Structure Reports

Online
ISSN 1600-5368

Distrontium trimanganese(II) bis(hydrogenphosphate) bis(orthophosphate)

Jamal Khmiyas,* Abderrazzak Assani, Mohamed Saadi and Lahcen El Ammari

Laboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco Correspondence e-mail: j_khmiyas@yahoo.fr

Received 4 July 2013; accepted 8 July 2013
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{P}-\mathrm{O})=0.001 \AA$; R factor $=0.019 ; w R$ factor $=0.045 ;$ data-to-parameter ratio $=27.3$.

The title compound, $\mathrm{Sr}_{2} \mathrm{Mn}_{3}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2}$, was synthesized under hydrothermal conditions. In the structure, one of two Mn atoms is located on an inversion centre, whereas all others atoms are located in general positions. The framework structure is built up from two types of MnO_{6} octahedra (one almost undistorted, one considerably distorted), one $\mathrm{PO}_{3} \mathrm{OH}$ and one PO_{4} tetrahedron. The centrosymmetric MnO_{6} octahedron is linked to two other MnO_{6} octahedra by edgesharing, forming infinite zigzag chains parallel to [010]. The $\mathrm{PO}_{3} \mathrm{OH}$ and PO_{4} tetrahedra connect these chains through common vertices or edges, resulting in the formation of sheets parallel to (100). The Sr^{2+} cation is located in the interlayer space and is bonded to nine O atoms in form of a distorted polyhedron and enhances the cohesion of the layers. Additional stabilization is achieved by a strong interlayer $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond between the $\mathrm{PO}_{3} \mathrm{OH}$ and PO_{4} units. The structure of the title phosphate is isotypic to that of $\mathrm{Pb}_{2} \mathrm{Mn}_{3}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2}$.

Related literature

For isotypic $\mathrm{Pb}_{2} \mathrm{Mn}_{3}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2}$, see: Assani et al. (2012b). For related structures, see: Assani et al. (2012a); Effenberger (1999). For the thermal stability of similar compounds, see: Morozov et al. (2003). For applications of phosphates, see: Cheetham et al. (1999); Viter \& Nagornyi (2009); Forster et al. (2003); Clearfield (1988); Joschi et al. (2008); Trad et al. (2010).

Experimental

Crystal data

$\mathrm{Sr}_{2} \mathrm{Mn}_{3}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2} \quad b=8.7793$ (2) \AA
$M_{r}=721.96 \quad c=9.6165$ (2) \AA
Monoclinic, $P 2_{b} / c$
$\begin{aligned} & =9.6165(2) \\ \beta & =101.434(1)^{\circ}\end{aligned}$
$a=7.8535$ (1) A

$Z=2$

Mo $K \alpha$ radiation
$\mu=11.58 \mathrm{~mm}^{-1}$

Data collection

Bruker APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2009)
$T_{\text {min }}=0.046, T_{\text {max }}=0.215$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
115 parameters
$w R\left(F^{2}\right)=0.045$
H -atom parameters constrained
$S=1.06$
3138 reflections
$T=296 \mathrm{~K}$
$0.33 \times 0.24 \times 0.12 \mathrm{~mm}$

12425 measured reflections 3138 independent reflections 2874 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.025$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O8-H8 $\cdots \mathrm{O} 4$	0.82	1.66	$2.4828(14)$	177

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2758).

References

Assani, A., Saadi, M., Zriouil, M. \& El Ammari, L. (2012a). Acta Cryst. E68, i30.
Assani, A., Saadi, M., Zriouil, M. \& El Ammari, L. (2012b). Acta Cryst. E68, i66.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cheetham, A. K., Férey, G. \& Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268-3292.
Clearfield, A. (1988). Chem. Rev. 88, 125-148.
Effenberger, H. (1999). J. Solid State Chem. 142, 6-13.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Forster, P. M., Eckert, J., Chang, J.-S., Park, J.-S., Férey, G. \& Cheatham, A. K. (2003). J. Am. Chem. Soc. 125, 1309-1312.

