Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(1*S*,3*R*,8*R*,11*S*)-11-Bromo-10-bromomethyl-2,2-dichloro-3,7,7-trimethyltricyclo[6.4.0.0^{1,3}]dodec-9-ene

Ahmed Benharref,^a Jamal El karroumi,^a* Lahcen El Ammari,^b Mohamed Saadi^c and Moha Berraho^a

^aLaboratoire de Chimie des Substances Naturelles, "Unité Associé au CNRST (URAC16)", Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, ^bLaboratoire de Chimie du Solide, Appliquée, Faculté des Sciences, Université MohammedV-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, and ^cLaboratoire de Chimie du Solide, Appliquée, Faculté des Sciences, Université MohammedV-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco Correspondence e-mail: berraho@uca.ma

Received 15 July 2013; accepted 16 July 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.038; wR factor = 0.102; data-to-parameter ratio = 19.9.

The title compound, $C_{16}H_{22}Br_2Cl_2$, was synthesized from β -himachalene (3,5,5,9-tetramethyl-2,4a,5,6,7,8-hexahydro-1*H*-benzocycloheptene), which was isolated from the essential oil of the Atlas cedar (*Cedrus Atlantica*). The molecule is built up from fused six- and seven-membered rings and an appended three-membered ring. The six-membered ring has a half-chair conformation, whereas the seven-membered ring displays a chair conformation. The dihedral angle between the two best plane through each ring is 59.5 (2)°. No specific intermolecular interactions were discerned in the crystal packing.

Related literature

For the reactivity and biological properties of β -himachalene, see: El Haib *et al.* (2011); El Jamili *et al.* (2002); Daoubi *et al.* (2004). For related structures, see: Oukhrib *et al.* (2013); Ourhriss *et al.* (2013); Benharref *et al.* (2013). For puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data

 $\begin{array}{l} C_{16}H_{22}Br_2Cl_2\\ M_r = 445.06\\ Orthorhombic, P2_12_12_1\\ a = 8.2594 \ (7) \ \text{\AA}\\ b = 13.0352 \ (11) \ \text{\AA}\\ c = 16.6241 \ (13) \ \text{\AA} \end{array}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SHELXS97*; Sheldrick,2008) $T_{\rm min} = 0.423, T_{\rm max} = 0.617$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.038 \\ wR(F^2) &= 0.102 \\ S &= 1.05 \\ 3654 \text{ reflections} \\ 184 \text{ parameters} \\ \text{H-atom parameters constrained} \\ \Delta\rho_{\text{max}} &= 0.55 \text{ e } \text{ Å}^{-3} \end{split}$$

 $V = 1789.8 \text{ (3) } \text{\AA}^{3}$ Z = 4Mo K\alpha radiation $\mu = 4.82 \text{ mm}^{-1}$ T = 293 K $0.20 \times 0.15 \times 0.12 \text{ mm}$

10693 measured reflections 3654 independent reflections 3183 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.026$

 $\begin{array}{l} \Delta \rho_{min} = -0.54 \ e \ {\mbox{\AA}}^{-3} \\ \mbox{Absolute structure: Flack \&} \\ \mbox{Bernardinelli (2000), 614 Friedel} \\ \mbox{pairs} \\ \mbox{Absolute structure parameter:} \\ \ 0.022 \ (13) \end{array}$

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5241).

References

- Benharref, A., El Karroumi, J., El Ammari, L., Saadi, M. & Berraho, M. (2013). Acta Cryst. E69, o1037–o1038.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Daoubi, M., Duran-Patron, R., Hmamouchi, M., Hernandez-Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest Manag. Sci. 60, 927–932.
- El Haib, A., Benharref, A., Parres-Maynadie, S., Manoury, E., Urrutigotty, M. & Gouygou, M. (2011). *Tetrahedron Asymmetry*, 22, 101–108.
- El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). *Tetrahedron Lett.* **43**, 6645–6648.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.
- Oukhrib, A., Benharref, A., Saadi, M., Berraho, M. & El Ammari, L. (2013). Acta Cryst. E69, 0521-0522.

