organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Meth­­oxy­benzo­yl)-2-methyl­benzene­sulfonamide

aDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur, Karnataka 572 103, India, bUniversity College of Science, Tumkur University, Tumkur, India, cDepartment of Studies and Research in Chemistry, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, and dSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, India
*Correspondence e-mail: pasuchetan@yahoo.co.in

(Received 29 June 2013; accepted 4 July 2013; online 10 July 2013)

In the title compound, C15H15NO4S, the dihedral angle between the methyl- and meth­oxy-substituted benzene rings is 88.99 (12)°. An intra­molecular C—H⋯O hydrogen bond occurs. In the crystal, adjacent mol­ecules form inversion-related dimers through strong N—H⋯O hydrogen bonds, generating R22(8) loops. The dimers are further connected through C—H⋯O inter­actions that form C(8) chains parallel to (001). Mol­ecules are also connected through other C—H⋯O hydrogen bonds along the b axis, forming additional C(8) chains. Two aromatic ππ stacking inter­actions [centroid–centroid separations = 3.6150 (1) and 3.6837 (1) Å] generate a three-dimensional architecture.

Related literature

For similar structures, see: Gowda et al. (2010[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o433.]); Suchetan et al. (2010[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1024.], 2011[Suchetan, P. A., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o3489.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO4S

  • Mr = 305.34

  • Monoclinic, C 2/c

  • a = 26.713 (5) Å

  • b = 7.3717 (4) Å

  • c = 19.636 (3) Å

  • β = 131.21 (3)°

  • V = 2908.7 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.33 × 0.27 × 0.22 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • 5294 measured reflections

  • 2558 independent reflections

  • 1970 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.118

  • S = 1.04

  • 2558 reflections

  • 196 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯O2i 0.80 (3) 2.15 (4) 2.929 (4) 166
C3—H3⋯O3ii 0.93 2.60 3.463 (3) 155
C10—H10⋯O2i 0.93 2.60 3.404 (3) 145
C15—H15B⋯O3iii 0.96 2.36 3.323 (3) 178
C6—H6⋯O1 0.93 2.46 2.861 (4) 106
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) [x, -y+2, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our continued efforts to study the crystal structures of N-(aroyl)-arylsulfonamides (Suchetan et al., 2010, 2011), we report herein the crystal structure of the title compound (I).

In the title compound, C15H15NO4S, the dihedral angle between the benzene rings is 88.99°. In the molecule, the conformation between the N-H bond and the ortho-methyl group in the sulfonyl benzene ring is syn. This is similar to what is observed in N-(benzoyl)-2-methylbenzenesulfonamide (II, Suchetan et al., 2010), N-(3-chlorobenzoyl)- 2-methylbenzenesulfonamide (III, Suchetan et al., 2011) and N-(3-methylbenzoyl)-2-methylbenzenesulfonamide (IV, Gowda et al., 2010). Similarly, the conformation between the N-H bond and the meta-methoxy group in the benzoyl ring is syn, also similar to the conformation in III (Suchetan et al., 2011) and IV (Gowda et al., 2010).

Adjacent molecules form inversion related dimers through strong N1–HN1···O2 hydrogen bonds, Table 1, generating R22(8) loops. The dimers are further connected through intermolecular C10—H10···O2 interactions that form C(8) chains parallel to (001). Molecules are also connected through other intermolecular C15—H15B···O3 hydrogen bonds along the b axis forming additional C(8) chains. Two aromatic ππ stacking interactions (centroid- centroid separations 3.6150 (1) Å and 3.6837 (1) Å) are also observed.

Related literature top

For similar structures, see: Gowda et al. (2010); Suchetan et al. (2010, 2011).

Experimental top

The title compound was prepared by refluxing a mixture of 3-methoxybenzoic acid, 2-methylbenzenesulfonamide and phosphorus oxychloride, POCl3, for 2 h on a water bath. The resultant mixture was cooled and poured into ice cold water. The solid obtained was filtered and washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. The filtered and dried solid was recrystallized to the constant melting point (423 K).

Colorless prisms of (I) were obtained from a slow evaporation of its ethanolic solution at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and later refined freely. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines. Hydrogen atoms bound to carbon are omitted for clarity.
[Figure 3] Fig. 3. Display of C—H···O interactions among molecules along b axis forming C(8) chains.
[Figure 4] Fig. 4. Stacking of molecules through Cg···Cg interactions. Cg1 and Cg2 are the centroids of the carbonyl and sulfonyl bounded benzene rings respectively.
N-(3-Methoxybenzoyl)-2-methylbenzenesulfonamide top
Crystal data top
C15H15NO4SPrism
Mr = 305.34Dx = 1.394 Mg m3
Monoclinic, C2/cMelting point: 423 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 26.713 (5) ÅCell parameters from 1232 reflections
b = 7.3717 (4) Åθ = 2.8–25.0°
c = 19.636 (3) ŵ = 0.24 mm1
β = 131.21 (3)°T = 293 K
V = 2908.7 (7) Å3Prism, colourless
Z = 80.33 × 0.27 × 0.22 mm
F(000) = 1280
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1970 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 25.0°, θmin = 2.8°
ϕ and ω scansh = 3131
5294 measured reflectionsk = 88
2558 independent reflectionsl = 1423
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.0171P]
where P = (Fo2 + 2Fc2)/3
2558 reflections(Δ/σ)max = 0.001
196 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.35 e Å3
0 constraints
Crystal data top
C15H15NO4SV = 2908.7 (7) Å3
Mr = 305.34Z = 8
Monoclinic, C2/cMo Kα radiation
a = 26.713 (5) ŵ = 0.24 mm1
b = 7.3717 (4) ÅT = 293 K
c = 19.636 (3) Å0.33 × 0.27 × 0.22 mm
β = 131.21 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1970 reflections with I > 2σ(I)
5294 measured reflectionsRint = 0.027
2558 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.19 e Å3
2558 reflectionsΔρmin = 0.35 e Å3
196 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
HN10.0737 (12)0.796 (3)0.2976 (17)0.055 (8)*
C10.05769 (11)0.6312 (3)0.13024 (14)0.0444 (5)
C90.18751 (12)0.9525 (3)0.40254 (15)0.0425 (5)
C100.16739 (12)0.9650 (3)0.45194 (16)0.0479 (6)
H100.12310.94510.42370.057*
C80.14165 (12)0.9088 (3)0.30428 (16)0.0467 (6)
C20.06638 (11)0.4482 (3)0.15570 (16)0.0488 (6)
C60.07526 (12)0.6977 (3)0.08233 (16)0.0546 (6)
H60.06890.81950.06620.066*
C140.25399 (13)0.9826 (3)0.44521 (17)0.0529 (6)
H140.26780.97480.41250.063*
C110.21314 (12)1.0071 (3)0.54308 (17)0.0496 (6)
C130.29856 (13)1.0235 (3)0.53520 (18)0.0602 (7)
H130.34291.04300.56350.072*
C120.27921 (12)1.0365 (3)0.58542 (17)0.0529 (6)
H120.31021.06460.64680.063*
C50.10253 (13)0.5803 (4)0.05870 (18)0.0653 (7)
H50.11460.62330.02670.078*
C40.11146 (14)0.4011 (4)0.08281 (18)0.0666 (8)
H40.12960.32270.06700.080*
C30.09384 (13)0.3358 (3)0.13017 (18)0.0601 (7)
H30.10040.21360.14570.072*
C70.04728 (14)0.3666 (3)0.20628 (19)0.0651 (7)
H7A0.06070.44660.25430.098*
H7B0.06910.25160.23120.098*
H7C0.00010.34960.16550.098*
C150.23539 (16)1.0486 (5)0.68140 (19)0.0927 (11)
H15A0.26740.95210.71170.139*
H15B0.21211.05460.70320.139*
H15C0.25781.16160.69340.139*
O10.00755 (9)0.9515 (2)0.10733 (11)0.0614 (5)
