring (N1/N2/C1–C3) connected to three phenyl rings and to a quinoxalin-3-yl ring system attached to a phenylbenzohydrazide group (Fig. 1). The pyrazole ring shows an envelope conformation as indicated by the total puckering amplitude QT = 0.2552 (16) Å and spherical polar angle ϕ2 = 135.1 (4)°. The C3 flap atom is displaced by 0.4035 (14) Å from the mean plane through the other four atoms. The fused quinoxalin-3-yl ring system (N3/N4/C4–C11) is approximately planar with a maximum deviation from the mean plane of 0.0455 (15) Å at C11. The dihedral angle between the two phenyl rings (C12–C17 and C14–C24) of the phenylbenzohydrazide moiety is 58.27 (9)°. The mean plane through the five-membered pyrazole ring is nearly perpendicular to the quinoxaline ring system and to the C25–C30 phenyl ring as indicated by the dihedral angles of 82.58 (7)° and 87.29 (9)°, respectively. It makes also dihedral angles of 14.38 (9)° and 17.82 (9)° with the attached C31–C36 and C37–C42 phenyl rings, respectively. An intramolecular C—H···O hydrogen bond is observed (Table 1). In the crystal, centrosymmetrically related molecules are linked by pairs of N—H···N hydrogen bonds (Table 1) into dimers. The dimers are further linked into chains parallel to the b axis by C—H···N hydrogen bonds.

Related literature top

For the biological activity of quinoxaline derivatives, see: El-Sabbagh et al. (2009); Bemis & Duffy (2005); Corona et al. (2008); Ghadage & Shirote (2011); Yang et al. (2012).

Experimental top

A mixture of α-chlorobenzylidene phenylhydrazine (8.1 mmol) and triethylamine (8.1 mmol) in THF (40 mL) was added at room temperature to a solution of 3-styryl-quinoxalin-2-one (6.5 mmol) in THF (20 mL). The reaction mixture was heated under reflux for 48 h. The inorganic salts formed were filtered off. The filtrate was evaporated under reduced pressure and the crude product obtained was recrystallized from ethanol to afford crystals of the title compound.

Refinement top

All H atoms could be located in a difference Fourier map and were treated as riding with C—H = 0.93 Å, N—H = 0.89 Å and with Uiso(H) = 1.2 Ueq(C, N). Six reflections affected by the beam stop were omitted because the difference between their calculated and observed intensities was very large.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles of arbitrary radii.
N'-Phenyl-N'-[3-(2,4,5-triphenyl-2,5-dihydro-1H-pyrazol-3-yl)quinoxalin-2-yl]benzohydrazide top
Crystal data top
C42H32N6OF(000) = 1336
Mr = 636.74Dx = 1.237 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8306 reflections
