

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 2-[(1,3-Benzothiazol-2-yl)iminomethyl]-6-methoxyphenol: a new monoclinic polymorph

### Md. Abu Affan,<sup>a</sup><sup>‡</sup> Philip G. Jessop,<sup>a</sup> Md. Abdus Salam,<sup>b</sup> Siti Nadiah Binti Abdul Halim<sup>c</sup> and Edward R. T. Tiekink<sup>c</sup>\*

<sup>a</sup>Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada, <sup>b</sup>Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samaharan, Sawarak, Malaysia, and CDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: Edward.Tiekink@gmail.com

Received 13 July 2013; accepted 13 July 2013

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.036; wR factor = 0.095; data-to-parameter ratio = 16.3.

The title compound,  $C_{15}H_{12}N_2O_2S$ , is a  $P2_1/c$  polymorph of a previously reported  $P2_1/n$  polymorph [Büyükgüngör et al. (2004). Acta Cryst. E60, o1414-o1416]. The dihedral angle between the benzothiazole (r.m.s. deviation = 0.010 Å) and the benzene ring of 7.86 (6)° compares with 10.76 (10)° in the literature structure. The methoxy substituent is almost coplanar with the benzene ring to which it is attached [C-O-C-C torsion angle = 178.31 (14)°] and the conformation about the imine bond [1.287(2) Å] is E. There is an intramolecular O-H···N hydrogen bond and the hydroxy O and thioether S atoms are syn. In the crystal, columns are formed along the b axis as centrosymmetric dimeric aggregates, mediated by  $C-H \cdots O$  interactions and linked by  $\pi - \pi$  interactions between the thiazole and benzene rings [centroid-to-centroid distance = 3.8256(10) Å].

### **Related literature**

For background to the biological activity of organotin compounds with N-, O- and S-atom donors, see: Affan et al. (2009). For the structure of the  $P2_1/n$  polymorph, see: Büyükgüngör et al. (2004).



‡ Additional correspondence author, e-mail: maaffan@gmail.com.

15750 measured reflections

 $R_{\rm int} = 0.046$ 

2983 independent reflections

2404 reflections with  $I > 2\sigma(I)$ 

### **Experimental**

### Crystal data

| -                              |                                           |
|--------------------------------|-------------------------------------------|
| $C_{15}H_{12}N_2O_2S$          | V = 1307.1 (2) Å <sup>3</sup>             |
| $M_r = 284.33$                 | Z = 4                                     |
| Monoclinic, $P2_1/c$           | Mo $K\alpha$ radiation                    |
| a = 11.6697 (11)  Å            | $\mu = 0.25 \text{ mm}^{-1}$              |
| b = 6.0250 (6) Å               | $T = 100 { m K}$                          |
| c = 18.6441 (18)  Å            | $0.20 \times 0.16 \times 0.15 \text{ mm}$ |
| $\beta = 94.346 \ (1)^{\circ}$ |                                           |
|                                |                                           |

### Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996)  $T_{\rm min}=0.669,\;T_{\rm max}=0.746$ 

### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.036$ | 183 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.095$               | H-atom parameters constrained                              |
| S = 1.05                        | $\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-3}$    |
| 2983 reflections                | $\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$ |

#### Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                                 | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|------------------------------------------------------------------|------|-------------------------|--------------|---------------------------|
| $\begin{matrix} O1-H1O\cdots N2\\ C6-H6\cdots O2^i \end{matrix}$ | 0.84 | 1.88                    | 2.6167 (17)  | 146                       |
|                                                                  | 0.95 | 2.56                    | 3.424 (2)    | 151                       |

Symmetry code: (i) -x + 1, -y, -z + 1.

Data collection: SMART (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

The authors thank the Natural Sciences and Engineering Council of Canada for support. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (grant No. UM.C/ HIR-MOHE/SC/03).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2623).

#### References

Affan, M. A., Foo, S. W., Jusoh, I., Hanapi, S. & Tiekink, E. R. T. (2009). Inorg. Chim. Acta, 362, 5031-5037.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Büyükgüngör, O., Çalışkan, N., Davran, C. & Batı, H. (2004). Acta Cryst. E60, o1414-o1416.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

# supporting information

Acta Cryst. (2013). E69, o1273 [doi:10.1107/S1600536813019387]

# 2-[(1,3-Benzothiazol-2-yl)iminomethyl]-6-methoxyphenol: a new monoclinic polymorph

# Md. Abu Affan, Philip G. Jessop, Md. Abdus Salam, Siti Nadiah Binti Abdul Halim and Edward R. T. Tiekink

### S1. Comment

The title compound, (I), was prepared in connection with on-going studies of organotin compounds with *N*, *O* and *S* donors for evaluation for biological activity (Affan *et al.*, 2009).

In (I), Fig. 1, the dihedral angle between the benzothiazole (r.m.s. deviation = 0.010 Å) and the benzene ring is 7.86 (6)°. This, coupled with the observation that the methoxy substituent is coplanar with the benzene ring to which it is attached, the C15—O2—C11—C10 torsion angle is 178.31 (14)°, indicates that the molecule is approximately planar. Indeed, the r.m.s. deviation for all 20 non-hydrogen atoms is 0.083 Å, with maximum deviations of 0.123 (1) Å for the S1 atom and -0.148 (2) Å for C3. As seen from the overlay diagram in Fig. 2, this conformation is similar to that found in the  $P2_1/n$  polymorph, for which the dihedral angle between the benzothiazole and benzene ring is 10.76 (10)° (Büyükgüngör *et al.*, 2004). The coplanarity about the imine C8=N2 bond [1.287 (2) Å], with an *E* conformation, enables the formation of an intramolecular O—H···N hydrogen bond, Table 1. The hydroxyl-O and thioether-S atoms are *syn*.

In the crystal packing, centrosymmetrically related molecules associate into dimers *via* C—H···O interactions and stack in columns along the *b* axis *via*  $\pi$ - $\pi$  interactions between the thiazole and benzene rings [inter-centroid distance = 3.8256 (10) Å, angle of inclination = 7.47 (8)° for symmetry operation *x*, -1 + *y*, *z*], Fig. 3 and Table 1.

### S2. Experimental

2-Aminobenzothiazole (0.765 g, 5 mmol) in ethanol (10 ml) was added to an ethanolic solution of 4-(aminomethyl)-2methoxyphenol (0.751 g, 5 mmol) and the reaction mixture was refluxed for 2 h. After cooling, a yellow solid was filtered off and washed with cold ethanol. The title compound (I) was obtained after recrystallization from its methanol solution [m.p. 466–468 K, yield 1.18 g (78%)].

### S3. Refinement

Carbon-bound H atoms were placed in calculated positions [C—H = 0.95 to 0.98 Å,  $U_{iso}(H) = 1.5U_{eq}(C-methyl)$  and  $1.2U_{eq}(C)$  for other H atoms] and were included in the refinement in the riding-model approximation. The hydroxyl H atom was treated similarly [O—H = 0.84 Å;  $U_{iso}(H) = 1.5U_{eq}(O)$ ].



### Figure 1

The molecular structure of (I), showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.



## Figure 2

Superimposition of the molecule in (I) (red image) on that found in the polymorph (blue image). The five-membered rings have been superimposed.



# Figure 3

A view in projection down the *b* axis of the unit-cell contents for (I). The C—H···O and  $\pi$ — $\pi$  interactions are shown as orange and purple dashed lines, respectively.

## 2-[(1,3-Benzothiazol-2-yl)iminomethyl]-6-methoxyphenol

| Crystal data                  |                                                       |
|-------------------------------|-------------------------------------------------------|
| $C_{15}H_{12}N_2O_2S$         | F(000) = 592                                          |
| $M_r = 284.33$                | $D_{\rm x} = 1.445 {\rm Mg} {\rm m}^{-3}$             |
| Monoclinic, $P2_1/c$          | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: -P 2ybc          | Cell parameters from 2808 reflections                 |
| a = 11.6697 (11)  Å           | $\theta = 2.7 - 26.6^{\circ}$                         |
| b = 6.0250 (6) Å              | $\mu = 0.25 \text{ mm}^{-1}$                          |
| c = 18.6441 (18)  Å           | T = 100  K                                            |
| $\beta = 94.346 (1)^{\circ}$  | Block, yellow                                         |
| V = 1307.1 (2) Å <sup>3</sup> | $0.20 \times 0.16 \times 0.15 \text{ mm}$             |
| Z = 4                         |                                                       |

Data collection

| Bruker SMART APEX                               | 15750 measured reflections                                  |
|-------------------------------------------------|-------------------------------------------------------------|
| diffractometer                                  | 2983 independent reflections                                |
| Radiation source: fine-focus sealed tube        | 2404 reflections with $I > 2\sigma(I)$                      |
| Graphite monochromator                          | $R_{int} = 0.046$                                           |
| $\varphi$ and $\omega$ scans                    | $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.2^{\circ}$ |
| Absorption correction: multi-scan               | $h = -15 \rightarrow 15$                                    |
| ( <i>SADABS</i> ; Sheldrick, 1996)              | $k = -7 \rightarrow 7$                                      |
| $T_{\min} = 0.669, T_{\max} = 0.746$            | $l = -23 \rightarrow 24$                                    |
| Refinement                                      |                                                             |
| Refinement on $F^2$                             | Secondary atom site location: difference Fourier            |
| Least-squares matrix: full                      | map                                                         |
| $R[F^2 > 2\sigma(F^2)] = 0.036$                 | Hydrogen site location: inferred from                       |
| $wR(F^2) = 0.095$                               | neighbouring sites                                          |
| S = 1.05                                        | H-atom parameters constrained                               |
| 2983 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0424P)^2 + 0.3573P]$           |
| 183 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                              |
| 0 restraints                                    | $(\Delta/\sigma)_{max} = 0.001$                             |
| Primary atom site location: structure-invariant | $\Delta\rho_{max} = 0.24$ e Å <sup>-3</sup>                 |
| direct methods                                  | $\Delta\rho_{min} = -0.26$ e Å <sup>-3</sup>                |

### Special details

**Geometry**. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2\sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|            |              |              |              |                             | - |
|------------|--------------|--------------|--------------|-----------------------------|---|
|            | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |   |
| <b>S</b> 1 | 0.40036 (3)  | -0.28845 (7) | 0.51769 (2)  | 0.02579 (13)                |   |
| 01         | 0.38182 (9)  | 0.30422 (19) | 0.37054 (6)  | 0.0291 (3)                  |   |
| H1O        | 0.3754       | 0.1918       | 0.3966       | 0.044*                      |   |
| O2         | 0.37477 (10) | 0.6591 (2)   | 0.29096 (6)  | 0.0319 (3)                  |   |
| N1         | 0.17783 (11) | -0.3057 (2)  | 0.49353 (7)  | 0.0242 (3)                  |   |
| N2         | 0.27272 (11) | -0.0044(2)   | 0.43688 (7)  | 0.0233 (3)                  |   |
| C1         | 0.32893 (13) | -0.5026 (3)  | 0.55699 (8)  | 0.0231 (3)                  |   |
| C2         | 0.21017 (13) | -0.4851 (3)  | 0.53783 (8)  | 0.0232 (3)                  |   |
| C3         | 0.13496 (15) | -0.6425 (3)  | 0.56295 (9)  | 0.0301 (4)                  |   |
| H3         | 0.0549       | -0.6355      | 0.5495       | 0.036*                      |   |
| C4         | 0.17954 (16) | -0.8081 (3)  | 0.60766 (10) | 0.0335 (4)                  |   |
| H4         | 0.1292       | -0.9150      | 0.6257       | 0.040*                      |   |
| C5         | 0.29730 (16) | -0.8223 (3)  | 0.62712 (9)  | 0.0318 (4)                  |   |
| H5         | 0.3253       | -0.9383      | 0.6582       | 0.038*                      |   |
| C6         | 0.37344 (15) | -0.6718 (3)  | 0.60217 (9)  | 0.0278 (4)                  |   |
| H6         | 0.4535       | -0.6826      | 0.6152       | 0.033*                      |   |

| C7   | 0.26852 (13) | -0.1942 (3) | 0.47956 (8)  | 0.0228 (3) |  |
|------|--------------|-------------|--------------|------------|--|
| C8   | 0.17759 (14) | 0.0866 (3)  | 0.41305 (8)  | 0.0241 (3) |  |
| H8   | 0.1071       | 0.0233      | 0.4253       | 0.029*     |  |
| С9   | 0.17491 (13) | 0.2822 (3)  | 0.36818 (8)  | 0.0225 (3) |  |
| C10  | 0.27665 (13) | 0.3830 (3)  | 0.34943 (8)  | 0.0221 (3) |  |
| C11  | 0.27064 (14) | 0.5760 (3)  | 0.30645 (8)  | 0.0235 (3) |  |
| C12  | 0.16509 (14) | 0.6647 (3)  | 0.28398 (8)  | 0.0265 (4) |  |
| H12  | 0.1612       | 0.7948      | 0.2551       | 0.032*     |  |
| C13  | 0.06360 (15) | 0.5648 (3)  | 0.30329 (9)  | 0.0298 (4) |  |
| H13  | -0.0088      | 0.6272      | 0.2876       | 0.036*     |  |
| C14  | 0.06870 (14) | 0.3774 (3)  | 0.34480 (9)  | 0.0274 (4) |  |
| H14  | -0.0004      | 0.3108      | 0.3580       | 0.033*     |  |
| C15  | 0.37379 (17) | 0.8514 (3)  | 0.24585 (10) | 0.0353 (4) |  |
| H15A | 0.3302       | 0.8193      | 0.2000       | 0.053*     |  |
| H15B | 0.4529       | 0.8914      | 0.2369       | 0.053*     |  |
| H15C | 0.3377       | 0.9751      | 0.2697       | 0.053*     |  |
|      |              |             |              |            |  |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|                                            |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                  |                                                                                                                       |                                                                                                                      | -                                                                                                                                                                    |                                                                                                                                                           |                                                                            |
|--------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 3                                          |                                                                                                      | $U^{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $U^{12}$                                                                                                                                                                                                                         |                                                                                                                       | $U^{33}$                                                                                                             | $U^{22}$                                                                                                                                                             | $U^{11}$                                                                                                                                                  |                                                                            |
| 00382 (17)                                 | 11 (16)                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00138 (16)                                                                                                                                                                                                                     | 97 (2)                                                                                                                | 0.029                                                                                                                | 0.0231 (2)                                                                                                                                                           | 0.0245 (2)                                                                                                                                                | S1                                                                         |
| 0084 (5)                                   | 005 (5)                                                                                              | -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0017 (5)                                                                                                                                                                                                                       | 44 (7)                                                                                                                | 0.0344                                                                                                               | 0.0283 (7)                                                                                                                                                           | 0.0241 (6)                                                                                                                                                | 01                                                                         |
| 0105 (5)                                   | -1 (5)                                                                                               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.0024 (5)                                                                                                                                                                                                                      | 48 (7)                                                                                                                | 0.0348                                                                                                               | 0.0303 (7)                                                                                                                                                           | 0.0308 (6)                                                                                                                                                | 02                                                                         |
| 0008 (5)                                   | 3 (5)                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0006 (5)                                                                                                                                                                                                                       | 43 (7)                                                                                                                | 0.0242                                                                                                               | 0.0211 (7)                                                                                                                                                           | 0.0272 (7)                                                                                                                                                | N1                                                                         |
| 0010 (5)                                   | 6 (5)                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0004 (5)                                                                                                                                                                                                                       | 34 (7)                                                                                                                | 0.0234                                                                                                               | 0.0181 (7)                                                                                                                                                           | 0.0280 (7)                                                                                                                                                | N2                                                                         |
| .0015 (6)                                  | .7 (6)                                                                                               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0005 (6)                                                                                                                                                                                                                       | 08 (7)                                                                                                                | 0.0208                                                                                                               | 0.0202 (8)                                                                                                                                                           | 0.0289 (8)                                                                                                                                                | C1                                                                         |
| .0013 (6)                                  | 6 (6)                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0020 (6)                                                                                                                                                                                                                       | 06 (7)                                                                                                                | 0.0200                                                                                                               | 0.0198 (8)                                                                                                                                                           | 0.0293 (8)                                                                                                                                                | C2                                                                         |
| 0018 (7)                                   | 5 (7)                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.0012 (7)                                                                                                                                                                                                                      | 07 (9)                                                                                                                | 0.0307                                                                                                               | 0.0286 (9)                                                                                                                                                           | 0.0318 (9)                                                                                                                                                | C3                                                                         |
| 0049 (7)                                   | 2 (8)                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.0031 (8)                                                                                                                                                                                                                      | 42 (9)                                                                                                                | 0.0342                                                                                                               | 0.0267 (9)                                                                                                                                                           | 0.0412 (10)                                                                                                                                               | C4                                                                         |
| 0051 (7)                                   | 5 (8)                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0065 (8)                                                                                                                                                                                                                       | 57 (9)                                                                                                                | 0.025                                                                                                                | 0.0239 (9)                                                                                                                                                           | 0.0466 (11)                                                                                                                                               | C5                                                                         |
| 016 (7)                                    | .7 (7)                                                                                               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0060 (7)                                                                                                                                                                                                                       | 44 (8)                                                                                                                | 0.0244                                                                                                               | 0.0264 (9)                                                                                                                                                           | 0.0327 (9)                                                                                                                                                | C6                                                                         |
| .0021 (6)                                  | 8 (6)                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0015 (6)                                                                                                                                                                                                                       | 09 (8)                                                                                                                | 0.0209                                                                                                               | 0.0210 (8)                                                                                                                                                           | 0.0263 (8)                                                                                                                                                | C7                                                                         |
| .0014 (6)                                  | 8 (6)                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.0028 (6)                                                                                                                                                                                                                      | 42 (8)                                                                                                                | 0.0242                                                                                                               | 0.0223 (8)                                                                                                                                                           | 0.0259 (8)                                                                                                                                                | C8                                                                         |
| .0018 (6)                                  | 0 (6)                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0001 (6)                                                                                                                                                                                                                       | 99 (7)                                                                                                                | 0.0199                                                                                                               | 0.0201 (8)                                                                                                                                                           | 0.0272 (8)                                                                                                                                                | С9                                                                         |
| .0028 (6)                                  | 06 (6)                                                                                               | -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0016 (6)                                                                                                                                                                                                                       | 97 (7)                                                                                                                | 0.019                                                                                                                | 0.0212 (8)                                                                                                                                                           | 0.0251 (8)                                                                                                                                                | C10                                                                        |
| .0015 (6)                                  | 9 (6)                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.0023 (6)                                                                                                                                                                                                                      | 03 (7)                                                                                                                | 0.0203                                                                                                               | 0.0209 (8)                                                                                                                                                           | 0.0293 (8)                                                                                                                                                | C11                                                                        |
| 0024 (6)                                   | )14 (7)                                                                                              | -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0028 (7)                                                                                                                                                                                                                       | 18 (8)                                                                                                                | 0.0218                                                                                                               | 0.0226 (8)                                                                                                                                                           | 0.0345 (9)                                                                                                                                                | C12                                                                        |
| 028 (7)                                    | )28 (7)                                                                                              | -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0046 (7)                                                                                                                                                                                                                       | 10 (9)                                                                                                                | 0.0310                                                                                                               | 0.0290 (9)                                                                                                                                                           | 0.0288 (9)                                                                                                                                                | C13                                                                        |
| 0009 (7)                                   | 3 (7)                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.0013 (7)                                                                                                                                                                                                                      | 05 (9)                                                                                                                | 0.0303                                                                                                               | 0.0260 (9)                                                                                                                                                           | 0.0254 (8)                                                                                                                                                | C14                                                                        |
| 063 (8)                                    | 2 (8)                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.0051(8)                                                                                                                                                                                                                       | 56 (10)                                                                                                               | 0.0350                                                                                                               | 0.0259(9)                                                                                                                                                            | 0.0453(11)                                                                                                                                                | C15                                                                        |
| )(()<br>()()()()()()()()()()()()()()()()() | 2 (8)<br>5 (8)<br>7 (7)<br>8 (6)<br>8 (6)<br>9 (6)<br>9 (6)<br>14 (7)<br>128 (7)<br>13 (7)<br>12 (8) | $\begin{array}{c} 0.0\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ -0.0\\ 0.00\\ -0.\\ 0.00\\ -0.\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.$ | $\begin{array}{c} -0.0031 \ (8) \\ 0.0065 \ (8) \\ 0.0060 \ (7) \\ 0.0015 \ (6) \\ -0.0028 \ (6) \\ 0.0011 \ (6) \\ 0.0016 \ (6) \\ -0.0023 \ (6) \\ 0.0028 \ (7) \\ 0.0046 \ (7) \\ -0.0013 \ (7) \\ -0.0051 \ (8) \end{array}$ | 42 (9)<br>57 (9)<br>44 (8)<br>09 (8)<br>42 (8)<br>99 (7)<br>97 (7)<br>03 (7)<br>18 (8)<br>10 (9)<br>05 (9)<br>56 (10) | 0.0342<br>0.0257<br>0.0244<br>0.0209<br>0.0242<br>0.0199<br>0.0197<br>0.0202<br>0.0213<br>0.0213<br>0.0310<br>0.0302 | 0.0267 (9)<br>0.0239 (9)<br>0.0264 (9)<br>0.0210 (8)<br>0.0223 (8)<br>0.0201 (8)<br>0.0212 (8)<br>0.0209 (8)<br>0.0226 (8)<br>0.0290 (9)<br>0.0260 (9)<br>0.0259 (9) | 0.0412 (10)<br>0.0466 (11)<br>0.0327 (9)<br>0.0263 (8)<br>0.0259 (8)<br>0.0251 (8)<br>0.0293 (8)<br>0.0345 (9)<br>0.0288 (9)<br>0.0254 (8)<br>0.0453 (11) | C4<br>C5<br>C6<br>C7<br>C8<br>C9<br>C10<br>C11<br>C12<br>C13<br>C14<br>C15 |

Geometric parameters (Å, °)

| S1—C1  | 1.7289 (16) | C5—C6 | 1.375 (2) |  |
|--------|-------------|-------|-----------|--|
| S1—C7  | 1.7404 (16) | С5—Н5 | 0.9500    |  |
| O1—C10 | 1.3466 (18) | С6—Н6 | 0.9500    |  |
| 01—H10 | 0.8400      | C8—C9 | 1.444 (2) |  |
| O2—C11 | 1.3653 (19) | С8—Н8 | 0.9500    |  |
|        |             |       |           |  |

| O2—C15                    | 1.431 (2)                | C9—C10                     | 1.401 (2)                |
|---------------------------|--------------------------|----------------------------|--------------------------|
| N1—C7                     | 1.296 (2)                | C9—C14                     | 1.405 (2)                |
| N1—C2                     | 1.395 (2)                | C10—C11                    | 1.411 (2)                |
| N2—C8                     | 1.287 (2)                | C11—C12                    | 1.378 (2)                |
| N2—C7                     | 1.396 (2)                | C12—C13                    | 1.400 (2)                |
| C1 - C6                   | 1 397 (2)                | C12—H12                    | 0.9500                   |
| C1 - C2                   | 1 409 (2)                | C12 - C14                  | 1.368(2)                 |
| $C_2 = C_3$               | 1 397 (2)                | C13H13                     | 0.9500                   |
| $C_2 = C_3$               | 1.377(2)                 |                            | 0.9500                   |
| $C_{2}$ $U_{2}$           | 1.377(2)                 | $C_{14}$ $H_{14}$          | 0.9300                   |
|                           | 0.9300                   | C15_U15D                   | 0.9800                   |
| C4—C3                     | 1.397 (3)                |                            | 0.9800                   |
| С4—Н4                     | 0.9500                   | CI3—HISC                   | 0.9800                   |
| C1 - S1 - C7              | 88 67 (8)                | N2                         | 119 1                    |
| C10-01-H10                | 109 5                    | C9 C8 H8                   | 119.1                    |
| $C_{11} = 0^{2} = C_{15}$ | 116.98 (13)              | $C_{10}$ $C_{9}$ $C_{14}$  | 119.1                    |
| C7  N1 $C2$               | 100.00(13)               | $C_{10} = C_{10} = C_{14}$ | 117.33(14)<br>121.11(14) |
| $C^{2}$ N2 $C^{2}$        | 109.40(13)<br>118.64(14) | $C_{10} = C_{9} = C_{8}$   | 121.11(14)<br>110.52(15) |
| $C_{0} = N_{2} = C_{1}$   | 110.04(14)<br>121.41(15) | C14 - C9 - C8              | 119.33(13)               |
| $C_0 - C_1 - C_2$         | 121.41(13)               | 01 - 010 - 011             | 125.02(14)               |
| $C_0 - C_1 - S_1$         | 129.12 (13)              |                            | 117.49 (14)              |
|                           | 109.47 (12)              |                            | 119.50 (14)              |
| C3—C2—N1                  | 125.17 (15)              | 02-011-012                 | 125.64 (15)              |
| C3—C2—C1                  | 119.68 (15)              | O2—C11—C10                 | 114.56 (14)              |
| N1—C2—C1                  | 115.15 (14)              | C12—C11—C10                | 119.80 (15)              |
| C4—C3—C2                  | 118.49 (16)              | C11—C12—C13                | 120.61 (15)              |
| С4—С3—Н3                  | 120.8                    | C11—C12—H12                | 119.7                    |
| С2—С3—Н3                  | 120.8                    | C13—C12—H12                | 119.7                    |
| C3—C4—C5                  | 121.37 (16)              | C14—C13—C12                | 119.95 (15)              |
| C3—C4—H4                  | 119.3                    | C14—C13—H13                | 120.0                    |
| C5—C4—H4                  | 119.3                    | С12—С13—Н13                | 120.0                    |
| C6—C5—C4                  | 121.34 (16)              | C13—C14—C9                 | 120.81 (16)              |
| С6—С5—Н5                  | 119.3                    | C13—C14—H14                | 119.6                    |
| С4—С5—Н5                  | 119.3                    | C9—C14—H14                 | 119.6                    |
| C5—C6—C1                  | 117.70 (16)              | O2—C15—H15A                | 109.5                    |
| С5—С6—Н6                  | 121.1                    | O2—C15—H15B                | 109.5                    |
| С1—С6—Н6                  | 121.1                    | H15A—C15—H15B              | 109.5                    |
| N1—C7—N2                  | 127.11 (14)              | O2—C15—H15C                | 109.5                    |
| N1-C7-S1                  | 117.30 (12)              | H15A—C15—H15C              | 109.5                    |
| N2-C7-S1                  | 115 58 (11)              | H15B-C15-H15C              | 109.5                    |
| N2-C8-C9                  | 121.88 (15)              |                            | 10,10                    |
|                           | 121.00 (10)              |                            |                          |
| C7—S1—C1—C6               | -179.01 (16)             | C1—S1—C7—N2                | -179.79 (12)             |
| C7—S1—C1—C2               | 0.03 (12)                | C7—N2—C8—C9                | -179.54 (13)             |
| C7—N1—C2—C3               | -179.18 (15)             | N2-C8-C9-C10               | -0.8 (2)                 |
| C7—N1—C2—C1               | 0.46 (19)                | N2-C8-C9-C14               | -178.75 (15)             |
| C6—C1—C2—C3               | -1.5 (2)                 | C14—C9—C10—O1              | 179.00 (14)              |
| S1—C1—C2—C3               | 179.37 (12)              | C8—C9—C10—O1               | 1.1 (2)                  |
| C6—C1—C2—N1               | 178.85 (14)              | C14-C9-C10-C11             | -1.1(2)                  |
|                           |                          |                            | (-)                      |

| C1—S1—C7—N1 0.25 (13) C8—C9—C14—C13 178.87 (15) | S1—C1—C2—N1<br>N1—C2—C3—C4<br>C1—C2—C3—C4<br>C2—C3—C4—C5<br>C3—C4—C5—C6<br>C4—C5—C6—C1<br>C2—C1—C6—C5<br>S1—C1—C6—C5<br>S1—C1—C6—C5<br>C2—N1—C7—N2<br>C2—N1—C7—S1<br>C8—N2—C7—N1<br>C8—N2—C7—S1 | -0.28 (17)<br>-178.67 (15)<br>1.7 (2)<br>-0.9 (3)<br>-0.2 (3)<br>0.5 (2)<br>0.4 (2)<br>179.32 (13)<br>179.60 (14)<br>-0.44 (17)<br>6.8 (2)<br>-173.12 (12) | $\begin{array}{c} C8-C9-C10-C11\\ C15-O2-C11-C12\\ C15-O2-C11-C10\\ O1-C10-C11-O2\\ C9-C10-C11-O2\\ O1-C10-C11-C12\\ C9-C10-C11-C12\\ C9-C10-C11-C12\\ O2-C11-C12-C13\\ C10-C11-C12-C13\\ C11-C12-C13-C14\\ C12-C13-C14-C9\\ C10-C9-C14-C13\\ \end{array}$ | -178.97 (14)<br>-1.8 (2)<br>178.31 (14)<br>0.5 (2)<br>-179.46 (13)<br>-179.39 (14)<br>0.7 (2)<br>-179.97 (15)<br>-0.1 (2)<br>0.0 (3)<br>-0.4 (3)<br>0.9 (2) |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                 | C8—N2—C7—S1                                                                                                                                                                                     | -173.12 (12)                                                                                                                                               | C10-C9-C14-C13                                                                                                                                                                                                                                             | 0.9 (2)                                                                                                                                                     |
|                                                 | C1—S1—C7—N1                                                                                                                                                                                     | 0.25 (13)                                                                                                                                                  | C8-C9-C14-C13                                                                                                                                                                                                                                              | 178.87 (15)                                                                                                                                                 |

Hydrogen-bond geometry (Å, °)

| D—H···A               | D—H  | H···A | D···· $A$   | D—H···A |
|-----------------------|------|-------|-------------|---------|
| 01—H1 <i>O</i> …N2    | 0.84 | 1.88  | 2.6167 (17) | 146     |
| C6—H6…O2 <sup>i</sup> | 0.95 | 2.56  | 3.424 (2)   | 151     |

Symmetry code: (i) -x+1, -y, -z+1.