O20.02956 (7)0.7037 (2)0.14851 (11)0.0527 (4)
O30.15524 (9)0.9414 (2)0.25752 (12)0.0646 (5)
O40.18890 (10)1.0151 (3)0.58597 (13)0.0771 (6)
S10.02251 (3)0.78797 (8)0.15606 (4)0.0461 (2)
N10.08109 (10)0.8300 (3)0.26647 (13)0.0456 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0325 (12)0.0577 (14)0.0369 (12)0.0007 (11)0.0202 (11)0.0079 (10)
C90.0428 (13)0.0396 (11)0.0460 (14)0.0036 (10)0.0296 (12)0.0046 (10)
C100.0408 (14)0.0560 (13)0.0514 (15)0.0117 (11)0.0323 (13)0.0128 (11)
C80.0477 (15)0.0498 (13)0.0500 (15)0.0079 (11)0.0354 (14)0.0059 (11)
C20.0370 (13)0.0540 (13)0.0470 (14)0.0035 (11)0.0240 (13)0.0114 (11)
C60.0477 (15)0.0703 (16)0.0468 (15)0.0002 (12)0.0315 (14)0.0041 (12)
C140.0455 (15)0.0674 (15)0.0538 (16)0.0046 (12)0.0361 (14)0.0031 (12)
C110.0479 (15)0.0570 (13)0.0509 (15)0.0084 (12)0.0355 (14)0.0110 (11)
C130.0386 (14)0.0809 (17)0.0573 (17)0.0073 (13)0.0299 (14)0.0053 (13)
C120.0424 (15)0.0643 (15)0.0435 (15)0.0053 (12)0.0247 (13)0.0060 (11)
C50.0528 (17)0.100 (2)0.0516 (16)0.0027 (16)0.0381 (15)0.0121 (15)
C40.0513 (17)0.087 (2)0.0610 (18)0.0025 (15)0.0369 (16)0.0217 (15)
C30.0491 (16)0.0606 (15)0.0614 (17)0.0022 (13)0.0324 (15)0.0135 (13)
C70.0658 (19)0.0565 (15)0.075 (2)0.0007 (13)0.0473 (18)0.0007 (13)
C150.071 (2)0.164 (3)0.0525 (19)0.016 (2)0.0442 (19)0.0258 (19)
O10.0668 (12)0.0571 (9)0.0569 (12)0.0121 (9)0.0393 (11)0.0084 (8)
O20.0360 (9)0.0696 (10)0.0542 (10)0.0035 (8)0.0305 (9)0.0118 (8)
O30.0606 (12)0.0922 (13)0.0561 (12)0.0179 (10)0.0449 (11)0.0102 (9)
O40.0531 (12)0.1345 (16)0.0517 (12)0.0218 (11)0.0380 (11)0.0281 (11)
S10.0400 (4)0.0541 (4)0.0427 (4)0.0021 (3)0.0267 (3)0.0040 (3)
N10.0450 (12)0.0577 (12)0.0394 (12)0.0091 (9)0.0301 (11)0.0074 (9)
Geometric parameters (Å, º) top
C1—C61.388 (3)C13—H130.9300
C1—C21.404 (3)C12—H120.9300
C1—S11.762 (2)C5—C41.370 (4)
C9—C101.388 (3)C5—H50.9300
C9—C141.394 (3)C4—C31.376 (4)
C9—C81.487 (3)C4—H40.9300
C10—C111.382 (3)C3—H30.9300
C10—H100.9300C7—H7A0.9600
C8—O31.213 (3)C7—H7B0.9600
C8—N11.387 (3)C7—H7C0.9600
C2—C31.400 (3)C15—O41.431 (3)
C2—C71.509 (3)C15—H15A0.9600
C6—C51.393 (3)C15—H15B0.9600
C6—H60.9300C15—H15C0.9600
C14—C131.363 (3)O1—S11.4232 (16)
C14—H140.9300O2—S11.4391 (16)
C11—O41.360 (3)S1—N11.666 (2)
C11—C121.385 (3)N1—HN10.79 (2)
C13—C121.386 (3)
C6—C1—C2122.0 (2)C4—C5—H5120.2
C6—C1—S1116.49 (18)C6—C5—H5120.2
C2—C1—S1121.48 (17)C5—C4—C3120.7 (2)
C10—C9—C14119.7 (2)C5—C4—H4119.6
C10—C9—C8123.6 (2)C3—C4—H4119.6
C14—C9—C8116.6 (2)C4—C3—C2121.9 (2)
C11—C10—C9120.0 (2)C4—C3—H3119.1
C11—C10—H10120.0C2—C3—H3119.1
C9—C10—H10120.0C2—C7—H7A109.5
O3—C8—N1120.2 (2)C2—C7—H7B109.5
O3—C8—C9122.5 (2)H7A—C7—H7B109.5
N1—C8—C9117.3 (2)C2—C7—H7C109.5
C3—C2—C1116.3 (2)H7A—C7—H7C109.5
C3—C2—C7119.0 (2)H7B—C7—H7C109.5
C1—C2—C7124.7 (2)O4—C15—H15A109.5
C1—C6—C5119.4 (2)O4—C15—H15B109.5
C1—C6—H6120.3H15A—C15—H15B109.5
C5—C6—H6120.3O4—C15—H15C109.5
C13—C14—C9119.5 (2)H15A—C15—H15C109.5
C13—C14—H14120.2H15B—C15—H15C109.5
C9—C14—H14120.2C11—O4—C15117.5 (2)
O4—C11—C10115.8 (2)O1—S1—O2118.18 (11)
O4—C11—C12124.0 (2)O1—S1—N1108.93 (10)
C10—C11—C12120.2 (2)O2—S1—N1103.29 (10)