a = 12.0127 (3) Åθ = 2.7–28.2°
b = 19.4679 (5) ŵ = 0.08 mm1
c = 15.2083 (4) ÅT = 296 K
β = 106.045 (1)°Block, colourless
V = 3418.09 (15) Å30.41 × 0.32 × 0.21 mm
Z = 4
Data collection top
Bruker X8 APEXII area-detector
diffractometer
4919 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
Graphite monochromatorθmax = 28.2°, θmin = 2.7°
ϕ and ω scansh = 1515
39727 measured reflectionsk = 2525
8306 independent reflectionsl = 2017
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.4886P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
8306 reflectionsΔρmax = 0.20 e Å3
443 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0019 (4)
Crystal data top
C42H32N6OV = 3418.09 (15) Å3
Mr = 636.74Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.0127 (3) ŵ = 0.08 mm1
b = 19.4679 (5) ÅT = 296 K
c = 15.2083 (4) Å0.41 × 0.32 × 0.21 mm
β = 106.045 (1)°
Data collection top
Bruker X8 APEXII area-detector
diffractometer
4919 reflections with I > 2σ(I)
39727 measured reflectionsRint = 0.050
8306 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.00Δρmax = 0.20 e Å3
8306 reflectionsΔρmin = 0.19 e Å3
443 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.13275 (13)0.33151 (8)0.47673 (10)0.0316 (3)
C20.06730 (13)0.27133 (8)0.42495 (9)0.0297 (3)
H20.11590.23040.43000.036*
C30.02281 (13)0.26028 (7)0.47999 (9)0.0274 (3)
H30.09990.24780.44030.033*
C40.02100 (12)0.20572 (8)0.55295 (9)0.0267 (3)
C50.10980 (12)0.17641 (8)0.70169 (9)0.0299 (3)
C60.15065 (14)0.19551 (9)0.79455 (10)0.0412 (4)
H60.14560.24100.81180.049*
C70.19740 (15)0.14740 (10)0.85869 (11)0.0467 (5)
H70.22210.15990.92010.056*
C80.20864 (15)0.07971 (10)0.83350 (11)0.0482 (5)
H80.24260.04760.87820.058*
C90.17070 (14)0.05958 (9)0.74423 (11)0.0430 (4)
H90.17950.01420.72810.052*
C100.11820 (13)0.10795 (8)0.67679 (10)0.0310 (4)
C110.02421 (12)0.13436 (8)0.52876 (9)0.0278 (3)
C120.14430 (13)0.11813 (7)0.39499 (10)0.0295 (3)
C130.22002 (14)0.11864 (9)0.44837 (11)0.0399 (4)
H130.19180.11800.51180.048*
C140.33859 (15)0.12013 (10)0.40724 (13)0.0529 (5)
H140.38960.12130.44340.064*
C150.38114 (16)0.11984 (10)0.31384 (13)0.0527 (5)
H150.46070.11960.28670.063*
C160.30551 (16)0.11984 (9)0.26043 (11)0.0463 (5)
H160.33430.12000.19700.056*
C170.18744 (15)0.11955 (8)0.30003 (10)0.0369 (4)
H170.13680.12030.26350.044*
C180.14618 (14)0.07099 (8)0.40332 (10)0.0336 (4)
C190.20182 (14)0.01078 (8)0.37266 (10)0.0325 (4)
C200.32110 (15)0.00497 (9)0.40344 (12)0.0454 (4)
H200.36390.03820.44240.055*
C210.37670 (17)0.04982 (11)0.37664 (13)0.0565 (5)
H210.45690.05360.39780.068*
C220.31412 (18)0.09881 (11)0.31888 (14)0.0588 (5)