Ourhriss, N., Benharref, A., Saadi, M., El Ammari, L. & Berraho, M. (2013). Acta Cryst. E69, 0275.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, o1283 [doi:10.1107/S1600536813019697]

(1*S*,3*R*,8*R*,11*S*)-11-Bromo-10-bromomethyl-2,2-dichloro-3,7,7-trimethyltricyclo[6.4.0.0^{1,3}]dodec-9-ene

Ahmed Benharref, Jamal El karroumi, Lahcen El Ammari, Mohamed Saadi and Moha Berraho

S1. Comment

The bicyclic sesquiterpene β -himachalene is the main constituent (50%) of the essential oil of the Atlas cedar (*Cedrus atlantica*) (El Haib *et al.*, 2011). The reactivity of this sesquiterpene and its derivatives has been studied extensively by our team in order to prepare new products having biological proprieties (El Jamili *et al.*, 2002; Daoubi *et al.*, 2004; Ourhriss *et al.*, 2013; Oukhrib *et al.*, 2013; Benharref *et al.*, 2013). In this work, we present the crystal structure of the title compound, (1*S*,3*R*,8*R*,11*S*)- 10- bromomethyl-11-bromo-2,2-dichloro-3,7,7-trimethyltricyclo [6.4.0.0_{1,3}] dodec-9- ene. The molecule contains fused six-and seven-membered rings, which is fused to a three-membered ring as shown in Fig. 1. The six-membered ring has a half-chair conformation, as indicated by the total puckering amplitude QT = 0.466 (4) Å and spherical polar angle θ = 129.9 (7)° with φ = 152.5 (7)°, whereas the seven-membered ring displays a chair conformation with QT = 0.8129 (51) Å, θ = 32.71 (40)°, φ 2 = -46.29 (5)° and φ 3 = -77.86 (39)° (Cremer & Pople, 1975). Owing to the presence of Br atoms, the absolute configuration could be fully confirmed, by refining the Flack parameter (Flack & Bernardinelli, 2000) as C1(*S*), C3(*R*), C8(*R*) and C11(*S*).

S2. Experimental

In a reactor equipped with a stirrer, a condenser, a dropping funnel and a thermometer containing (1S,3R,8R)-2,2-dichloro-3,7,7,10-tetramethyltricyclo [6.4.0.01,3] dodec-9-ene (2 g, 7 mmol) (El Jamili *et al.*, 2002) and carbon tetrachloride (60 ml) was added slowly over an 1.5 h by heating and stirring a solution of bromine (1.6 g, 10 mmol) in carbon tetrachloride (5 ml). Heating and stirring were maintained for 1 h after the addition of bromine. Thereafter the reaction mixture was cooled and concentrated to evaporate the carbon tetrachloride. the residue obtained was chromatographed on silica eluting with hexane, which allowed the isolation of pure (1S,3R,8R,11S)-10-bromomethyl-11bromo-2,2-dichloro-3,7,7-trimethyltricyclo [6.4.0.01,3] dodec-9-ene in a yield of 20% (623 mg, 1.4 mmol). The title compound was recrystallized from its hexane solution.

S3. Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98 Å (methine) with $U_{iso}(H) = 1.2U_{eq}$ (methylene, methine) or $U_{iso}(H) = 1.5U_{eq}$ (methyl).

Figure 1

Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability. level. H atoms are represented as small spheres of arbitrary radii.

(1*S*,3*R*,8*R*,11*S*)-11-Bromo-10-bromomethyl-2,2-dichloro-3,7,7-trimethyltricyclo[6.4.0.0^{1,3}]dodec-9-ene

Crystal data	
$C_{16}H_{22}Br_{2}Cl_{2}$	F(000) = 888
$M_r = 445.06$	$D_{\rm x} = 1.652 \ {\rm Mg \ m^{-3}}$
Orthorhombic, $P2_12_12_1$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 3653 reflections
a = 8.2594 (7) Å	$\theta = 2.8 - 26.4^{\circ}$
b = 13.0352(11) Å	$\mu = 4.82 \text{ mm}^{-1}$
c = 16.6241(13) Å	T = 293 K
V = 1789.8 (3) Å ³	Block, colourless
Z = 4	$0.20 \times 0.15 \times 0.12 \text{ mm}$
Data collection	
Bruker APEXII CCD	10693 measured reflections
diffractometer	3654 independent reflections
Radiation source: fine-focus sealed tube	3183 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.026$
ω and φ scans	$\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
SHELXS97 (Sheldrick,2008)	$k = -13 \rightarrow 16$
$T_{\rm min} = 0.423, \ T_{\rm max} = 0.617$	$l = -11 \rightarrow 20$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.038$	H-atom parameters constrained
$wR(F^2) = 0.102$	$w = 1/[\sigma^2(F_o^2) + (0.0406P)^2 + 1.2463P]$
S = 1.05	where $P = (F_o^2 + 2F_c^2)/3$
3654 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
184 parameters	$\Delta \rho_{\rm max} = 0.55 \ {\rm e} \ {\rm \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.54 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack & Bernardinelli (2000), 614 Friedel pairs
Secondary atom site location: difference Fourier map	Absolute structure parameter: 0.022 (13)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	v	7.	Uico*/Uco	
<u></u>	0 3469 (4)	0 4202 (3)	0 7271 (2)	0.0346 (8)	
C2	0.1795 (4)	0.4202(3) 0.3776(4)	0.7271(2) 0.7462(3)	0.0340(0) 0.0440(9)	
C3	0.1793(1) 0.2012(4)	0.3770(1) 0.4409(4)	0.715(3)	0.0446(9)	
C4	0.1967 (6)	0.1109(1) 0.3884(4)	0.6713(2) 0.5903(3)	0.0570(12)	
H4A	0.0915	0 3999	0.5659	0.068*	
H4B	0.2095	0.3151	0.5979	0.068*	
C5	0.3291 (6)	0.4270(5)	0.5327(3)	0.0598(13)	
H5A	0.2927	0.4188	0.4775	0.072*	
H5B	0.3480	0.4994	0.5421	0.072*	
C6	0.4858(7)	0.3684(5)	0.5444(3)	0.0721 (15)	
H6A	0.5565	0.3853	0.4998	0.086*	
H6B	0.4610	0.2959	0.5401	0.086*	
C7	0.5838 (5)	0.3841(3)	0.6231(2)	0.0446 (9)	
C8	0.4798(5)	0.3470 (3)	0.6986 (2)	0.0354 (8)	
H8	0.4247	0.2840	0.6817	0.043*	
C9	0.5846 (5)	0.3179 (3)	0.7684(2)	0.0384 (8)	
Н9	0.6527	0.2619	0.7611	0.046*	
C10	0.5903 (4)	0.3636 (3)	0.8394 (2)	0.0373 (8)	
C11	0.4874 (5)	0.4553 (3)	0.8571 (2)	0.0370 (8)	
H11	0.4009	0.4346	0.8940	0.044*	
C12	0.4109 (5)	0.5026 (3)	0.7827(2)	0.0391 (8)	
H12A	0.3228	0.5475	0.7987	0.047*	
H12B	0.4908	0.5436	0.7545	0.047*	