C14—C13—C12121.4 (2)O1—S1—C1109.21 (11)
C14—C13—H13119.3O2—S1—C1110.47 (10)
C12—C13—H13119.3N1—S1—C1105.95 (11)
C11—C12—C13119.1 (2)C8—N1—S1122.61 (17)
C11—C12—H12120.4C8—N1—HN1120.7 (19)
C13—C12—H12120.4S1—N1—HN1116.5 (19)
C4—C5—C6119.6 (2)
C14—C9—C10—C110.0 (3)C5—C4—C3—C20.1 (4)
C8—C9—C10—C11179.7 (2)C1—C2—C3—C40.1 (4)
C10—C9—C8—O3161.3 (2)C7—C2—C3—C4179.1 (2)
C14—C9—C8—O318.4 (3)C10—C11—O4—C15176.7 (2)
C10—C9—C8—N117.9 (3)C12—C11—O4—C152.7 (4)
C14—C9—C8—N1162.4 (2)O2—O2—S1—O10.00 (5)
C6—C1—C2—C30.0 (3)O2—O2—S1—N10.00 (6)
S1—C1—C2—C3178.99 (18)O2—O2—S1—C10.00 (4)
C6—C1—C2—C7178.9 (2)C6—C1—S1—O110.5 (2)
S1—C1—C2—C70.1 (3)C2—C1—S1—O1168.48 (18)
C2—C1—C6—C50.2 (4)C6—C1—S1—O2142.13 (18)
S1—C1—C6—C5179.17 (18)C2—C1—S1—O236.9 (2)
C10—C9—C14—C130.2 (3)C6—C1—S1—O2142.13 (18)
C8—C9—C14—C13179.9 (2)C2—C1—S1—O236.9 (2)
C9—C10—C11—O4179.6 (2)C6—C1—S1—N1106.65 (19)
C9—C10—C11—C120.1 (3)C2—C1—S1—N174.3 (2)
C9—C14—C13—C120.2 (4)O3—C8—N1—S13.9 (3)
O4—C11—C12—C13179.5 (2)C9—C8—N1—S1175.28 (15)
C10—C11—C12—C130.1 (4)O1—S1—N1—C854.9 (2)
C14—C13—C12—C110.1 (4)O2—S1—N1—C8178.66 (18)
C1—C6—C5—C40.2 (4)O2—S1—N1—C8178.66 (18)
C6—C5—C4—C30.0 (4)C1—S1—N1—C862.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···O2i0.80 (3)2.15 (4)2.929 (4)166
C3—H3···O3ii0.932.603.463 (3)155
C10—H10···O2i0.932.603.404 (3)145
C15—H15B···O3iii0.962.363.323 (3)178
C6—H6···O10.932.462.861 (4)106
Symmetry codes: (i) x, y, z+1/2; (ii) x, y1, z; (iii) x, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H15NO4S
Mr305.34
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)26.713 (5), 7.3717 (4), 19.636 (3)
β (°) 131.21 (3)
V3)2908.7 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.33 × 0.27 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5294, 2558, 1970
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.118, 1.04
No. of reflections2558
No. of parameters196
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.35

Computer programs: APEX2 (Bruker, 2009), APEX2 and SAINT-Plus (Bruker, 2009), SAINT-Plus and XPREP (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···O2i0.80 (3)2.15 (4)2.929 (4)166
C3—H3···O3ii0.932.603.463 (3)154.7
C10—H10···O2i0.932.603.404 (3)145.3
C15—H15B···O3iii0.962.363.323 (3)178.0
C6—H6···O10.932.462.861 (4)106
Symmetry codes: (i) x, y, z+1/2; (ii) x, y1, z; (iii) x, y+2, z+1/2.
 

Acknowledgements

The authors thank Professor T. N. Guru Row, Soild State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for his help and valuable suggestions. PAS and MPS thank the University Grants Commission (UGC), India, for financial support under its Minor Research Project scheme.

References

First citationBruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o433.  Web of Science CSD CrossRef IUCr Journals
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSuchetan, P. A., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o3489.  Web of Science CSD CrossRef IUCr Journals
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1024.  Web of Science CSD CrossRef IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds