[Journal logo]

Volume 69 
Part 8 
Pages o1266-o1267  
August 2013  

Received 29 June 2013
Accepted 11 July 2013
Online 17 July 2013

Key indicators
Single-crystal X-ray study
T = 293 K
Mean [sigma](C-C) = 0.004 Å
Disorder in main residue
R = 0.077
wR = 0.170
Data-to-parameter ratio = 15.6
Details
Open access

Bis(2,4,6-triaminopyrimidin-1-ium) sulfate pentahydrate

aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
Correspondence e-mail: yupa.t@psu.ac.th

The asymmetric unit of the title salt, 2C4H8N5+·SO42-·5H2O, contains four 2,4,6-triaminopyrimidinium (TAPH+) cations, two sulfate anions and ten lattice water molecules. Each two of the four TAPH+ cations form dimers via N-H...N hydrogen bonds between the amino groups and the unprotonated pyrimidine N atoms [graph-set motif R22(8)]. The (TAPH+)2 dimers, in turn, form slightly offset infinite [pi]-[pi] stacks parallel to [010], with centroid-centroid distances between pyrimidine rings of 3.5128 (15) and 3.6288 (16) Å. Other amino H atoms, as well as the pyrimidinium N-H groups, are hydrogen-bonded to sulfate and lattice water O atoms. The SO42- anions and water molecules are interconnected with each other via O-H...O hydrogen bonds. The combination of hydrogen-bonding interactions and [pi]-[pi] stacking leads to the formation of a three-dimensional network with alternating columns of TAPH+ cations and channels filled with sulfate anions and water molecules. One of the sulfate anions shows a minor disorder by a ca 37° rotation around one of the S-O bonds [occupancy ratio of the two sets of sites 0.927 (3):0.073 (3)]. One water molecule is disordered over two mutually exclusive positions with an occupancy ratio of 0.64 (7):0.36 (7).

Related literature

For background to melamine, see: Wei & Liu (2012[Wei, Y. & Liu, D. (2012). Toxicol. Ind. Health, 28, 579-582.]); Dobson et al. (2008[Dobson, R. L. M., Motlagh, S., Quijano, M., Cambron, R. T., Baker, T. R., Pullen, A. M., Regg, B. T., Bigalow-Kern, A. S., Vennard, T., Fix, A., Reimschuessel, R., Overmann, G., Shan, Y. & Daston, G. P. (2008). Toxicol. Sci. 106, 251-262.]); Whitesides et al. (1991[Whitesides, G. M., Mathias, J. P. & Seto, C. T. (1991). Science, 254, 1312-1319.]). For pyrimidine-metal complexes, see: Zamora et al. (1997[Zamora, F., Kunsman, M., Sabat, M. & Lippart, B. (1997). Inorg. Chem. 36, 1583-1587.]); Louloudi et al. (1997[Louloudi, M., Deligiannakis, Y., Tuchagues, J. P., Donnadien, B. & Nadjiliadis, N. (1997). Inorg. Chem. 36, 6335-6342.]); Jolibois et al. (1998[Jolibois, F., Cadet, J., Grand, A., Subra, R., Raga, N. & Barone, V. (1998). J. Am. Chem. Soc. 120, 1864-1871.]); Katritzky et al. (1984[Katritzky, A. R., Pees, C. W., Boulton, A. J. & Mckillop, C. (1984). J. Heterocycl. Chem. 3, 57-68.]). For carbon protonation of pyrimidines, see: Demeter & Wéber (2004[Demeter, A. & Wéber, C. (2004). Concepts Magn. Reson. 22A, 12-24.]); Németh et al. (2006[Németh, B., Wéber, C., Veszprémi, T., Gáti, T. & Demeter, Á. (2006). J. Org. Chem. 71, 4910-4918.]). For related structures, see: Hemamalini et al. (2005[Hemamalini, M., Muthiah, P. T., Rychlewska, U. & Plutecka, A. (2005). Acta Cryst. C61, o95-o97.]); Krygowski et al. (2005[Krygowski, T. M., Szatylowicz, H. & Zachara, J. E. (2005). J. Org. Chem. 70, 8859-8865.]). For graph-set analysis, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • 2C4H8N5+·SO42-·5H2O

  • Mr = 438.45

  • Triclinic, [P \overline 1]

  • a = 10.6571 (7) Å

  • b = 13.2482 (9) Å

  • c = 15.0132 (10) Å

  • [alpha] = 100.843 (2)°

  • [beta] = 110.596 (2)°

  • [gamma] = 92.096 (2)°

  • V = 1936.6 (2) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 0.23 mm-1

  • T = 293 K

  • 0.22 × 0.11 × 0.03 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.762, Tmax = 1

  • 22960 measured reflections

  • 9354 independent reflections

  • 5782 reflections with I > 2[sigma](I)

  • Rint = 0.052

Refinement
  • R[F2 > 2[sigma](F2)] = 0.077

  • wR(F2) = 0.170

  • S = 1.08

  • 9354 reflections

  • 601 parameters

  • 40 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.37 e Å-3

  • [Delta][rho]min = -0.28 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N4B-H4BA...O17i 0.86 2.15 2.967 (4) 159
N4B-H4BB...O8 0.86 2.07 2.905 (4) 162
N4B-H4BB...O5B 0.86 2.38 3.19 (4) 157
N4A-H4AA...N3Cii 0.86 2.16 3.017 (4) 172
N4A-H4AB...O14 0.86 2.56 3.262 (4) 139
N5B-H5BA...N3Dii 0.86 2.22 3.074 (4) 174
N5B-H5BB...O7iii 0.86 2.20 3.040 (4) 166
N5B-H5BB...O7Biii 0.86 2.10 2.93 (3) 163
N5A-H5AA...O1i 0.86 2.25 2.993 (3) 145
N5A-H5AB...O12 0.86 2.21 3.066 (4) 174
N4D-H4DA...N3Biv 0.86 2.16 3.013 (4) 176
N4D-H4DB...O17v 0.86 2.57 3.248 (4) 137
N4C-H4CA...O12vi 0.86 2.14 2.953 (4) 158
N4C-H4CB...O1 0.86 2.16 2.983 (3) 160
N1D-H1D...O9v 0.86 1.97 2.826 (4) 170
N1C-H1CB...O4 0.86 1.86 2.709 (3) 172
N1B-H1B...O6 0.86 1.92 2.757 (6) 166
N1B-H1B...O6B 0.86 1.91 2.75 (7) 164
N1A-H1A...O14 0.86 1.95 2.793 (4) 166
N5D-H5DA...O8vi 0.86 2.31 3.046 (4) 143
N5D-H5DA...O5Bvi 0.86 2.23 2.99 (5) 147
N5D-H5DB...O17 0.86 2.34 3.193 (4) 173
N5C-H5CA...N3Aiv 0.86 2.14 2.990 (4) 172
N5C-H5CB...O3v 0.86 2.06 2.905 (3) 169
N6A-H6AA...O13 0.86 2.14 2.981 (4) 166
N6A-H6AB...O10 0.86 2.02 2.855 (4) 164
O9-H9C...O7vii 0.80 (2) 1.98 (2) 2.770 (4) 171 (4)
O9-H9C...O8Bvii 0.80 (2) 2.24 (5) 2.84 (3) 133 (3)
N6D-H6DA...O16 0.86 2.08 2.937 (4) 179
N6D-H6DB...O15 0.86 2.16 3.005 (4) 166
N6C-H6CA...O13 0.86 2.14 2.970 (4) 162
N6B-H6BA...O6 0.86 2.60 3.284 (5) 137
N6B-H6BA...O6B 0.86 2.64 3.31 (4) 135
N6B-H6BA...O15 0.86 2.63 3.427 (4) 154
N6B-H6BB...O16 0.86 2.10 2.923 (4) 159
O9-H9D...O2 0.83 (2) 1.93 (2) 2.759 (4) 173 (4)
O10-H10C...O4 0.83 (2) 1.96 (2) 2.780 (4) 172 (6)
O10-H10D...O14 0.81 (2) 2.51 (6) 3.026 (5) 123 (6)
O10-H10D...O18iii 0.81 (2) 2.09 (5) 2.82 (3) 151 (6)
O11-H11C...O18iii 0.86 (2) 2.40 (7) 2.97 (4) 124 (5)
O11-H11C...O18Biii 0.86 (2) 2.12 (4) 2.826 (18) 139 (5)
O11-H11D...O3 0.85 (2) 1.90 (2) 2.745 (4) 171 (5)
O12-H12A...O5 0.82 (2) 1.98 (2) 2.795 (4) 172 (5)
O12-H12A...O5B 0.82 (2) 2.05 (4) 2.81 (3) 156 (5)
O12-H12B...O3viii 0.82 (2) 2.06 (2) 2.856 (4) 165 (5)
O13-H13C...O6 0.82 (2) 2.15 (2) 2.956 (6) 167 (5)
O13-H13C...O6B 0.82 (2) 2.06 (7) 2.87 (6) 167 (5)
O13-H13D...O11viii 0.81 (2) 2.26 (2) 3.063 (5) 175 (5)
O14-H14C...O5iii 0.81 (2) 2.06 (3) 2.792 (4) 152 (5)
O14-H14C...O7Biii 0.81 (2) 2.21 (4) 2.98 (4) 159 (5)
O14-H14D...O11ix 0.81 (2) 1.95 (2) 2.761 (4) 172 (5)
O15-H15C...O9v 0.84 (2) 2.10 (3) 2.894 (4) 158 (5)
O15-H15D...O6 0.83 (2) 2.02 (3) 2.808 (7) 158 (5)
O15-H15D...O6B 0.83 (2) 2.11 (8) 2.90 (8) 159 (5)
O16-H16C...O15vii 0.81 (2) 2.05 (2) 2.855 (5) 171 (5)
O16-H16D...O2 0.82 (2) 2.07 (2) 2.882 (4) 175 (5)
O17-H17A...O1 0.82 (2) 2.09 (2) 2.878 (4) 162 (4)
O17-H17B...O8vii 0.81 (2) 2.07 (2) 2.837 (4) 160 (5)
O17-H17B...O8Bvii 0.81 (2) 1.96 (4) 2.74 (3) 163 (5)
O18-H18C...O7 0.84 (2) 2.04 (11) 2.78 (2) 147 (18)
O18-H18D...O2v 0.84 (2) 2.21 (2) 2.92 (2) 143 (5)
O18B-H18E...O7B 0.84 (2) 1.83 (11) 2.49 (4) 134 (13)
O18B-H18F...O2v 0.83 (2) 2.10 (2) 2.857 (14) 152 (6)
Symmetry codes: (i) x, y, z-1; (ii) x-1, y, z-1; (iii) x-1, y, z; (iv) x+1, y, z+1; (v) x+1, y, z; (vi) x, y, z+1; (vii) -x+1, -y, -z+1; (viii) -x+1, -y+1, -z+1; (ix) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 and SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL2013 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2755 ).


Acknowledgements

Financial support from the Center of Excellence for Innovation in Chemistry (PERCH-CIC), the Office of the Higher Education Commission, Ministry of Education and Department of Chemistry, Prince of Songkla University, is gratefully acknowledged. RN would like to thank Dr Matthias Zeller of Youngstown State University, Ohio, United States, for valuable suggestions and assistance with the X-ray structure refinement.

References

Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Demeter, A. & Wéber, C. (2004). Concepts Magn. Reson. 22A, 12-24.  [Web of Science] [CrossRef] [ChemPort]
Dobson, R. L. M., Motlagh, S., Quijano, M., Cambron, R. T., Baker, T. R., Pullen, A. M., Regg, B. T., Bigalow-Kern, A. S., Vennard, T., Fix, A., Reimschuessel, R., Overmann, G., Shan, Y. & Daston, G. P. (2008). Toxicol. Sci. 106, 251-262.  [Web of Science] [CrossRef] [PubMed] [ChemPort]
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.  [CrossRef] [Web of Science] [IUCr Journals]
Hemamalini, M., Muthiah, P. T., Rychlewska, U. & Plutecka, A. (2005). Acta Cryst. C61, o95-o97.  [CSD] [CrossRef] [IUCr Journals]
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.  [Web of Science] [CrossRef] [IUCr Journals]
Jolibois, F., Cadet, J., Grand, A., Subra, R., Raga, N. & Barone, V. (1998). J. Am. Chem. Soc. 120, 1864-1871.  [Web of Science] [CrossRef] [ChemPort]
Katritzky, A. R., Pees, C. W., Boulton, A. J. & Mckillop, C. (1984). J. Heterocycl. Chem. 3, 57-68.
Krygowski, T. M., Szatylowicz, H. & Zachara, J. E. (2005). J. Org. Chem. 70, 8859-8865.  [CrossRef] [PubMed] [ChemPort]
Louloudi, M., Deligiannakis, Y., Tuchagues, J. P., Donnadien, B. & Nadjiliadis, N. (1997). Inorg. Chem. 36, 6335-6342.  [Web of Science] [CrossRef] [ChemPort]
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Németh, B., Wéber, C., Veszprémi, T., Gáti, T. & Demeter, Á. (2006). J. Org. Chem. 71, 4910-4918.  [PubMed]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Wei, Y. & Liu, D. (2012). Toxicol. Ind. Health, 28, 579-582.  [Web of Science] [CrossRef] [ChemPort] [PubMed]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Whitesides, G. M., Mathias, J. P. & Seto, C. T. (1991). Science, 254, 1312-1319.  [CrossRef] [PubMed] [ChemPort] [Web of Science]
Zamora, F., Kunsman, M., Sabat, M. & Lippart, B. (1997). Inorg. Chem. 36, 1583-1587.  [CrossRef] [PubMed] [ChemPort] [Web of Science]


Acta Cryst (2013). E69, o1266-o1267   [ doi:10.1107/S1600536813019223 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.