C13	0.1283 (6)	0.5488 (4)	0.6685 (3)	0.0684 (14)	
H13A	0.1301	0.5784	0.7214	0.103*	
H13B	0.0185	0.5448	0.6498	0.103*	
H13C	0.1904	0.5907	0.6325	0.103*	
C14	0.7278 (9)	0.3099 (6)	0.6141 (4)	0.093 (2)	
H14A	0.8067	0.3242	0.6550	0.139*	
H14B	0.7761	0.3188	0.5620	0.139*	
H14C	0.6904	0.2406	0.6196	0.139*	
C15	0.6474 (9)	0.4891 (5)	0.6292 (4)	0.0845 (19)	
H15A	0.5591	0.5365	0.6345	0.127*	
H15B	0.7083	0.5052	0.5816	0.127*	
H15C	0.7165	0.4943	0.6754	0.127*	
C16	0.6964 (5)	0.3222 (4)	0.9042 (3)	0.0507 (10)	
H16A	0.7645	0.3769	0.9247	0.061*	
H16B	0.7665	0.2698	0.8817	0.061*	
Cl3	0.14150 (16)	0.24471 (10)	0.74083 (8)	0.0694 (3)	
Cl4	0.06998 (15)	0.42878 (14)	0.82812 (8)	0.0734 (4)	
Br1	0.61787 (8)	0.56321 (4)	0.90951 (3)	0.07068 (18)	
Br2	0.57150 (8)	0.26329 (6)	0.99305 (4)	0.0885 (2)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0338 (17)	0.035 (2)	0.0352 (18)	-0.0032 (15)	-0.0007 (13)	0.0027 (15)
C2	0.0327 (18)	0.053 (3)	0.046 (2)	-0.0103 (17)	0.0056 (15)	0.0024 (19)
C3	0.0342 (18)	0.051 (2)	0.048 (2)	-0.0075 (18)	-0.0073 (15)	0.010 (2)
C4	0.051 (2)	0.076 (3)	0.045 (2)	-0.021 (2)	-0.0154 (19)	0.004 (2)
C5	0.066 (3)	0.080 (3)	0.033 (2)	-0.020 (3)	-0.0090 (18)	0.011 (2)
C6	0.075 (3)	0.091 (4)	0.051 (3)	-0.017 (3)	0.001 (2)	-0.001 (3)
C7	0.045 (2)	0.055 (2)	0.0338 (19)	-0.007 (2)	0.0081 (16)	-0.0015 (17)
C8	0.0395 (19)	0.033 (2)	0.0341 (19)	-0.0040 (15)	0.0043 (14)	-0.0020 (15)
C9	0.0385 (19)	0.0315 (19)	0.045 (2)	0.0062 (15)	0.0033 (16)	0.0031 (16)
C10	0.0346 (18)	0.040 (2)	0.0373 (19)	-0.0006 (16)	0.0011 (15)	0.0059 (16)
C11	0.0401 (19)	0.037 (2)	0.0336 (19)	0.0006 (15)	0.0026 (14)	-0.0077 (16)
C12	0.040 (2)	0.036 (2)	0.041 (2)	0.0055 (16)	-0.0017 (16)	-0.0041 (16)
C13	0.052 (3)	0.075 (4)	0.079 (3)	0.019 (3)	-0.015 (2)	0.016 (3)
C14	0.085 (4)	0.112 (5)	0.082 (4)	0.024 (4)	0.046 (4)	0.006 (4)
C15	0.097 (5)	0.082 (4)	0.074 (4)	-0.046 (4)	0.021 (3)	-0.004 (3)
C16	0.046 (2)	0.057 (3)	0.049 (2)	0.0047 (18)	0.0030 (19)	0.017 (2)
C13	0.0657 (7)	0.0632 (8)	0.0793 (8)	-0.0286 (6)	0.0057 (6)	0.0147 (6)
Cl4	0.0472 (6)	0.1082 (11)	0.0649 (7)	0.0060 (7)	0.0215 (5)	0.0002 (8)
Br1	0.0901 (4)	0.0583 (3)	0.0637 (3)	-0.0039 (3)	-0.0277 (3)	-0.0181 (2)
Br2	0.0869 (4)	0.1127 (5)	0.0659 (4)	-0.0004 (4)	0.0151 (3)	0.0420 (3)
Br1 Br2	0.0901 (4) 0.0869 (4)	0.0583 (3) 0.1127 (5)	0.0659 (4)	-0.0039(3) -0.0004(4)	-0.0277(3) 0.0151(3)	

Geometric parameters (Å, °)

C1—C12	1.513 (5)	С8—Н8	0.9800
C1—C2	1.524 (5)	C9—C10	1.323 (6)

C1—C8	1.529 (5)	С9—Н9	0.9300
C1—C3	1.541 (5)	C10—C16	1.489 (6)
C2—C3	1.502 (6)	C10—C11	1.495 (5)
C2—Cl3	1.763 (5)	C11—C12	1.520 (5)
C2—Cl4	1.765 (4)	C11—Br1	1.975 (4)
C3—C4	1.514 (7)	C11—H11	0.9800
C3—C13	1.531 (7)	C12—H12A	0.9700
C4—C5	1.538 (6)	C12—H12B	0.9700
C4—H4A	0.9700	C13—H13A	0.9600
C4—H4B	0.9700	C13—H13B	0.9600
C5—C6	1.515 (8)	C13—H13C	0.9600
С5—Н5А	0.9700	C14—H14A	0.9600
С5—Н5В	0.9700	C14—H14B	0.9600
C6—C7	1.552 (7)	C14—H14C	0.9600
C6—H6A	0.9700	C15—H15A	0.9600
C6—H6B	0.9700	C15—H15B	0.9600
C7—C15	1.470 (7)	C15—H15C	0.9600
C7—C14	1.540 (8)	C16—Br2	1.959 (4)
C7—C8	1.596 (5)	C16—H16A	0.9700
C8—C9	1.497 (5)	C16—H16B	0.9700
C12—C1—C2	116.6 (3)	С9—С8—Н8	106.2
C12—C1—C8	112.4 (3)	C1—C8—H8	106.2
C2-C1-C8	119.2 (3)	С7—С8—Н8	106.2
C12—C1—C3	121.0 (3)	C10—C9—C8	126.8 (3)
C2—C1—C3	58.7 (3)	С10—С9—Н9	116.6
C8—C1—C3	118.9 (3)	С8—С9—Н9	116.6
C3—C2—C1	61.2 (2)	C9—C10—C16	120.2 (4)
C3—C2—Cl3	121.2 (3)	C9-C10-C11	121.0 (3)
C1 - C2 - C13	120.6 (3)	C16—C10—C11	118.8 (3)
$C_3 - C_2 - C_1 4$	119.5 (3)	C10-C11-C12	113.6 (3)
C1 - C2 - C14	119.2 (3)	C10— $C11$ — $Br1$	110.0(3)
$C_{13} - C_{2} - C_{14}$	108.6(2)	C12— $C11$ — $Br1$	107.3(3)
$C_{2} - C_{3} - C_{4}$	119 1 (4)	C10—C11—H11	108.5
$C_2 = C_3 = C_{13}$	118.9 (4)	C12—C11—H11	108.5
C4 - C3 - C13	110.3(1) 112.1(4)	Br1—C11—H11	108.5
$C_{2} - C_{3} - C_{1}$	601(2)	C1-C12-C11	1107(3)
$C_{4} - C_{3} - C_{1}$	1184(4)	C1 - C12 - H12A	109.5
C_{13} C_{3} C_{13}	110.4(4) 119.2(4)	C11 - C12 - H12A	109.5
C_{3} C_{4} C_{5}	112.2(4) 112.9(4)	C1 - C12 - H12R	109.5
$C_3 = C_4 = C_3$	100.0	C11 C12 H12B	109.5
C_{5} C_{4} H_{4A}	109.0	$H12\Delta$ $C12$ $H12B$	109.5
$C_3 - C_4 - H_A R$	109.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.1
C_{3} C_{4} H_{AB}	109.0	C_{3}	109.5
	109.0	H13A C12 H12D	109.5
$\frac{114}{10}$	107.0 111.2 (A)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_0 = C_2 = C_4$	111.3 (4)	$U_{12} \wedge C_{12} = U_{12} C_{12}$	109.5
$C_0 = C_3 = \Pi_3 A$	109.4	$\begin{array}{c} \Pi I 3 \Lambda \longrightarrow \mathbb{C} \\ \Pi I 3 \Pi D \\ \Pi I 2 \Pi D \\ $	109.3
U 1 —UJ—IIJA	109.4		109.3

С6—С5—Н5В	109.4	C7—C14—H14A	109.5
C4—C5—H5B	109.4	C7—C14—H14B	109.5
H5A—C5—H5B	108.0	H14A—C14—H14B	109.5
C5—C6—C7	119.2 (5)	C7—C14—H14C	109.5
С5—С6—Н6А	107.5	H14A—C14—H14C	109.5
С7—С6—Н6А	107.5	H14B—C14—H14C	109.5
С5—С6—Н6В	107.5	С7—С15—Н15А	109.5
С7—С6—Н6В	107.5	C7—C15—H15B	109.5
H6A—C6—H6B	107.0	H15A—C15—H15B	109.5
C15—C7—C14	108.4 (5)	С7—С15—Н15С	109.5
С15—С7—С6	111.6 (5)	H15A—C15—H15C	109.5
С14—С7—С6	103.8 (4)	H15B—C15—H15C	109.5
С15—С7—С8	114.9 (4)	C10-C16-Br2	112.2 (3)
C14—C7—C8	107.6 (4)	C10-C16-H16A	109.2
C6—C7—C8	110.0 (4)	Br2—C16—H16A	109.2
C9—C8—C1	109.4 (3)	C10-C16-H16B	109.2
C9—C8—C7	112.0 (3)	Br2—C16—H16B	109.2
C1—C8—C7	116.2 (3)	H16A—C16—H16B	107.9