organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(1,3-Benzo­thia­zol-2-yl)imino­meth­yl]-6-meth­­oxy­phenol: a new monoclinic polymorph

aDepartment of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada, bFaculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samaharan, Sawarak, Malaysia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 13 July 2013; accepted 13 July 2013; online 20 July 2013)

The title compound, C15H12N2O2S, is a P21/c polymorph of a previously reported P21/n polymorph [Büyükgüngör et al. (2004[Büyükgüngör, O., Çalışkan, N., Davran, C. & Batı, H. (2004). Acta Cryst. E60, o1414-o1416.]). Acta Cryst. E60, o1414–o1416]. The dihedral angle between the benzo­thia­zole (r.m.s. deviation = 0.010 Å) and the benzene ring of 7.86 (6)° compares with 10.76 (10)° in the literature structure. The meth­oxy substituent is almost coplanar with the benzene ring to which it is attached [C—O—C—C torsion angle = 178.31 (14)°] and the conformation about the imine bond [1.287 (2) Å] is E. There is an intra­molecular O—H⋯N hydrogen bond and the hy­droxy O and thio­ether S atoms are syn. In the crystal, columns are formed along the b axis as centrosymmetric dimeric aggregates, mediated by C—H⋯O inter­actions and linked by ππ inter­actions between the thia­zole and benzene rings [centroid-to-centroid distance = 3.8256 (10) Å].

Related literature

For background to the biological activity of organotin compounds with N-, O- and S-atom donors, see: Affan et al. (2009[Affan, M. A., Foo, S. W., Jusoh, I., Hanapi, S. & Tiekink, E. R. T. (2009). Inorg. Chim. Acta, 362, 5031-5037.]). For the structure of the P21/n polymorph, see: Büyükgüngör et al. (2004[Büyükgüngör, O., Çalışkan, N., Davran, C. & Batı, H. (2004). Acta Cryst. E60, o1414-o1416.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12N2O2S

  • Mr = 284.33

  • Monoclinic, P 21 /c

  • a = 11.6697 (11) Å

  • b = 6.0250 (6) Å

  • c = 18.6441 (18) Å

  • β = 94.346 (1)°

  • V = 1307.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 100 K

  • 0.20 × 0.16 × 0.15 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.669, Tmax = 0.746

  • 15750 measured reflections

  • 2983 independent reflections

  • 2404 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.095

  • S = 1.05

  • 2983 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N2 0.84 1.88 2.6167 (17) 146
C6—H6⋯O2i 0.95 2.56 3.424 (2) 151
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, (I), was prepared in connection with on-going studies of organotin compounds with N, O and S donors for evaluation for biological activity (Affan et al., 2009).

In (I), Fig. 1, the dihedral angle between the benzothiazole (r.m.s. deviation = 0.010 Å) and the benzene ring is 7.86 (6)°. This, coupled with the observation that the methoxy substituent is coplanar with the benzene ring to which it is attached, the C15—O2—C11—C10 torsion angle is 178.31 (14)°, indicates that the molecule is approximately planar. Indeed, the r.m.s. deviation for all 20 non-hydrogen atoms is 0.083 Å, with maximum deviations of 0.123 (1) Å for the S1 atom and -0.148 (2) Å for C3. As seen from the overlay diagram in Fig. 2, this conformation is similar to that found in the P21/n polymorph, for which the dihedral angle between the benzothiazole and benzene ring is 10.76 (10)° (Büyükgüngör et al., 2004). The coplanarity about the imine C8N2 bond [1.287 (2) Å], with an E conformation, enables the formation of an intramolecular O—H···N hydrogen bond, Table 1. The hydroxyl-O and thioether-S atoms are syn.

In the crystal packing, centrosymmetrically related molecules associate into dimers via C—H···O interactions and stack in columns along the b axis via ππ interactions between the thiazole and benzene rings [inter-centroid distance = 3.8256 (10) Å, angle of inclination = 7.47 (8)° for symmetry operation x, -1 + y, z], Fig. 3 and Table 1.

Related literature top

For background to the biological activity of organotin compounds with N-, O- and S-atom donors, see: Affan et al. (2009). For the structure of the P21/n polymorph, see: Büyükgüngör et al. (2004).

Experimental top

2-Aminobenzothiazole (0.765 g, 5 mmol) in ethanol (10 ml) was added to an ethanolic solution of 4-(aminomethyl)-2-methoxyphenol (0.751 g, 5 mmol) and the reaction mixture was refluxed for 2 h. After cooling, a yellow solid was filtered off and washed with cold ethanol. The title compound (I) was obtained after recrystallization from its methanol solution [m.p. 466–468 K, yield 1.18 g (78%)].

Refinement top

Carbon-bound H atoms were placed in calculated positions [C—H = 0.95 to 0.98 Å, Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms] and were included in the refinement in the riding-model approximation. The hydroxyl H atom was treated similarly [O—H = 0.84 Å; Uiso(H) = 1.5Ueq(O)].

Computing details top

Data collection: SMART (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. Superimposition of the molecule in (I) (red image) on that found in the polymorph (blue image). The five-membered rings have been superimposed.
[Figure 3] Fig. 3. A view in projection down the b axis of the unit-cell contents for (I). The C—H···O and ππ interactions are shown as orange and purple dashed lines, respectively.
2-[(1,3-Benzothiazol-2-yl)iminomethyl]-6-methoxyphenol top
Crystal data top
C15H12N2O2SF(000) = 592
Mr = 284.33Dx = 1.445 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2808 reflections
a = 11.6697 (11) Åθ = 2.7–26.6°
b = 6.0250 (6) ŵ = 0.25 mm1
c = 18.6441 (18) ÅT = 100 K
β = 94.346 (1)°Block, yellow
V = 1307.1 (2) Å30.20 × 0.16 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
2983 independent reflections
Radiation source: fine-focus sealed tube2404 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.669, Tmax = 0.746k = 77
15750 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0424P)2 + 0.3573P]
where P = (Fo2 + 2Fc2)/3
2983 reflections(Δ/σ)max = 0.001
183 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C15H12N2O2SV = 1307.1 (2) Å3
Mr = 284.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.6697 (11) ŵ = 0.25 mm1
b = 6.0250 (6) ÅT = 100 K
c = 18.6441 (18) Å0.20 × 0.16 × 0.15 mm
β = 94.346 (1)°
Data collection top
Bruker SMART APEX
diffractometer
2983 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2404 reflections with I > 2σ(I)
Tmin = 0.669, Tmax = 0.746Rint = 0.046
15750 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.05Δρmax = 0.24 e Å3
2983 reflectionsΔρmin = 0.26 e Å3
183 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.40036 (3)0.28845 (7)0.51769 (2)0.02579 (13)
O10.38182 (9)0.30422 (19)0.37054 (6)0.0291 (3)
H1O0.37540.19180.39660.044*
O20.37477 (10)0.6591 (2)0.29096 (6)0.0319 (3)
N10.17783 (11)0.3057 (2)0.49353 (7)0.0242 (3)
N20.27272 (11)0.0044 (2)0.43688 (7)0.0233 (3)
C10.32893 (13)0.5026 (3)0.55699 (8)0.0231 (3)
C20.21017 (13)0.4851 (3)0.53783 (8)0.0232 (3)
C30.13496 (15)0.6425 (3)0.56295 (9)0.0301 (4)
H30.05490.63550.54950.036*
C40.17954 (16)0.8081 (3)0.60766 (10)0.0335 (4)
H40.12920.91500.62570.040*
C50.29730 (16)0.8223 (3)0.62712 (9)0.0318 (4)
H50.32530.93830.65820.038*
C60.37344 (15)0.6718 (3)0.60217 (9)0.0278 (4)
H60.45350.68260.61520.033*
C70.26852 (13)0.1942 (3)0.47956 (8)0.0228 (3)
C80.17759 (14)0.0866 (3)0.41305 (8)0.0241 (3)
H80.10710.02330.42530.029*
C90.17491 (13)0.2822 (3)0.36818 (8)0.0225 (3)
C100.27665 (13)0.3830 (3)0.34943 (8)0.0221 (3)
C110.27064 (14)0.5760 (3)0.30645 (8)0.0235 (3)
C120.16509 (14)0.6647 (3)0.28398 (8)0.0265 (4)
H120.16120.79480.25510.032*
C130.06360 (15)0.5648 (3)0.30329 (9)0.0298 (4)
H130.00880.62720.28760.036*
C140.06870 (14)0.3774 (3)0.34480 (9)0.0274 (4)
H140.00040.31080.35800.033*
C150.37379 (17)0.8514 (3)0.24585 (10)0.0353 (4)
H15A0.33020.81930.20000.053*
H15B0.45290.89140.23690.053*
H15C0.33770.97510.26970.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0245 (2)0.0231 (2)0.0297 (2)0.00138 (16)0.00111 (16)0.00382 (17)
O10.0241 (6)0.0283 (7)0.0344 (7)0.0017 (5)0.0005 (5)0.0084 (5)
O20.0308 (6)0.0303 (7)0.0348 (7)0.0024 (5)0.0041 (5)0.0105 (5)
N10.0272 (7)0.0211 (7)0.0243 (7)0.0006 (5)0.0013 (5)0.0008 (5)
N20.0280 (7)0.0181 (7)0.0234 (7)0.0004 (5)0.0006 (5)0.0010 (5)
C10.0289 (8)0.0202 (8)0.0208 (7)0.0005 (6)0.0047 (6)0.0015 (6)
C20.0293 (8)0.0198 (8)0.0206 (7)0.0020 (6)0.0036 (6)0.0013 (6)
C30.0318 (9)0.0286 (9)0.0307 (9)0.0012 (7)0.0065 (7)0.0018 (7)
C40.0412 (10)0.0267 (9)0.0342 (9)0.0031 (8)0.0122 (8)0.0049 (7)
C50.0466 (11)0.0239 (9)0.0257 (9)0.0065 (8)0.0075 (8)0.0051 (7)
C60.0327 (9)0.0264 (9)0.0244 (8)0.0060 (7)0.0027 (7)0.0016 (7)
C70.0263 (8)0.0210 (8)0.0209 (8)0.0015 (6)0.0008 (6)0.0021 (6)
C80.0259 (8)0.0223 (8)0.0242 (8)0.0028 (6)0.0018 (6)0.0014 (6)
C90.0272 (8)0.0201 (8)0.0199 (7)0.0001 (6)0.0000 (6)0.0018 (6)
C100.0251 (8)0.0212 (8)0.0197 (7)0.0016 (6)0.0006 (6)0.0028 (6)
C110.0293 (8)0.0209 (8)0.0203 (7)0.0023 (6)0.0019 (6)0.0015 (6)
C120.0345 (9)0.0226 (8)0.0218 (8)0.0028 (7)0.0014 (7)0.0024 (6)
C130.0288 (9)0.0290 (9)0.0310 (9)0.0046 (7)0.0028 (7)0.0028 (7)
C140.0254 (8)0.0260 (9)0.0305 (9)0.0013 (7)0.0003 (7)0.0009 (7)
C150.0453 (11)0.0259 (9)0.0356 (10)0.0051 (8)0.0092 (8)0.0063 (8)
Geometric parameters (Å, º) top
S1—C11.7289 (16)C5—C61.375 (2)
S1—C71.7404 (16)C5—H50.9500
O1—C101.3466 (18)C6—H60.9500
O1—H1O0.8400C8—C91.444 (2)
O2—C111.3653 (19)C8—H80.9500
O2—C151.431 (2)C9—C101.401 (2)
N1—C71.296 (2)C9—C141.405 (2)
N1—C21.395 (2)C10—C111.411 (2)
N2—C81.287 (2)C11—C121.378 (2)
N2—C71.396 (2)C12—C131.400 (2)
C1—C61.397 (2)C12—H120.9500
C1—C21.409 (2)C13—C141.368 (2)
C2—C31.397 (2)C13—H130.9500
C3—C41.377 (2)C14—H140.9500
C3—H30.9500C15—H15A0.9800
C4—C51.397 (3)C15—H15B0.9800
C4—H40.9500C15—H15C0.9800
C1—S1—C788.67 (8)N2—C8—H8119.1
C10—O1—H1O109.5C9—C8—H8119.1
C11—O2—C15116.98 (13)C10—C9—C14119.33 (14)
C7—N1—C2109.40 (13)C10—C9—C8121.11 (14)
C8—N2—C7118.64 (14)C14—C9—C8119.53 (15)
C6—C1—C2121.41 (15)O1—C10—C9123.02 (14)
C6—C1—S1129.12 (13)O1—C10—C11117.49 (14)
C2—C1—S1109.47 (12)C9—C10—C11119.50 (14)
C3—C2—N1125.17 (15)O2—C11—C12125.64 (15)
C3—C2—C1119.68 (15)O2—C11—C10114.56 (14)
N1—C2—C1115.15 (14)C12—C11—C10119.80 (15)
C4—C3—C2118.49 (16)C11—C12—C13120.61 (15)
C4—C3—H3120.8C11—C12—H12119.7
C2—C3—H3120.8C13—C12—H12119.7
C3—C4—C5121.37 (16)C14—C13—C12119.95 (15)
C3—C4—H4119.3C14—C13—H13120.0
C5—C4—H4119.3C12—C13—H13120.0
C6—C5—C4121.34 (16)C13—C14—C9120.81 (16)
C6—C5—H5119.3C13—C14—H14119.6
C4—C5—H5119.3C9—C14—H14119.6
C5—C6—C1117.70 (16)O2—C15—H15A109.5
C5—C6—H6121.1O2—C15—H15B109.5
C1—C6—H6121.1H15A—C15—H15B109.5
N1—C7—N2127.11 (14)O2—C15—H15C109.5
N1—C7—S1117.30 (12)H15A—C15—H15C109.5
N2—C7—S1115.58 (11)H15B—C15—H15C109.5
N2—C8—C9121.88 (15)
C7—S1—C1—C6179.01 (16)C1—S1—C7—N2179.79 (12)
C7—S1—C1—C20.03 (12)C7—N2—C8—C9179.54 (13)
C7—N1—C2—C3179.18 (15)N2—C8—C9—C100.8 (2)
C7—N1—C2—C10.46 (19)N2—C8—C9—C14178.75 (15)
C6—C1—C2—C31.5 (2)C14—C9—C10—O1179.00 (14)
S1—C1—C2—C3179.37 (12)C8—C9—C10—O11.1 (2)
C6—C1—C2—N1178.85 (14)C14—C9—C10—C111.1 (2)
S1—C1—C2—N10.28 (17)C8—C9—C10—C11178.97 (14)
N1—C2—C3—C4178.67 (15)C15—O2—C11—C121.8 (2)
C1—C2—C3—C41.7 (2)C15—O2—C11—C10178.31 (14)
C2—C3—C4—C50.9 (3)O1—C10—C11—O20.5 (2)
C3—C4—C5—C60.2 (3)C9—C10—C11—O2179.46 (13)
C4—C5—C6—C10.5 (2)O1—C10—C11—C12179.39 (14)
C2—C1—C6—C50.4 (2)C9—C10—C11—C120.7 (2)
S1—C1—C6—C5179.32 (13)O2—C11—C12—C13179.97 (15)
C2—N1—C7—N2179.60 (14)C10—C11—C12—C130.1 (2)
C2—N1—C7—S10.44 (17)C11—C12—C13—C140.0 (3)
C8—N2—C7—N16.8 (2)C12—C13—C14—C90.4 (3)
C8—N2—C7—S1173.12 (12)C10—C9—C14—C130.9 (2)
C1—S1—C7—N10.25 (13)C8—C9—C14—C13178.87 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N20.841.882.6167 (17)146
C6—H6···O2i0.952.563.424 (2)151
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N20.841.882.6167 (17)146
C6—H6···O2i0.952.563.424 (2)151
Symmetry code: (i) x+1, y, z+1.
 

Footnotes

Additional correspondence author, e-mail: maaffan@gmail.com.

Acknowledgements

The authors thank the Natural Sciences and Engineering Council of Canada for support. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (grant No. UM.C/HIR-MOHE/SC/03).

References

First citationAffan, M. A., Foo, S. W., Jusoh, I., Hanapi, S. & Tiekink, E. R. T. (2009). Inorg. Chim. Acta, 362, 5031–5037.  Web of Science CSD CrossRef Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBüyükgüngör, O., Çalışkan, N., Davran, C. & Batı, H. (2004). Acta Cryst. E60, o1414–o1416.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds