supplementary materials


sj5345 scheme

Acta Cryst. (2013). E69, o1295-o1296    [ doi:10.1107/S1600536813019417 ]

2,2'-{[2-(2-Hydroxyphenyl)-4-methylimidazolidine-1,3-diyl]bis(methylene)}diphenol

A. Rivera, L. Cárdenas, J. Ríos-Motta, M. Kuceráková and M. Dusek

Abstract top

The asymmetric unit in the title compound, C24H26N2O3, comprises two independent molecules (A and B). In molecule A, the central 2-hydroxyphenyl ring is inclined to the mean plane of the major component of the imidazolidine ring by 84.52 (14)°, and by 68.08 (9) and 47.48 (9)° to the outer phenol rings. The later are inclined to one another by 66.76 (9)° and by 78.12 (14) and 80.20 (14)° to the imidazoline ring mean plane. In molecule B, the central 2-hydroxyphenyl ring is inclined to the mean plane of the imidazolidine ring by 73.64 (10)°, and by 75.60 (8) and 38.32 (9)° to the outer phenol rings. The later are inclined to one another by 69.47 (9)° and by 82.60 (10) and 64.26 (10)° to the imidazolidine ring mean plane. In each of the independent molecules, two intramolecular O-H...N hydrogen bond form S(6) ring motifs. In disordered molecule A, the O-H groups of the 2-hydroxybenzyl groups are also involved in intramolecular O-H...O hydrogen bonds, with the O atom of the hydroxyphenyl group acting as the acceptor. In the crystal, A molecules are linked by pairs of O-H...O hydrogen bonds forming inversion dimers. These dimers are linked to the B molecules via O-H...O hydrogen bonds forming double-layered slabs lying parallel to the bc plane.

Comment top

The asymmetric unit of the title compound, C48H52N4O6, contains two independent molecules, Figs. 1 and 2. The C26 and C40 atoms from the imidazolidine ring of molecule A together with the C44 methyl substituent and their H atoms were disordered over two positions with relative occupancies 0.7543 (7):0.2456 (3). The second molecule (B, Fig. 2) appeared to exhibit a similar disorder, but the relative occupancies of the major component of C43 refined to approximately 0.92 and the two additional C atoms of the minor disordered chain could not be localized in difference Fourier map. Therefore, we did not introduce disorder into the structural model of the second molecule. The imidazolidine rings in both molecules adopt envelope conformations, as indicated by the ring-puckering parameters, Q(2) = 0.4293 (18) Å, φ(2) = 245.1 (2)° envelope on N4, and Q(2) = 0.433 (4) Å, φ(2) = 78.6 (4)° envelope on N3 (Cremer & Pople 1975). In molecule A, the phenol rings form a dihedral angle of 67.25 (18)°, whereas the corresponding angle is 69.63 (13)° in the other. The 2-hydroxybenzyl ring forms dihedral angles of 79.55 (15) and 70.74 (15)° with the mean plane of the imidazolidine ring in molecule A, and 56.52 (17) and 75.51 (13)° in molecule B. The dihedral angles between the latter planes and the adjacent phenyl rings are 76.39 (17)° and 57.92 (17)°. All bond lengths (Allen et al.,1987) are normal and correspond to those observed in related compounds (Rivera et al., 2012, 2013b,c).

In molecule A, the O1 and O4 o-hydroxybenzyl groups act as donors, forming S(6) hydrogen-bond motifs with the N3 and N1 nitrogen atoms (Bernstein et al. 1995), while in molecule B, the hydrogen-bond donors are atoms O3 and O2, Table 1. In the disordered molecule, the O—H groups of the 2-hydroxybenzyl groups are also involved in weaker intramolecular O—H···O hydrogen bonds, with the O5 atom acting as the acceptor. The N··· O distances show that the strongest intramolecular hydrogen bond is formed in the case of O1 and the weakest one for O2. But this value, 2.7360 (17), is still shorter than those observed in related structures [2.7569 (18) and 2.721 (3) Å] (Rivera et al., 2012, 2013b). However, the observed N4···O2 bond distance is slightly longer compared to the mean value [2.722 (3) Å] observed in the p-chloro derivative (Rivera et al., 2013c). Intermolecular O5—H5···O1 and O6—H6···O4 hydrogen bonds also consolidate molecules in the crystal structure, Table 1.

Related literature top

For related structures, see: Rivera et al. (2012, 2013b,c). For the synthesis of the title compound, see: Rivera et al. (2013a). For reference bond-length data, see: Allen et al. (1987). For hydrogen-bond graph-set nomenclature, see: Bernstein et al. (1995). For Cremer–Pople ring-puckering parameters, see: Cremer & Pople (1975).

Experimental top

Following our former methodology Rivera et al. (2013a), salicylaldehyde was added to a stirred toluene solution of 2,2'-[propane-1,2-diylbis(iminomethanediyl)]diphenol in a molar ratio of 1.0:1.1. The resulting mixture was heated under reflux for 12 h. After cooling to room temperature, the solvent was evaporated on a rotary evaporator, the residue was cooled, and the precipitate was filtered off, washed with cold ethanol, dried in air, and recrystallized from ethanol, yielding colourless crystalline flakes, mp 167–168 °C.

Refinement top

The imidazolidine ring was found to be disordered over two positions, with relative occupancies 0.7543 (7):0.2456 (3). The C atoms of the both disorder components (minor and major) were refined harmonically with the ADP of C40' equal to that of C40 and that of C26' equal to ADP C26, due to the close proximity of these atoms. ADP values of the terminal C44 and C44' methyl groups were refined independently. The distances C40—C26 and C40—C44 were kept equal to those of C40'—C26' and C40'—C44'. The occupancies of the minor and major components refined so as to sum to unity.

The second molecule (B) exhibits a similar kind of disorder, but the relative occupancies of the methyl carbon refined to approximately 0.92 while the other methyl carbon occupancy was 0.08. Due to the very low occupancy of the minor component, we did not introduce disorder of the second molecule into the final structure model.

The hydroxyl H atoms were found in difference Fourier maps and their coordinates were refined with a distance restraint d(O—H) = 0.878 Å with σ 0.01. All other H atoms were kept in the geometrically correct positions with C—H = 0.96 A. The isotropic atomic displacement parameters of H atoms were evaluated as 1.2Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. A perspective view of the molecule A of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are drawn as dashed lines. For clarity, only the major disorder component of the disordered C26, C40, C44 segment of the imidazolidine ring is shown.
[Figure 2] Fig. 2. A perspective view of the molecule B of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
2,2'-{[2-(2-Hydroxyphenyl)-4-methylimidazolidine-1,3-diyl]bis(methylene)}diphenol top
Crystal data top
C24H26N2O3F(000) = 3328
Mr = 390.47Dx = 1.269 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.5418 Å
Hall symbol: -C 2ycCell parameters from 7208 reflections
a = 24.2482 (10) Åθ = 3.7–67.0°
b = 9.8145 (3) ŵ = 0.67 mm1
c = 35.1675 (15) ÅT = 120 K
β = 102.450 (4)°Polygon, colourless
V = 8172.5 (6) Å30.20 × 0.11 × 0.05 mm
Z = 16
Data collection top
Agilent Xcalibur Gemini ultra
diffractometer with Atlas detector
7053 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source5315 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.3784 pixels mm-1θmax = 67.1°, θmin = 4.1°
ω scansh = 2428
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1110
Tmin = 0.505, Tmax = 1.000l = 4140
15999 measured reflections
Refinement top
Refinement on F231 constraints
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.048Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
S = 1.68(Δ/σ)max = 0.022
7053 reflectionsΔρmax = 0.31 e Å3
556 parametersΔρmin = 0.19 e Å3
7 restraints
Crystal data top
C24H26N2O3V = 8172.5 (6) Å3
Mr = 390.47Z = 16
Monoclinic, C2/cCu Kα radiation
a = 24.2482 (10) ŵ = 0.67 mm1
b = 9.8145 (3) ÅT = 120 K
c = 35.1675 (15) Å0.20 × 0.11 × 0.05 mm
β = 102.450 (4)°
Data collection top
Agilent Xcalibur Gemini ultra
diffractometer with Atlas detector
7053 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
5315 reflections with I > 3σ(I)
Tmin = 0.505, Tmax = 1.000Rint = 0.027
15999 measured reflectionsθmax = 67.1°
Refinement top
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.048Δρmax = 0.31 e Å3
S = 1.68Δρmin = 0.19 e Å3
7053 reflectionsAbsolute structure: ?
556 parametersAbsolute structure parameter: ?
7 restraintsRogers parameter: ?
Special details top

Experimental. CrysAlisPro, Agilent, 2010 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement. The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.95371 (6)0.19541 (14)0.01694 (4)0.0419 (5)
O20.78858 (5)0.22409 (14)0.12403 (4)0.0378 (4)
O30.78818 (5)0.48488 (14)0.19668 (4)0.0387 (5)
O40.94590 (5)0.01395 (14)0.13241 (3)0.0364 (4)
O50.95161 (5)0.02816 (13)0.04311 (3)0.0325 (4)
O60.94669 (6)0.28240 (15)0.34574 (4)0.0432 (5)
N20.87484 (6)0.35663 (14)0.24227 (4)0.0265 (5)
N30.86673 (6)0.19986 (14)0.04268 (4)0.0246 (4)
N40.88014 (6)0.26264 (14)0.18386 (4)0.0269 (5)
N10.87030 (6)0.12455 (14)0.10395 (4)0.0270 (5)
C450.92473 (8)0.29225 (19)0.03307 (5)0.0320 (6)
C460.82322 (7)0.13953 (18)0.10878 (5)0.0295 (6)
C470.95436 (9)0.3752 (2)0.06230 (5)0.0418 (7)
C480.88388 (7)0.51481 (17)0.18940 (4)0.0270 (5)
C10.90105 (7)0.37983 (17)0.20879 (5)0.0264 (5)
C20.85171 (7)0.04658 (18)0.05479 (5)0.0278 (5)
C30.92609 (10)0.4723 (2)0.07911 (5)0.0424 (7)
C40.85081 (10)0.75819 (19)0.15069 (5)0.0413 (7)
C50.79881 (8)0.05083 (19)0.07899 (5)0.0346 (6)
C60.86364 (11)0.3038 (2)0.01921 (6)0.0477 (8)
C70.82775 (8)0.55781 (18)0.18302 (5)0.0312 (6)
C80.83500 (7)0.21722 (18)0.01195 (5)0.0288 (6)
C90.80471 (9)0.1247 (2)0.05198 (5)0.0383 (7)
C100.84272 (7)0.09546 (17)0.07138 (5)0.0267 (5)
C110.87636 (11)0.1786 (2)0.23652 (5)0.0477 (8)
C120.89522 (8)0.34332 (18)0.34300 (5)0.0312 (6)
C130.86650 (8)0.30750 (17)0.02005 (5)0.0277 (5)
C140.90529 (8)0.10177 (17)0.03976 (5)0.0279 (5)
C150.91066 (10)0.22970 (19)0.02197 (5)0.0384 (7)
C160.81141 (9)0.67841 (19)0.16319 (5)0.0384 (7)
C170.88192 (7)0.14208 (17)0.12213 (5)0.0267 (5)
C180.86977 (8)0.20647 (18)0.24694 (5)0.0339 (6)
C190.86484 (9)0.3312 (2)0.37219 (5)0.0368 (6)
C200.84506 (10)0.1634 (2)0.20836 (5)0.0438 (7)
C210.83213 (8)0.0343 (2)0.06214 (5)0.0360 (6)
C220.87397 (8)0.41967 (18)0.30986 (5)0.0290 (6)
C230.79147 (9)0.47089 (19)0.33567 (5)0.0384 (7)
C240.88997 (8)0.03312 (19)0.07506 (5)0.0349 (6)
C250.91415 (8)0.05456 (18)0.10489 (5)0.0313 (6)
C260.86595 (14)0.3233 (9)0.06671 (12)0.0283 (8)0.7544
C26'0.8776 (5)0.323 (3)0.0652 (4)0.0283 (8)0.2456
C270.88837 (8)0.14813 (18)0.21160 (5)0.0324 (6)
C280.90970 (7)0.24526 (18)0.15184 (5)0.0297 (6)
C290.92237 (8)0.05111 (18)0.16700 (5)0.0303 (6)
C300.92320 (9)0.59829 (18)0.17732 (5)0.0335 (6)
C310.82189 (8)0.48319 (19)0.30694 (5)0.0348 (6)
C320.86847 (9)0.4870 (2)0.06741 (5)0.0404 (7)
C330.81058 (10)0.2528 (2)0.03426 (6)0.0496 (8)
C340.86738 (8)0.09890 (19)0.17311 (5)0.0313 (6)
C350.90488 (8)0.43120 (19)0.27722 (5)0.0316 (6)
C360.83919 (9)0.40474 (18)0.03783 (5)0.0352 (6)
C370.81342 (9)0.39430 (19)0.36837 (5)0.0382 (7)
C380.95412 (9)0.0660 (2)0.19492 (6)0.0419 (7)
C390.90683 (10)0.71999 (19)0.15794 (5)0.0412 (7)
C400.88940 (11)0.2730 (3)0.10092 (7)0.0297 (8)0.7544
C40'0.8611 (3)0.2702 (10)0.1067 (3)0.0297 (8)0.2456
C410.93073 (10)0.1306 (2)0.22976 (6)0.0474 (8)
C420.83485 (8)0.0823 (2)0.14163 (5)0.0390 (7)
C430.80854 (9)0.1690 (2)0.24714 (6)0.0444 (7)
C440.95226 (11)0.2901 (3)0.09486 (8)0.0457 (10)0.7544
H1C470.9945080.3650940.0708480.0502*
H1C10.9415230.3854160.215390.0317*
H1C30.9468270.5303250.099170.0508*
H1C40.8391410.8411340.1368010.0495*
H1C50.7585070.0487740.0700970.0416*
H1C60.8678040.3913250.0067430.0572*
H1C80.8287650.1297910.0013770.0345*
H2C80.7988090.2566820.0228270.0345*
H1C90.7675640.0897860.0624530.046*
H1C100.802340.098670.0796940.0321*
H1C110.8601510.222470.2607450.0572*
H1C150.947560.2662040.0115810.0461*
H1C160.7725690.7063640.1581650.0461*
H1C180.8920460.1717810.2709030.0407*
H1C190.8798910.2785250.3950720.0442*
H1C200.807160.1979720.2131410.0525*
H1C210.8149710.0942830.0413990.0432*
H1C230.7554920.5149830.3329760.0461*
H1C240.9132610.0924450.0635190.0419*
H1C250.9544430.0546980.1138790.0375*
H1C270.9277460.1251760.2185710.0389*
H2C270.863830.0743850.2009810.0389*
H1C280.9480940.2186890.1622310.0357*
H2C280.9118120.3313830.1392950.0357*
H1C300.9621780.5714790.1824480.0402*
H1C310.8067470.5370410.2843120.0418*
H1C320.8488350.5532510.079590.0485*
H1C330.7777120.3050350.0325870.0595*
H1C350.9082570.5254790.2708080.0379*
H2C350.9423080.3949120.2855340.0379*
H1C360.7990470.4154110.0294640.0422*
H1C370.7925980.3851450.3885550.0458*
H1C380.9920930.0318860.1902840.0503*
H1C390.9342580.776880.1496770.0494*
H1C410.9527010.1418140.2492190.0568*
H1C420.8015030.1378830.1474650.0468*
H2C420.8241810.0114110.140190.0468*
H1C430.8053150.0719280.2491690.0532*
H2C430.797640.2117370.2689580.0532*
H3C430.7842860.1999060.2234370.0532*
H1C440.9645160.2593050.1175960.0548*0.7544
H2C440.9618230.3845650.0903950.0548*0.7544
H3C440.9706060.2375120.0727210.0548*0.7544
H50.9826 (6)0.0767 (17)0.0353 (5)0.039*
H10.9318 (8)0.172 (2)0.0056 (4)0.0503*
H20.8099 (8)0.260 (2)0.1452 (4)0.0454*
H30.8089 (8)0.4317 (18)0.2144 (5)0.0464*
H40.9296 (8)0.0246 (19)0.1150 (5)0.0437*
H60.9458 (9)0.2057 (14)0.3587 (6)0.0519*
C44'0.9383 (3)0.3680 (9)0.0554 (2)0.046 (3)0.2456
H1C260.8910450.3901710.0524170.0339*0.7544
H2C260.8276560.3529970.0758480.0339*0.7544
H1C400.8760760.3235850.1244710.0356*0.7544
H1C44'0.9617960.2958710.0614660.0556*0.2456
H2C44'0.9428570.4473440.0704070.0556*0.2456
H3C44'0.9491170.3891260.028180.0556*0.2456
H1C26'0.8574580.4028840.0598740.0339*0.2456
H1C40'0.8217740.2881730.116930.0356*0.2456
H2C40'0.8852180.3098410.1220010.0356*0.2456
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0347 (8)0.0531 (9)0.0331 (7)0.0104 (7)0.0034 (6)0.0128 (6)
O20.0272 (7)0.0461 (8)0.0412 (7)0.0076 (6)0.0094 (6)0.0000 (6)
O30.0290 (7)0.0408 (8)0.0455 (8)0.0031 (6)0.0061 (6)0.0078 (6)
O40.0315 (7)0.0484 (8)0.0300 (7)0.0092 (6)0.0080 (5)0.0007 (6)
O50.0257 (7)0.0311 (7)0.0387 (7)0.0019 (6)0.0022 (5)0.0043 (5)
O60.0355 (8)0.0516 (9)0.0413 (8)0.0016 (7)0.0055 (6)0.0141 (6)
N20.0295 (8)0.0268 (8)0.0248 (7)0.0020 (6)0.0092 (6)0.0023 (6)
N30.0265 (8)0.0252 (7)0.0231 (7)0.0003 (6)0.0078 (6)0.0002 (5)
N40.0295 (8)0.0246 (7)0.0288 (7)0.0011 (6)0.0111 (6)0.0044 (6)
N10.0283 (8)0.0307 (8)0.0214 (7)0.0002 (7)0.0040 (6)0.0004 (6)
C450.0384 (11)0.0342 (10)0.0245 (8)0.0008 (9)0.0090 (7)0.0015 (7)
C460.0301 (10)0.0314 (9)0.0290 (9)0.0030 (8)0.0111 (7)0.0083 (7)
C470.0438 (12)0.0495 (12)0.0319 (10)0.0102 (10)0.0074 (9)0.0068 (9)
C480.0333 (10)0.0249 (9)0.0233 (8)0.0007 (8)0.0073 (7)0.0004 (6)
C10.0244 (9)0.0292 (9)0.0268 (8)0.0002 (8)0.0081 (7)0.0026 (7)
C20.0312 (10)0.0306 (9)0.0237 (8)0.0072 (8)0.0102 (7)0.0064 (7)
C30.0607 (14)0.0411 (11)0.0287 (9)0.0196 (11)0.0173 (9)0.0084 (8)
C40.0696 (15)0.0242 (10)0.0299 (10)0.0028 (10)0.0102 (9)0.0040 (7)
C50.0285 (10)0.0416 (11)0.0329 (9)0.0037 (9)0.0046 (8)0.0072 (8)
C60.0780 (17)0.0314 (11)0.0403 (11)0.0098 (12)0.0275 (11)0.0033 (8)
C70.0351 (10)0.0299 (9)0.0279 (9)0.0018 (8)0.0056 (7)0.0003 (7)
C80.0290 (9)0.0317 (9)0.0274 (8)0.0004 (8)0.0102 (7)0.0002 (7)
C90.0379 (11)0.0419 (11)0.0397 (10)0.0140 (9)0.0184 (9)0.0160 (8)
C100.0202 (9)0.0338 (10)0.0260 (8)0.0021 (8)0.0047 (7)0.0033 (7)
C110.0825 (18)0.0329 (11)0.0263 (10)0.0001 (11)0.0089 (10)0.0015 (8)
C120.0304 (10)0.0323 (10)0.0297 (9)0.0032 (8)0.0041 (7)0.0005 (7)
C130.0352 (10)0.0272 (9)0.0230 (8)0.0023 (8)0.0111 (7)0.0025 (7)
C140.0345 (10)0.0276 (9)0.0219 (8)0.0048 (8)0.0071 (7)0.0034 (7)
C150.0586 (14)0.0296 (10)0.0278 (9)0.0006 (10)0.0109 (9)0.0007 (7)
C160.0466 (12)0.0350 (11)0.0311 (9)0.0101 (10)0.0026 (9)0.0021 (8)
C170.0268 (9)0.0286 (9)0.0263 (8)0.0009 (8)0.0095 (7)0.0069 (7)
C180.0430 (11)0.0288 (9)0.0326 (9)0.0040 (9)0.0140 (8)0.0068 (7)
C190.0485 (12)0.0352 (10)0.0260 (9)0.0087 (9)0.0063 (8)0.0026 (8)
C200.0532 (13)0.0447 (12)0.0296 (10)0.0138 (10)0.0004 (9)0.0035 (8)
C210.0423 (12)0.0368 (10)0.0288 (9)0.0073 (9)0.0073 (8)0.0017 (8)
C220.0331 (10)0.0286 (9)0.0257 (8)0.0065 (8)0.0074 (7)0.0020 (7)
C230.0408 (12)0.0339 (10)0.0445 (11)0.0013 (9)0.0179 (9)0.0031 (8)
C240.0419 (11)0.0328 (10)0.0331 (9)0.0023 (9)0.0149 (8)0.0010 (8)
C250.0284 (10)0.0352 (10)0.0317 (9)0.0024 (8)0.0100 (8)0.0046 (7)
C260.0286 (17)0.0292 (10)0.0274 (9)0.001 (2)0.0069 (11)0.0027 (8)
C26'0.0286 (17)0.0292 (10)0.0274 (9)0.001 (2)0.0069 (11)0.0027 (8)
C270.0372 (11)0.0279 (9)0.0335 (9)0.0035 (8)0.0106 (8)0.0063 (7)
C280.0270 (9)0.0335 (10)0.0317 (9)0.0008 (8)0.0130 (7)0.0029 (7)
C290.0321 (10)0.0313 (9)0.0276 (9)0.0044 (8)0.0069 (7)0.0031 (7)
C300.0405 (11)0.0320 (10)0.0294 (9)0.0052 (9)0.0105 (8)0.0012 (7)
C310.0381 (11)0.0324 (10)0.0352 (10)0.0004 (9)0.0108 (8)0.0022 (8)
C320.0614 (14)0.0312 (10)0.0349 (10)0.0032 (10)0.0244 (9)0.0045 (8)
C330.0659 (16)0.0401 (12)0.0533 (12)0.0272 (12)0.0364 (11)0.0151 (10)
C340.0322 (10)0.0358 (10)0.0251 (9)0.0022 (8)0.0042 (7)0.0052 (7)
C350.0293 (10)0.0370 (10)0.0280 (9)0.0033 (8)0.0052 (7)0.0017 (7)
C360.0436 (12)0.0351 (10)0.0303 (9)0.0011 (9)0.0156 (8)0.0012 (8)
C370.0496 (12)0.0357 (10)0.0343 (10)0.0097 (10)0.0202 (9)0.0080 (8)
C380.0379 (11)0.0512 (12)0.0401 (11)0.0100 (10)0.0161 (9)0.0080 (9)
C390.0628 (15)0.0291 (10)0.0348 (10)0.0097 (10)0.0175 (9)0.0019 (8)
C400.0323 (16)0.0304 (11)0.0286 (12)0.0050 (15)0.0117 (14)0.0006 (9)
C40'0.0323 (16)0.0304 (11)0.0286 (12)0.0050 (15)0.0117 (14)0.0006 (9)
C410.0679 (16)0.0454 (12)0.0342 (11)0.0190 (12)0.0229 (10)0.0054 (9)
C420.0252 (10)0.0641 (14)0.0255 (9)0.0040 (10)0.0006 (7)0.0089 (9)
C430.0505 (13)0.0336 (11)0.0552 (12)0.0045 (10)0.0251 (10)0.0014 (9)
C440.0408 (15)0.0439 (16)0.0599 (18)0.0174 (13)0.0277 (13)0.0201 (13)
C44'0.046 (5)0.058 (6)0.032 (4)0.020 (5)0.003 (4)0.007 (4)
Geometric parameters (Å, º) top
O1—C451.375 (2)C18—H1C180.96
O1—H10.883 (14)C19—C371.372 (3)
O2—C461.370 (2)C19—H1C190.96
O2—H20.883 (15)C20—C341.393 (2)
O3—C71.365 (2)C20—H1C200.96
O3—H30.883 (16)C21—C241.378 (3)
O4—C291.383 (2)C21—H1C210.96
O4—H40.883 (19)C22—C311.392 (3)
O5—C141.362 (2)C22—C351.504 (3)
O5—H50.883 (14)C23—C311.379 (3)
O6—C121.369 (2)C23—C371.381 (3)
O6—H60.883 (16)C23—H1C230.96
N2—C11.471 (2)C24—C251.385 (2)
N2—C181.491 (2)C24—H1C240.96
N2—C351.480 (2)C25—H1C250.96
N3—C81.466 (2)C26—C26'0.277 (11)
N3—C101.468 (2)C26—C401.520 (6)
N3—C261.475 (7)C26—C40'1.479 (10)
N3—C26'1.50 (2)C26—H1C260.96
N4—C11.469 (2)C26—H2C260.96
N4—C271.473 (2)C26—H1C26'0.8552
N4—C281.469 (2)C26'—C401.436 (16)
N1—C101.473 (2)C26'—C40'1.520 (17)
N1—C401.525 (3)C26'—C44'1.502 (15)
N1—C40'1.447 (10)C26'—H1C260.8205
N1—C421.475 (2)C26'—H1C26'0.96
C45—C471.384 (2)C27—H1C270.96
C45—C131.395 (3)C27—H2C270.96
C46—C51.392 (2)C28—H1C280.96
C46—C171.400 (2)C28—H2C280.96
C47—C31.380 (3)C29—C341.386 (3)
C47—H1C470.96C29—C381.380 (3)
C48—C11.507 (2)C30—C391.390 (3)
C48—C71.396 (3)C30—H1C300.96
C48—C301.391 (3)C31—H1C310.96
C1—H1C10.96C32—C361.385 (2)
C2—C91.395 (3)C32—H1C320.96
C2—C101.509 (2)C33—H1C330.96
C2—C141.402 (2)C34—C421.500 (3)
C3—C321.376 (3)C35—H1C350.96
C3—H1C30.96C35—H2C350.96
C4—C161.379 (3)C36—H1C360.96
C4—C391.379 (3)C37—H1C370.96
C4—H1C40.96C38—C411.388 (3)
C5—C211.381 (3)C38—H1C380.96
C5—H1C50.96C39—H1C390.96
C6—C151.373 (3)C40—C40'0.673 (8)
C6—C331.376 (3)C40—C441.502 (4)
C6—H1C60.96C40—H1C400.96
C7—C161.388 (2)C40—H2C40'0.8114
C8—C131.505 (2)C40'—H1C400.9475
C8—H1C80.96C40'—H1C40'0.96
C8—H2C80.96C40'—H2C40'0.96
C9—C331.396 (3)C41—H1C410.96
C9—H1C90.96C42—H1C420.96
C10—H1C100.96C42—H2C420.96
C11—C201.379 (3)C43—H1C430.96
C11—C411.371 (4)C43—H2C430.96
C11—H1C110.96C43—H3C430.96
C12—C191.392 (3)C44—H1C440.96
C12—C221.388 (2)C44—H2C440.96
C13—C361.385 (3)C44—H3C440.96
C14—C151.396 (2)H3C44—H1C44'0.7529
C15—H1C150.96C44'—H1C44'0.96
C16—H1C160.96C44'—H2C44'0.96
C17—C251.386 (3)C44'—H3C44'0.96
C17—C281.506 (2)H1C26—H1C26'0.8097
C18—C271.522 (3)H1C40—H2C40'0.258
C18—C431.531 (3)
C45—O1—H1106.7 (13)N3—C26'—H1C26116.81
C46—O2—H2106.0 (13)N3—C26'—H1C26'113.51
C7—O3—H3102.9 (13)C26—C26'—C40102 (3)
C29—O4—H4104.5 (11)C26—C26'—C40'76 (3)
C14—O5—H5110.5 (11)C26—C26'—C44'163 (7)
C12—O6—H6106.6 (15)C26—C26'—H1C26112.21
C1—N2—C18107.53 (13)C26—C26'—H1C26'59.85
C1—N2—C35111.58 (13)C40—C26'—C40'26.1 (4)
C18—N2—C35115.78 (12)C40—C26'—C44'86.0 (7)
C8—N3—C10113.25 (13)C40—C26'—H1C26128.59
C8—N3—C26112.5 (2)C40—C26'—H1C26'130.97
C8—N3—C26'118.3 (7)C40'—C26'—C44'111.2 (9)
C10—N3—C26103.0 (2)C40'—C26'—H1C26142.25
C10—N3—C26'106.9 (7)C40'—C26'—H1C26'115.17
C26—N3—C26'10.6 (4)C44'—C26'—H1C2652.38
C1—N4—C27102.83 (12)C44'—C26'—H1C26'103.56
C1—N4—C28112.68 (14)H1C26—C26'—H1C26'53.4
C27—N4—C28113.58 (14)N4—C27—C18103.41 (14)
C10—N1—C40108.22 (15)N4—C27—H1C27109.47
C10—N1—C40'98.8 (4)N4—C27—H2C27109.47
C10—N1—C42111.70 (13)C18—C27—H1C27109.47
C40—N1—C40'26.0 (3)C18—C27—H2C27109.47
C40—N1—C42116.13 (15)H1C27—C27—H2C27114.92
C40'—N1—C4299.6 (3)N4—C28—C17113.00 (14)
O1—C45—C47118.88 (17)N4—C28—H1C28109.47
O1—C45—C13120.66 (15)N4—C28—H2C28109.47
C47—C45—C13120.46 (18)C17—C28—H1C28109.47
O2—C46—C5118.46 (15)C17—C28—H2C28109.47
O2—C46—C17121.52 (14)H1C28—C28—H2C28105.7
C5—C46—C17120.01 (17)O4—C29—C34119.56 (16)
C45—C47—C3119.88 (19)O4—C29—C38119.14 (16)
C45—C47—H1C47120.06C34—C29—C38121.30 (16)
C3—C47—H1C47120.06C48—C30—C39120.92 (19)
C1—C48—C7120.21 (16)C48—C30—H1C30119.54
C1—C48—C30121.01 (16)C39—C30—H1C30119.54
C7—C48—C30118.79 (16)C22—C31—C23121.81 (16)
N2—C1—N4101.73 (13)C22—C31—H1C31119.1
N2—C1—C48111.92 (14)C23—C31—H1C31119.1
N2—C1—H1C1114.25C3—C32—C36119.13 (19)
N4—C1—C48113.09 (12)C3—C32—H1C32120.43
N4—C1—H1C1113.11C36—C32—H1C32120.44
C48—C1—H1C1103.16C6—C33—C9119.7 (2)
C9—C2—C10118.91 (15)C6—C33—H1C33120.13
C9—C2—C14117.77 (16)C9—C33—H1C33120.13
C10—C2—C14123.21 (16)C20—C34—C29117.91 (18)
C47—C3—C32120.67 (18)C20—C34—C42122.73 (17)
C47—C3—H1C3119.66C29—C34—C42119.35 (15)
C32—C3—H1C3119.66N2—C35—C22111.06 (14)
C16—C4—C39120.63 (18)N2—C35—H1C35109.47
C16—C4—H1C4119.69N2—C35—H2C35109.47
C39—C4—H1C4119.69C22—C35—H1C35109.47
C46—C5—C21120.52 (17)C22—C35—H2C35109.47
C46—C5—H1C5119.74H1C35—C35—H2C35107.83
C21—C5—H1C5119.74C13—C36—C32121.52 (19)
C15—C6—C33120.14 (19)C13—C36—H1C36119.24
C15—C6—H1C6119.93C32—C36—H1C36119.24
C33—C6—H1C6119.93C19—C37—C23120.4 (2)
O3—C7—C48121.33 (15)C19—C37—H1C37119.8
O3—C7—C16118.56 (17)C23—C37—H1C37119.8
C48—C7—C16120.09 (18)C29—C38—C41119.5 (2)
N3—C8—C13110.95 (14)C29—C38—H1C38120.26
N3—C8—H1C8109.47C41—C38—H1C38120.26
N3—C8—H2C8109.47C4—C39—C30119.3 (2)
C13—C8—H1C8109.47C4—C39—H1C39120.33
C13—C8—H2C8109.47C30—C39—H1C39120.33
H1C8—C8—H2C8107.95N1—C40—C26101.9 (3)
C2—C9—C33121.36 (18)N1—C40—C26'106.0 (10)
C2—C9—H1C9119.32N1—C40—C40'70.4 (9)
C33—C9—H1C9119.32N1—C40—C44113.6 (2)
N3—C10—N1102.71 (13)N1—C40—H1C40113.15
N3—C10—C2112.10 (12)N1—C40—H2C40'112.69
N3—C10—H1C10114.45C26—C40—C26'10.2 (4)
N1—C10—C2115.33 (15)C26—C40—C40'73.7 (8)
N1—C10—H1C10111.16C26—C40—C44113.1 (2)
C2—C10—H1C10101.59C26—C40—H1C40113.65
C20—C11—C41119.70 (18)C26—C40—H2C40'125.74
C20—C11—H1C11120.15C26'—C40—C40'83.9 (9)
C41—C11—H1C11120.15C26'—C40—C44103.0 (5)
O6—C12—C19122.05 (15)C26'—C40—H1C40118.92
O6—C12—C22117.56 (17)C26'—C40—H2C40'129.57
C19—C12—C22120.39 (17)C40'—C40—C44170.1 (9)
C45—C13—C8119.78 (16)C40'—C40—H1C4068.34
C45—C13—C36118.31 (15)C40'—C40—H2C40'79.99
C8—C13—C36121.89 (16)C44—C40—H1C40101.93
O5—C14—C2118.51 (15)C44—C40—H2C40'90.15
O5—C14—C15121.11 (16)H1C40—C40—H2C40'13.73
C2—C14—C15120.38 (18)N1—C40'—C26107.8 (6)
C6—C15—C14120.60 (19)N1—C40'—C26'105.8 (11)
C6—C15—H1C15119.7N1—C40'—C4083.5 (9)
C14—C15—H1C15119.7N1—C40'—H1C40120.94
C4—C16—C7120.16 (19)N1—C40'—H1C40'109.47
C4—C16—H1C16119.92N1—C40'—H2C40'109.47
C7—C16—H1C16119.92C26—C40'—C26'10.5 (5)
C46—C17—C25118.08 (15)C26—C40'—C4080.4 (8)
C46—C17—C28121.01 (16)C26—C40'—H1C40118
C25—C17—C28120.69 (15)C26—C40'—H1C40'99.32
N2—C18—C27103.64 (15)C26—C40'—H2C40'117.22
N2—C18—C43109.93 (15)C26'—C40'—C4069.9 (8)
N2—C18—H1C18113.77C26'—C40'—H1C40112.64
C27—C18—C43111.83 (15)C26'—C40'—H1C40'109.47
C27—C18—H1C18111.94C26'—C40'—H2C40'109.47
C43—C18—H1C18105.87C40—C40'—H1C4070.33
C12—C19—C37120.23 (16)C40—C40'—H1C40'166.15
C12—C19—H1C19119.89C40—C40'—H2C40'56.34
C37—C19—H1C19119.89H1C40—C40'—H1C40'98.09
C11—C20—C34121.3 (2)H1C40—C40'—H2C40'15.53
C11—C20—H1C20119.35H1C40'—C40'—H2C40'112.95
C34—C20—H1C20119.35C11—C41—C38120.3 (2)
C5—C21—C24120.11 (16)C11—C41—H1C41119.85
C5—C21—H1C21119.95C38—C41—H1C41119.84
C24—C21—H1C21119.95N1—C42—C34109.58 (15)
C12—C22—C31118.04 (17)N1—C42—H1C42109.47
C12—C22—C35121.71 (16)N1—C42—H2C42109.47
C31—C22—C35120.23 (15)C34—C42—H1C42109.47
C31—C23—C37119.13 (19)C34—C42—H2C42109.47
C31—C23—H1C23120.44H1C42—C42—H2C42109.36
C37—C23—H1C23120.44C18—C43—H1C43109.47
C21—C24—C25119.29 (18)C18—C43—H2C43109.47
C21—C24—H1C24120.36C18—C43—H3C43109.47
C25—C24—H1C24120.36H1C43—C43—H2C43109.47
C17—C25—C24121.99 (17)H1C43—C43—H3C43109.47
C17—C25—H1C25119H2C43—C43—H3C43109.47
C24—C25—H1C25119C40—C44—H1C44109.47
N3—C26—C26'90 (5)C40—C44—H2C44109.47
N3—C26—C40103.0 (5)C40—C44—H3C44109.47
N3—C26—C40'104.1 (6)H1C44—C44—H2C44109.47
N3—C26—H1C26109.47H1C44—C44—H3C44109.47
N3—C26—H2C26109.47H2C44—C44—H3C44109.47
N3—C26—H1C26'124.3C44—H3C44—H1C44'83.26
C26'—C26—C4067 (3)C26'—C44'—H1C44'109.47
C26'—C26—C40'93 (3)C26'—C44'—H2C44'109.47
C26'—C26—H1C2652.3C26'—C44'—H3C44'109.47
C26'—C26—H2C26160.01H1C44'—C44'—H2C44'109.47
C26'—C26—H1C26'103.89H1C44'—C44'—H3C44'109.47
C40—C26—C40'25.9 (3)H2C44'—C44'—H3C44'109.47
C40—C26—H1C26109.47C26—H1C26—C26'15.48
C40—C26—H2C26109.47C26—H1C26—H1C26'57.04
C40—C26—H1C26'132.3C26'—H1C26—H1C26'72.15
C40'—C26—H1C26130.53C40—H1C40—C40'41.33
C40'—C26—H2C2685.15C40—H1C40—H2C40'48.26
C40'—C26—H1C26'127.88C40'—H1C40—H2C40'84.98
H1C26—C26—H2C26115.22H3C44—H1C44'—C44'157.81
H1C26—C26—H1C26'52.59C26—H1C26'—C26'16.26
H2C26—C26—H1C26'62.8C26—H1C26'—H1C2670.37
N3—C26'—C2679 (5)C26'—H1C26'—H1C2654.45
N3—C26'—C40105.9 (17)C40—H2C40'—C40'43.68
N3—C26'—C40'100.8 (15)C40—H2C40'—H1C40118.01
N3—C26'—C44'112.9 (11)C40'—H2C40'—H1C4079.49
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N30.883 (14)1.838 (16)2.6344 (17)148.9 (19)
O2—H2···N40.883 (15)1.937 (16)2.7360 (17)149.7 (18)
O3—H3···N20.883 (16)1.839 (17)2.6680 (17)155.5 (19)
O4—H4···N10.883 (19)1.849 (19)2.646 (2)149.0 (14)
O1—H1···O50.883 (14)2.472 (19)3.0381 (18)122.4 (16)
O4—H4···O50.883 (14)2.523 (17)3.1167 (15)125.3 (15)
O5—H5···O1i0.883 (14)1.930 (15)2.8108 (18)174.9 (16)
O6—H6···O4ii0.883 (16)1.907 (14)2.746 (2)157.9 (18)
C26—H1C26···C440.961.191.769 (9)109.96
C26—H1C26···C440.821.191.502 (15)94.63
C44—H1C26···N31.192.012.504 (9)99.67
C44—H1C26···C261.190.961.769 (9)109.96
C44—H1C26···C261.190.821.502 (15)94.63
C40—H1C40···C440.951.942.169 (9)90.47
C44—H1C44···C441.150.961.680 (9)105.31
C44—H1C44···C440.961.151.680 (9)105.31
C44—H3C44···O10.962.463.012 (8)116.14
C40—H2C40···C440.961.712.169 (9)105.19
C25—H1C25···O4i0.962.403.346 (2)169.82
C35—H2C35···O60.962.372.813 (2)107.61
O1—H1···C80.883 (14)2.352 (19)2.847 (2)115.5 (15)
O2—H2···C280.883 (15)2.385 (19)2.896 (2)117.1 (15)
O3—H3···C10.883 (16)2.34 (2)2.869 (2)118.5 (16)
O4—H4···C420.883 (19)2.355 (18)2.806 (2)111.8 (12)
Symmetry codes: (i) x+2, y, z; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N30.883 (14)1.838 (16)2.6344 (17)148.9 (19)
O2—H2···N40.883 (15)1.937 (16)2.7360 (17)149.7 (18)
O3—H3···N20.883 (16)1.839 (17)2.6680 (17)155.5 (19)
O4—H4···N10.883 (19)1.849 (19)2.646 (2)149.0 (14)
O1—H1···O50.883 (14)2.472 (19)3.0381 (18)122.4 (16)
O4—H4···O50.883 (14)2.523 (17)3.1167 (15)125.3 (15)
O5—H5···O1i0.883 (14)1.930 (15)2.8108 (18)174.9 (16)
O6—H6···O4ii0.883 (16)1.907 (14)2.746 (2)157.9 (18)
Symmetry codes: (i) x+2, y, z; (ii) x, y, z+1/2.
Acknowledgements top

The authors acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB), and the Praemium Academiae project of the Academy of Sciences of the Czech Republic.

references
References top

Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.

Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.

Petříček, V., Dusěk, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Prague, Czech Republic.

Rivera, A., Cárdenas, L. & Ríos-Motta, J. (2013a). Curr. Org. Chem. In the press.

Rivera, A., Cárdenas, L., Ríos-Motta, J., Eigner, V. & Dusek, M. (2013b). Acta Cryst. E69 o1198.

Rivera, A., Cárdenas, L., Ríos-Motta, J., Eigner, V. & Dusek, M. (2013c). Acta Cryst. E69 o1221-o1222.

Rivera, A., Pacheco, D., Ríos-Motta, J., Fejfarová, K. & Dusek, M. (2012). Tetrahedron Lett. 53, 6132–6135.