[Journal logo]

Volume 69 
Part 8 
Pages m460-m461  
August 2013  

Received 5 July 2013
Accepted 10 July 2013
Online 17 July 2013

Key indicators
Single-crystal X-ray study
T = 298 K
Mean [sigma](C-C) = 0.003 Å
R = 0.026
wR = 0.070
Data-to-parameter ratio = 14.5
Details
Open access

(Methanol-[kappa]O)-cis-dioxido{(4Z,N'E)-N'-[(Z)-4-oxido-4-phenylbut-3-en-2-ylidene]isonicotinohydrazidato}molybdenum(VI)

aSchool of Chemistry, University of Hyderabad, Gachibowli, Hyderabad, Andhra Pradesh 500 046, India
Correspondence e-mail: ch10ph07@uohyd.ernet.in

In the title complex, [Mo(C16H13N3O2)O2(CH3OH)], the deprotonated Schiff base (E)-N'-[(Z)-4-oxido-4-phenylbut-3-en-2-ylidene]isonicotinohydrazide coordinates in a meridional fashion through the enolate O-, imine N- and amidate O-atom donors to the Mo atom of a cis-[MoO2]2+ core. The sixth coordination site of molybdenum is occupied by the O atom of a methanol molecule. In this complex, the NO5 coordination sphere adopts a distorted octahedral coordination geometry. The metal atom is shifted by 0.335 (1) Å from the square plane defined by the three donor atoms of the Schiff base ligand and one oxide group towards the second oxide group in the cis position. In the crystal, the complex forms inversion dimers through a pair of O-H...N hydrogen bonds involving the methanol -OH group and the pyridine N atom. Additional C-H...O contacts stack the molecules along the b axis.

Related literature

For the coordination chemistry of molybdenum, see: Arzoumanian (1998[Arzoumanian, H. (1998). Coord. Chem. Rev. 191, 178-180.]). For ligand-exchange reactions of molybdenum complexes, see: Chakravarthy & Chand (2011[Chakravarthy, R. D. & Chand, D. K. (2011). J. Chem. Sci. 123, 187-199.]). For the preparation of the Schiff base, see: El-Bahnasawy & El-Meleigy (1993[El-Bahnasawy, R. & El-Meleigy, S. (1993). Transition Met. Chem. 18, 505-509.]). For a similar type of complex, see: Jin & Li (2012[Jin, N. Y. & Li, W.-H. (2012). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 42, 1167-1171.]). For related structures and hydrogen bonding, see: Kurapati et al. (2012[Kurapati, S. K., Ugandhar, U., Maloth, S. & Pal, S. (2012). Polyhedron, 42, 161-167.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo(C16H13N3O2)O2(CH4O)]

  • Mr = 439.28

  • Monoclinic, P 21 /n

  • a = 14.3222 (9) Å

  • b = 8.4083 (5) Å

  • c = 16.0102 (10) Å

  • [beta] = 113.507 (1)°

  • V = 1768.03 (19) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 0.78 mm-1

  • T = 298 K

  • 0.24 × 0.14 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.836, Tmax = 0.927

  • 17656 measured reflections

  • 3474 independent reflections

  • 3249 reflections with I > 2[sigma](I)

  • Rint = 0.026

Refinement
  • R[F2 > 2[sigma](F2)] = 0.026

  • wR(F2) = 0.070

  • S = 1.07

  • 3474 reflections

  • 239 parameters

  • 13 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.31 e Å-3

  • [Delta][rho]min = -0.60 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
O5-H5...N3i 0.88 (2) 1.84 (2) 2.695 (2) 167 (4)
C1-H1C...O2ii 0.96 2.63 3.554 (3) 162
C3-H3...O2ii 0.93 2.60 3.492 (2) 160
C14-H14...O1iii 0.93 2.57 3.134 (3) 119
C8-H8...O1iv 0.93 2.69 3.574 (3) 159
C7-H7...O5v 0.93 2.60 3.473 (3) 157
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, y+1, z; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x+2, -y+2, -z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5344 ).


Acknowledgements

I thank Professor Samudranil Pal, School of Chemistry, University of Hyderabad, for his guidance and encouragement throughout this work. The National X-ray Diffractometer facility set up at the University of Hyderabad by the Department of Science and Technology, Government of India, is gratefully acknowledged. I also thank the CSIR, New Delhi, India for providing a research fellowship.

References

Arzoumanian, H. (1998). Coord. Chem. Rev. 191, 178-180.
Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chakravarthy, R. D. & Chand, D. K. (2011). J. Chem. Sci. 123, 187-199.  [CrossRef] [ChemPort]
El-Bahnasawy, R. & El-Meleigy, S. (1993). Transition Met. Chem. 18, 505-509.  [ChemPort]
Jin, N. Y. & Li, W.-H. (2012). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 42, 1167-1171.  [CrossRef] [ChemPort]
Kurapati, S. K., Ugandhar, U., Maloth, S. & Pal, S. (2012). Polyhedron, 42, 161-167.  [Web of Science] [CSD] [CrossRef] [ChemPort]
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]


Acta Cryst (2013). E69, m460-m461   [ doi:10.1107/S1600536813019077 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.