H220.35180.13600.30150.071*
C230.19607 (18)0.09299 (10)0.28676 (13)0.0553 (5)
H230.15390.12600.24720.066*
C240.13965 (15)0.03813 (9)0.31305 (11)0.0409 (4)
H240.05970.03410.29060.049*
C250.01238 (13)0.28786 (8)0.32437 (10)0.0320 (4)
C260.03921 (14)0.35066 (9)0.29610 (11)0.0416 (4)
H260.03720.38500.33900.050*
C270.09401 (15)0.36282 (11)0.20433 (12)0.0502 (5)
H270.12860.40520.18620.060*
C280.09737 (16)0.31247 (12)0.14017 (12)0.0543 (5)
H280.13530.32040.07890.065*
C290.04462 (17)0.25073 (11)0.16706 (12)0.0561 (5)
H290.04580.21680.12370.067*
C300.01064 (15)0.23837 (9)0.25863 (11)0.0437 (4)
H300.04690.19640.27600.052*
C310.24876 (14)0.35178 (9)0.47640 (11)0.0392 (4)
C320.30152 (18)0.40906 (10)0.52508 (15)0.0610 (6)
H320.26040.43630.55550.073*
C330.4142 (2)0.42592 (13)0.52862 (17)0.0765 (7)
H330.44850.46430.56160.092*
C340.47581 (19)0.38669 (14)0.48410 (16)0.0713 (7)
H340.55160.39860.48650.086*
C350.42580 (17)0.32967 (13)0.43584 (13)0.0617 (6)
H350.46810.30280.40600.074*
C360.31229 (15)0.31201 (10)0.43149 (11)0.0485 (5)
H360.27870.27350.39850.058*
C370.09873 (14)0.35058 (9)0.57148 (10)0.0412 (4)
C380.17521 (16)0.30522 (11)0.59395 (11)0.0528 (5)
H380.17760.25960.57540.063*
C390.24821 (19)0.32803 (16)0.64427 (14)0.0816 (8)
H390.29910.29720.65960.098*
C400.2468 (2)0.3944 (2)0.67158 (17)0.1044 (12)
H400.29590.40900.70560.125*
C410.1725 (2)0.43964 (16)0.64864 (17)0.0931 (10)
H410.17180.48520.66710.112*
C420.09776 (17)0.41894 (11)0.59825 (13)0.0621 (6)
H420.04800.45030.58270.075*
N10.02553 (12)0.32888 (7)0.51901 (8)0.0360 (3)
N20.07573 (12)0.36378 (7)0.52524 (8)0.0365 (3)
N30.06255 (10)0.22567 (6)0.63778 (8)0.0305 (3)
N40.07247 (10)0.08697 (6)0.58766 (8)0.0322 (3)
N50.02142 (10)0.11631 (6)0.43538 (8)0.0301 (3)
N60.03408 (11)0.06146 (6)0.40476 (8)0.0315 (3)
H6N0.00900.01990.41300.038*
O30.19716 (10)0.12528 (6)0.42520 (9)0.0483 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0384 (9)0.0283 (8)0.0266 (7)0.0008 (7)0.0065 (6)0.0005 (6)
C20.0350 (8)0.0305 (9)0.0258 (7)0.0031 (7)0.0120 (6)0.0010 (6)
C30.0316 (8)0.0283 (8)0.0227 (7)0.0024 (6)0.0080 (6)0.0022 (6)
C40.0265 (8)0.0307 (8)0.0243 (7)0.0003 (6)0.0092 (6)0.0001 (6)
C50.0289 (8)0.0351 (9)0.0246 (7)0.0037 (7)0.0056 (6)0.0023 (6)
C60.0477 (10)0.0451 (10)0.0278 (8)0.0042 (8)0.0055 (7)0.0024 (7)
C70.0504 (11)0.0584 (13)0.0251 (8)0.0131 (9)0.0003 (7)0.0044 (8)
C80.0462 (11)0.0504 (12)0.0384 (9)0.0104 (9)0.0042 (8)0.0183 (8)
C90.0456 (10)0.0337 (10)0.0415 (9)0.0068 (8)0.0019 (8)0.0072 (7)
C100.0283 (8)0.0335 (9)0.0280 (8)0.0065 (7)0.0025 (6)0.0024 (6)
C110.0257 (8)0.0323 (9)0.0247 (7)0.0026 (6)0.0056 (6)0.0019 (6)
C120.0321 (8)0.0243 (8)0.0289 (7)0.0007 (6)0.0031 (6)0.0003 (6)
C130.0368 (10)0.0503 (11)0.0298 (8)0.0034 (8)0.0046 (7)0.0070 (7)
C140.0336 (10)0.0737 (14)0.0501 (11)0.0021 (9)0.0093 (8)0.0127 (10)
C150.0355 (10)0.0604 (13)0.0514 (11)0.0016 (9)0.0057 (8)0.0078 (9)
C160.0513 (11)0.0452 (11)0.0317 (9)0.0052 (9)0.0066 (8)0.0000 (8)
C170.0449 (10)0.0352 (9)0.0271 (8)0.0021 (7)0.0044 (7)0.0008 (7)
C180.0358 (9)0.0328 (9)0.0300 (8)0.0011 (7)0.0055 (6)0.0008 (7)
C190.0385 (9)0.0339 (9)0.0263 (7)0.0015 (7)0.0109 (6)0.0008 (6)
C200.0406 (10)0.0531 (12)0.0404 (9)0.0029 (9)0.0077 (8)0.0092 (8)
C210.0453 (11)0.0694 (14)0.0545 (11)0.0153 (10)0.0134 (9)0.0075 (10)
C220.0640 (14)0.0554 (13)0.0649 (13)0.0130 (11)0.0310 (11)0.0118 (10)
C230.0609 (13)0.0563 (13)0.0550 (11)0.0055 (10)0.0268 (10)0.0256 (10)
C240.0436 (10)0.0463 (11)0.0359 (9)0.0039 (8)0.0162 (7)0.0084 (8)
C250.0326 (8)0.0401 (10)0.0255 (7)0.0034 (7)0.0118 (6)0.0011 (7)
C260.0435 (10)0.0490 (11)0.0355 (9)0.0079 (8)0.0165 (7)0.0055 (8)
C270.0403 (10)0.0705 (13)0.0422 (10)0.0101 (9)0.0155 (8)0.0204 (9)
C280.0460 (11)0.0864 (16)0.0278 (9)0.0107 (11)0.0058 (8)0.0084 (10)
C290.0724 (14)0.0671 (14)0.0277 (9)0.0174 (11)0.0118 (9)0.0082 (9)
C300.0582 (11)0.0427 (10)0.0316 (9)0.0071 (9)0.0149 (8)0.0038 (7)
C310.0411 (10)0.0404 (10)0.0326 (8)0.0055 (8)0.0045 (7)0.0098 (7)
C320.0616 (13)0.0434 (12)0.0770 (14)0.0163 (10)0.0174 (11)0.0011 (10)
C330.0644 (16)0.0673 (16)0.0924 (18)0.0295 (13)0.0124 (13)0.0041 (13)
C340.0465 (13)0.0953 (19)0.0690 (14)0.0217 (13)0.0107 (11)0.0265 (13)
C350.0463 (12)0.0937 (17)0.0469 (11)0.0061 (12)0.0158 (9)0.0149 (11)
C360.0431 (10)0.0685 (13)0.0335 (9)0.0076 (9)0.0099 (8)0.0054 (9)
C370.0419 (10)0.0559 (11)0.0213 (7)0.0202 (9)0.0015 (7)0.0044 (7)
C380.0468 (11)0.0794 (15)0.0353 (9)0.0193 (10)0.0163 (8)0.0075 (9)
C390.0543 (13)0.152 (3)0.0448 (12)0.0297 (15)0.0233 (10)0.0010 (14)
C400.0635 (17)0.186 (4)0.0622 (16)0.045 (2)0.0141 (13)0.0477 (19)
C410.0745 (18)0.121 (2)0.0693 (16)0.0436 (17)0.0047 (13)0.0553 (16)
C420.0590 (13)0.0691 (14)0.0478 (11)0.0231 (11)0.0027 (9)0.0262 (10)
N10.0459 (8)0.0333 (8)0.0305 (7)0.0053 (6)0.0134 (6)0.0026 (6)
N20.0450 (8)0.0322 (8)0.0295 (7)0.0006 (6)0.0057 (6)0.0005 (6)
N30.0335 (7)0.0341 (8)0.0233 (6)0.0004 (6)0.0065 (5)0.0008 (5)
N40.0326 (7)0.0299 (7)0.0308 (7)0.0031 (6)0.0035 (5)0.0007 (6)
N50.0322 (7)0.0304 (7)0.0256 (6)0.0025 (6)0.0044 (5)0.0066 (5)
N60.0371 (7)0.0268 (7)0.0308 (7)0.0005 (6)0.0097 (5)0.0047 (5)
O30.0401 (7)0.0346 (7)0.0697 (8)0.0045 (6)0.0146 (6)0.0104 (6)
Geometric parameters (Å, º) top
C1—N21.2990 (19)C21—C221.372 (3)
C1—C311.450 (2)C21—H210.9300
C1—C21.506 (2)C22—C231.371 (3)
C2—C251.5235 (19)C22—H220.9300
C2—C31.555 (2)C23—C241.382 (2)
C2—H20.9784C23—H230.9300
C3—N11.4655 (19)C24—H240.9300
C3—C41.5211 (19)C25—C301.384 (2)
C3—H30.9858C25—C261.384 (2)
C4—N31.3071 (17)C26—C271.389 (2)
C4—C111.440 (2)C26—H260.9300
C5—N31.3717 (18)C27—C281.376 (3)
C5—C101.397 (2)C27—H270.9300
C5—C61.411 (2)C28—C291.368 (3)
C6—C71.357 (2)C28—H280.9300
C6—H60.9300C29—C301.388 (2)
C7—C81.389 (3)C29—H290.9300
C7—H70.9300C30—H300.9300
C8—C91.365 (2)C31—C321.391 (2)
C8—H80.9300C31—C361.392 (2)
C9—C101.407 (2)C32—C331.379 (3)
C9—H90.9300C32—H320.9300
C10—N41.3764 (18)C33—C341.366 (3)
C11—N41.3049 (18)C33—H330.9300
C11—N51.4178 (17)C34—C351.374 (3)
C12—C131.377 (2)C34—H340.9300
C12—C171.393 (2)C35—C361.390 (3)
C12—N51.4340 (19)C35—H350.9300
C13—C141.389 (2)C36—H360.9300
C13—H130.9300C37—C381.384 (3)
C14—C151.370 (2)C37—C421.391 (3)
C14—H140.9300C37—N11.406 (2)
C15—C161.376 (3)C38—C391.387 (3)
C15—H150.9300C38—H380.9300
C16—C171.379 (2)C39—C401.357 (4)
C16—H160.9300C39—H390.9300
C17—H170.9300C40—C411.366 (4)
C18—O31.2207 (18)C40—H400.9300
C18—N61.365 (2)C41—C421.391 (3)
C18—C191.487 (2)C41—H410.9300
C19—C241.383 (2)C42—H420.9300
C19—C201.384 (2)N1—N21.3735 (18)
C20—C211.379 (2)N5—N61.4047 (16)
C20—H200.9300N6—H6N0.8852
N2—C1—C31121.91 (14)C22—C23—C24120.17 (17)
N2—C1—C2113.08 (13)C22—C23—H23119.9
C31—C1—C2124.98 (14)C24—C23—H23119.9
C1—C2—C25112.28 (12)C23—C24—C19120.18 (16)
C1—C2—C399.59 (11)C23—C24—H24119.9
C25—C2—C3113.38 (12)C19—C24—H24119.9
C1—C2—H2112.3C30—C25—C26118.31 (15)
C25—C2—H2109.5C30—C25—C2119.60 (15)
C3—C2—H2109.5C26—C25—C2122.06 (14)
N1—C3—C4112.51 (11)C25—C26—C27120.64 (16)
N1—C3—C2100.88 (11)C25—C26—H26119.7
C4—C3—C2109.70 (11)C27—C26—H26119.7
N1—C3—H3110.5C28—C27—C26120.27 (18)
C4—C3—H3110.6C28—C27—H27119.9
C2—C3—H3112.3C26—C27—H27119.9
N3—C4—C11120.59 (13)C29—C28—C27119.59 (16)
N3—C4—C3118.25 (13)C29—C28—H28120.2
C11—C4—C3121.03 (12)C27—C28—H28120.2
N3—C5—C10121.45 (13)C28—C29—C30120.39 (18)
N3—C5—C6119.09 (14)C28—C29—H29119.8
C10—C5—C6119.45 (14)C30—C29—H29119.8
C7—C6—C5119.86 (16)C25—C30—C29120.76 (18)
C7—C6—H6120.1C25—C30—H30119.6
C5—C6—H6120.1C29—C30—H30119.6
C6—C7—C8120.60 (15)C32—C31—C36118.45 (17)
C6—C7—H7119.7C32—C31—C1120.90 (17)
C8—C7—H7119.7C36—C31—C1120.55 (15)
C9—C8—C7121.02 (16)C33—C32—C31120.6 (2)
C9—C8—H8119.5C33—C32—H32119.7
C7—C8—H8119.5C31—C32—H32119.7
C8—C9—C10119.49 (16)C34—C33—C32120.5 (2)
C8—C9—H9120.3C34—C33—H33119.7
C10—C9—H9120.3C32—C33—H33119.7
N4—C10—C5120.74 (13)C33—C34—C35120.0 (2)
N4—C10—C9119.73 (14)C33—C34—H34120.0
C5—C10—C9119.50 (14)C35—C34—H34120.0
N4—C11—N5119.19 (13)C34—C35—C36120.2 (2)
N4—C11—C4123.01 (13)C34—C35—H35119.9
N5—C11—C4117.69 (12)C36—C35—H35119.9
C13—C12—C17119.61 (14)C35—C36—C31120.19 (19)
C13—C12—N5121.14 (12)C35—C36—H36119.9
C17—C12—N5119.24 (14)C31—C36—H36119.9
C12—C13—C14119.81 (15)C38—C37—C42119.39 (17)
C12—C13—H13120.1C38—C37—N1120.72 (16)
C14—C13—H13120.1C42—C37—N1119.85 (18)
C15—C14—C13120.61 (18)C37—C38—C39119.8 (2)
C15—C14—H14119.7C37—C38—H38120.1
C13—C14—H14119.7C39—C38—H38120.1
C14—C15—C16119.61 (17)C40—C39—C38121.2 (3)
C14—C15—H15120.2C40—C39—H39119.4
C16—C15—H15120.2C38—C39—H39119.4
C15—C16—C17120.62 (15)C39—C40—C41119.3 (2)
C15—C16—H16119.7C39—C40—H40120.4
C17—C16—H16119.7C41—C40—H40120.4
C16—C17—C12119.71 (16)C40—C41—C42121.4 (3)
C16—C17—H17120.1C40—C41—H41119.3
C12—C17—H17120.1C42—C41—H41119.3
O3—C18—N6122.41 (14)C37—C42—C41118.9 (2)
O3—C18—C19122.20 (15)C37—C42—H42120.5
N6—C18—C19115.39 (14)C41—C42—H42120.5
C24—C19—C20119.13 (15)N2—N1—C37119.55 (13)
C24—C19—C18122.71 (14)N2—N1—C3111.11 (12)
C20—C19—C18118.14 (14)C37—N1—C3126.24 (14)
C21—C20—C19120.29 (16)C1—N2—N1108.52 (12)
C21—C20—H20119.9C4—N3—C5117.51 (13)
C19—C20—H20119.9C11—N4—C10116.54 (13)
C22—C21—C20120.18 (18)N6—N5—C11115.65 (11)
C22—C21—H21119.9N6—N5—C12113.80 (11)
C20—C21—H21119.9C11—N5—C12119.36 (12)
C21—C22—C23120.03 (18)C18—N6—N5117.56 (12)
C21—C22—H22120.0C18—N6—H6N120.2
C23—C22—H22120.0N5—N6—H6N115.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O30.982.283.2425 (19)169
N6—H6N···N4i0.892.303.1754 (18)172
C16—H16···N2ii0.932.563.4799 (19)172
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O30.982.283.2425 (19)168.9
N6—H6N···N4i0.892.303.1754 (18)171.5
C16—H16···N2ii0.932.563.4799 (19)172.4
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBemis, G. W. & Duffy, J. P. (2005). Patent WO 2005/056547 A2.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorona, P., Carta, A., Loriga, M., Vitale, G. & Paglietti, G. (2008). Eur. J. Med. Chem. 44, 1579–1591.  Web of Science CrossRef PubMed Google Scholar
First citationEl-Sabbagh, O. I., El-Sadek, M. E., Lashine, S. M., Yassin, S. H. & El-Nabtity, S. M. (2009). Med. Chem. Res. 18 9, 782–797.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhadage, R. V. & Shirote, P. J. (2011). J. Chem. Pharm. Res. 3, 260–266.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Y., Zhang, S., Wu, B., Ma, M., Chen, X., Qin, X., He, M., Hussain, S., Jing, C., Ma, B. & Zhu, C. (2012). ChemMedChem, 7, 823–835.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1320-o1321
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds