[Journal logo]

Volume 69 
Part 8 
Page o1268  
August 2013  

Received 28 June 2013
Accepted 10 July 2013
Online 17 July 2013

Key indicators
Single-crystal X-ray study
T = 180 K
Mean [sigma](C-C) = 0.003 Å
R = 0.047
wR = 0.119
Data-to-parameter ratio = 17.7
Details
Open access

N'-(3-Sulfanylidene-3,4-dihydroquinoxalin-2-yl)benzohydrazide dimethylformamide monosolvate

aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue, Ibn Batouta, Rabat, Morocco,bLaboratoire de Chimie de Coordination du CNRS 205, Route de Narbonne 31077, Toulouse, France, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
Correspondence e-mail: a_zanzoul@yahoo.fr

The 2-sulfanylidene-3,4-dihydroquinoxalin-2-yl ring system of the title solvate, C15H12N4OS·C3H7NO, is essentially planar, the maximum deviation from the mean plane being 0.024 (2) Å for the thione C atom. The mean plane through the fused-ring system is almost perpendicular to the terminal phenyl ring, as indicated by the dihedral angle of 70.05 (8)°. In the crystal, the main and solvent molecules are linked by N-H...O hydrogen bonds, forming a layer parallel to (010).

Related literature

For potential applications of quinoxaline derivatives, see: Cheon et al. (2004[Cheon, H.-G., Lee, C.-M., Kim, B.-T. & Hwang, K.-J. (2004). Bioorg. Med. Chem. Lett. 14, 2661-2664.]); Jackson et al. (1991[Jackson, P. F., Davenport, T. W., Resch, J. F., Scott Lehr, G. & Pullan, L. M. (1991). Bioorg. Med. Chem. Lett. 1, 751-756.]); Benzeid et al. (2012[Benzeid, H., Mothes, E., Essassi, E. M., Faller, P. & Pratviel, G. (2012). Compt. Rend. Chim. 15, 79-85.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12N4OS·C3H7NO

  • Mr = 369.44

  • Monoclinic, P 21 /c

  • a = 10.4053 (2) Å

  • b = 16.8563 (5) Å

  • c = 10.3624 (2) Å

  • [beta] = 100.882 (2)°

  • V = 1784.83 (7) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 0.21 mm-1

  • T = 180 K

  • 0.20 × 0.12 × 0.04 mm

Data collection
  • Oxford Diffraction Xcalibur (Eos, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2012[Oxford Diffraction (2012). Oxford Diffraction Ltd, Yarnton,England.]) Tmin = 0.960, Tmax = 0.992

  • 15848 measured reflections

  • 4153 independent reflections

  • 3090 reflections with I > 2[sigma](I)

  • Rint = 0.043

Refinement
  • R[F2 > 2[sigma](F2)] = 0.047

  • wR(F2) = 0.119

  • S = 1.03

  • 4153 reflections

  • 235 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.30 e Å-3

  • [Delta][rho]min = -0.25 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N3-H3N...O2i 0.88 2.14 2.906 (2) 146
N4-H4N...O2ii 0.88 2.04 2.906 (2) 166
N1-H1...O1iii 0.88 2.01 2.8331 (19) 154
Symmetry codes: (i) x, y, z+1; (ii) -x+1, -y, -z; (iii) -x+2, -y, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2012[Oxford Diffraction (2012). Oxford Diffraction Ltd, Yarnton,England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2012[Oxford Diffraction (2012). Oxford Diffraction Ltd, Yarnton,England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5236 ).


References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Benzeid, H., Mothes, E., Essassi, E. M., Faller, P. & Pratviel, G. (2012). Compt. Rend. Chim. 15, 79-85.  [CrossRef] [ChemPort]
Cheon, H.-G., Lee, C.-M., Kim, B.-T. & Hwang, K.-J. (2004). Bioorg. Med. Chem. Lett. 14, 2661-2664.  [CrossRef] [PubMed] [ChemPort]
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Jackson, P. F., Davenport, T. W., Resch, J. F., Scott Lehr, G. & Pullan, L. M. (1991). Bioorg. Med. Chem. Lett. 1, 751-756.  [CrossRef] [ChemPort]
Oxford Diffraction (2012). Oxford Diffraction Ltd, Yarnton,England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]


Acta Cryst (2013). E69, o1268  [ doi:10.1107/S1600536813019181 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.