Joschi, R., Patel, H. \& Chudasama, U. (2008). Indian J. Chem. Technol. 15, 238-243.
Morozov, V. A., Pokholok, K. V., Lazoryak, B. I., Malakho, A. P., Lachgar, A., Lebedev, O. I. \& Van Tendeloo, G. (2003). J. Solid State Chem. 170, 411-417.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Trad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M. \& Delmas, C. (2010). Chem. Mater. 22, 5554-5562

Viter, V. N. \& Nagornyi, P. G. (2009). Russ. J. Appl. Chem. 82, 935-939.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2013). E69, i50 [doi:10.1107/S1600536813018898]

Distrontium trimanganese(II) bis(hydrogenphosphate) bis(orthophosphate)

Jamal Khmiyas, Abderrazzak Assani, Mohamed Saadi and Lahcen El Ammari

S1. Comment

Widespread studies were devoted to metal-based phosphates, either with open-framework structures, or in terms of porous materials. Within those materials, the anionic framework, generally constructed from PO_{4} tetrahedra connected to metal (M) cations in different coordination environments $M \mathrm{O}_{n}$ (with $n=4,5$ and 6), can generate pores and channels offering a suitable environment to accommodate various other cations. Besides their high chemical activity and their thermal stability (Morozov et al., 2003), such metal-based phosphates have some interesting properties leading to applications such as in catalysis (Cheetham et al., 1999; Viter \& Nagornyi, 2009), ion-exchangers (Clearfield, 1988; Joschi et al., 2008), gas sorption (Forster et al., 2003), or batteries (Trad et al., 2010).
Our interest is particularly focused on hydrothermally synthesized orthophosphates within the ternary systems MO$M^{\prime} \mathrm{O}-\mathrm{P}_{2} \mathrm{O}_{5}$ with M and $M^{\prime}=$ divalent cations. We have recently characterized some new lead cobalt or manganese phosphates, viz. $\mathrm{Co}_{2} \mathrm{~Pb}\left(\mathrm{HPO}_{4}\right)\left(\mathrm{PO}_{4}\right) \mathrm{OH} \cdot \mathrm{H}_{2} \mathrm{O}$ (Assani et al., 2012a) and $\mathrm{Pb}_{2} \mathrm{Mn}_{3}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2}$ (Assani et al., 2012b). In line with the focus of our research, the present paper describes the hydrothermal synthesis and the structural characterization of a new strontium manganese phosphate, $\mathrm{Sr}_{2} \mathrm{Mn}_{3}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2}$, that is isotypic with its lead analogue, $\mathrm{Pb}_{2} \mathrm{Mn}_{3}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2}$. These two phosphates are characterized by an $\mathrm{Mn}: \mathrm{P}$ ratio $=3: 4$, which is rarely observed, with the exception of some copper-based orthophosphates, $\mathrm{Pb}_{3} \mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{4}$ and $\mathrm{Sr}_{3} \mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{4}($ Effenberger, 1999 $)$, also with $\mathrm{Cu}: \mathrm{P}=$ 3:4.
In the structure of the title compound, one of the two manganese sites (Mn1) is located on a centre of inversion, while all remaining atoms are in general positions. A part of the structure, as given in Fig. 1, shows the different types of polyhedra around the metal positions and the P atoms. The centrosymmetric $\mathrm{Mn}_{1} \mathrm{O}_{6}$ octahedron is linked to two distorted $\mathrm{Mn} 2 \mathrm{O}_{6}$ octahedra by a common edge, thus forming infinite zigzag chains with composition $\left[\mathrm{Mn}_{3} \mathrm{O}_{14}\right]_{\infty}$ running parallel to [010] (Fig. 2). Adjacent chains are linked to each other through PO_{4} and $\mathrm{PO}_{3} \mathrm{OH}$ tetrahedra, via common corners or edges, leading to the formation of layers parallel to (100). The cohesion of the crystal structure is ensured on one hand by the presence of the Sr^{2+} cations in the interlayer space and on the other hand by strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between sheets (Fig. 2 and Table 2).
In the structure of the title compound, the Sr^{2+} cation is surrounded by nine O atoms instead of eight as in the case of $\mathrm{Pb}_{2} \mathrm{Mn}_{3}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2}$. All other bond lengths and angles are similar in the two structures, with the exception of the Mn 2 -O bond lengths. In the title structure, four medium-long bonds in the range 2.1189 (10) to 2.1875 (9) \AA and two longer bonds of 2.4079 (12) and 2.4609 (11) \AA are observed, whereas in the lead analogue five medium-long bonds in the range 2.094 (4) to 2.235 (4) \AA and one considerably long bond of 2.610 (4) \AA is observed.

S2. Experimental

Transparent crystals of $\mathrm{Sr}_{2} \mathrm{Mn}_{3}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2}$ were isolated from hydrothermal treatment of the reaction mixture of strontium, manganese, sodium and phosphate precursors in a proportion corresponding to the molar ratio $\mathrm{Sr}: \mathrm{Mn}: \mathrm{Na}: \mathrm{P}$:
$=4: 4.5: 1: 6$. The hydrothermal reaction was conducted in a 23 ml Teflon-lined autoclave filled to 50% with distilled water and under autogenously pressure at 473 K for five days. After being filtered off, washed with deionized water and air-dried, the reaction product consisted of colourless crystals with a platy form.

S3. Refinement

The O-bound H atom was initially located in a difference map and refined with $\mathrm{O}-\mathrm{H}$ distance restraint of 0.82 (1) \AA. In the last cycle it was refined in the riding model approximation with $U_{\text {iso }}(\mathrm{H})$ set to $1.5 \mathrm{Ueq}(\mathrm{O})$. The highest peak and the deepest hole in the final Fourier map are at $0.64 \AA$ and $0.55 \AA$, from Mn2.

Figure 1
A partial plot of the crystal structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) $-x+1, y-1 / 2,-z+1 / 2$; (ii) $-x+1,-y+1,-z+1$; (iii) $x,-y+3 / 2, z-1 / 2$; (iv) $-x+2,-y+1,-z+$ $1 ;(\mathrm{v}) x+1,-y+3 / 2, z+1 / 2$; (vi) $x+1, y, z$; (vii) $-x+1, y+1 / 2,-z+1 / 2$; (viii) $x,-y+3 / 2, z+1 / 2$.

Figure 2
Polyhedral representation of $\mathrm{Sr}_{2} \mathrm{Mn}_{3}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2}$, showing Sr^{2+} cations between layers and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (dashed lines) between the sheets.

Distrontium trimanganese(II) bis(hydrogenphosphate) bis(orthophosphate)
Crystal data
$\mathrm{Sr}_{2} \mathrm{Mn}_{3}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2}$
$M_{r}=721.96$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=7.8535$ (1) \AA
$b=8.7793$ (2) \AA
$c=9.6165$ (2) \AA
$\beta=101.434(1)^{\circ}$
$V=649.88(2) \AA^{3}$
$Z=2$
$F(000)=682$
$D_{\mathrm{x}}=3.689 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3138 reflections
$\theta=2.7-36.3^{\circ}$
$\mu=11.58 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Sheet, colourless
$0.33 \times 0.24 \times 0.12 \mathrm{~mm}$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker (2009)
$T_{\min }=0.046, T_{\text {max }}=0.215$

12425 measured reflections
3138 independent reflections
2874 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=36.3^{\circ}, \theta_{\text {min }}=2.7^{\circ}$
$h=-13 \rightarrow 12$
$k=-14 \rightarrow 14$
$l=-16 \rightarrow 16$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.045$
$S=1.06$
3138 reflections
115 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier \quad map
> Hydrogen site location: difference Fourier map
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0211 P)^{2}+0.239 P\right]$
> \quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.002$
> $\Delta \rho_{\max }=0.58$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.54 \mathrm{e}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against all reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Sr1	$0.573794(17)$	$0.478038(15)$	$0.234323(14)$	$0.00999(3)$
Mn1	1.0000	0.5000	0.5000	$0.00677(5)$
Mn2	$0.89650(3)$	$0.85638(2)$	$0.40357(2)$	$0.00891(4)$
P1	$0.14462(4)$	$0.70256(4)$	$0.22974(3)$	$0.00542(6)$
P2	$0.65079(4)$	$0.71451(4)$	$0.56233(3)$	$0.00649(6)$
O1	$0.06059(13)$	$0.67784(12)$	$0.35944(10)$	$0.00966(17)$
O2	$0.06622(13)$	$0.59473(11)$	$0.10796(10)$	$0.01019(17)$
O3	$0.11920(13)$	$0.86980(11)$	$0.18530(11)$	$0.01016(17)$
O4	$0.34252(13)$	$0.67330(12)$	$0.27411(10)$	$0.01050(17)$
O5	$0.70244(14)$	$0.69325(14)$	$0.72158(10)$	$0.0141(2)$
O6	$0.75819(13)$	$0.62546(12)$	$0.47491(11)$	$0.01179(18)$
O7	$0.65059(15)$	$0.88211(12)$	$0.51673(11)$	$0.01383(19)$
O8	$0.45824(13)$	$0.65486(13)$	$0.53325(11)$	$0.01209(19)$
H8	0.4169	0.6607	0.4482	0.018^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sr1	$0.00960(6)$	$0.01026(6)$	$0.01085(5)$	$0.00204(4)$	$0.00384(4)$	$0.00216(4)$
Mn1	$0.00742(11)$	$0.00597(11)$	$0.00692(11)$	$0.00076(8)$	$0.00144(8)$	$-0.00002(8)$
Mn2	$0.00962(9)$	$0.00758(9)$	$0.00837(8)$	$0.00006(6)$	$-0.00103(6)$	$-0.00030(6)$
P1	$0.00572(12)$	$0.00557(12)$	$0.00475(12)$	$-0.00013(10)$	$0.00052(9)$	$0.00000(9)$
P2	$0.00632(13)$	$0.00796(13)$	$0.00540(12)$	$0.00034(10)$	$0.00167(10)$	$-0.00007(10)$
O1	$0.0108(4)$	$0.0108(4)$	$0.0085(4)$	$0.0003(3)$	$0.0047(3)$	$0.0012(3)$
O2	$0.0137(4)$	$0.0079(4)$	$0.0073(4)$	$-0.0001(3)$	$-0.0019(3)$	$-0.0020(3)$

O3	$0.0126(4)$	$0.0057(4)$	$0.0109(4)$	$0.0000(3)$	$-0.0007(3)$	$0.0021(3)$
O4	$0.0064(4)$	$0.0154(5)$	$0.0093(4)$	$0.0019(3)$	$0.0007(3)$	$0.0004(3)$
O5	$0.0105(4)$	$0.0256(6)$	$0.0055(4)$	$-0.0009(4)$	$0.0002(3)$	$0.0008(4)$
O6	$0.0109(4)$	$0.0151(5)$	$0.0104(4)$	$0.0054(4)$	$0.0047(3)$	$-0.0002(3)$
O7	$0.0202(5)$	$0.0076(4)$	$0.0148(4)$	$-0.0001(4)$	$0.0061(4)$	$0.0003(3)$
O8	$0.0074(4)$	$0.0203(5)$	$0.0083(4)$	$-0.0033(4)$	$0.0008(3)$	$0.0009(3)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Sr1-O3 ${ }^{\text {i }}$	2.5641 (10)	$\mathrm{Mn} 2-\mathrm{O} 1^{\text {vi }}$	2.1248 (10)
Sr1-O4	2.5806 (10)	$\mathrm{Mn} 2-\mathrm{O} 5^{\text {iii }}$	2.1256 (10)
$\mathrm{Sr} 1-\mathrm{O} 8^{\text {ii }}$	2.5775 (11)	$\mathrm{Mn} 2-\mathrm{O} 2^{\text {v }}$	2.1875 (9)
Sr1-07 ${ }^{\text {iii }}$	2.5981 (11)	$\mathrm{Mn} 2-\mathrm{O} 7$	2.4079 (12)
$\mathrm{Sr} 1-\mathrm{O} 5^{\text {ii }}$	2.7409 (11)	Mn2-O6	2.4609 (11)
Sr1-O4 ${ }^{\text {i }}$	2.7599 (11)	P1-O3	1.5312 (10)
Sr1-O6	2.7923 (10)	P1-O2	1.5365 (10)
Sr1-O7 ${ }^{\text {i }}$	2.8207 (11)	P1-O1	1.5377 (10)
Sr1-O5 ${ }^{\text {iii }}$	3.0680 (12)	P1-04	1.5494 (10)
Mn1-O6	2.1670 (10)	P2-O5	1.5160 (10)
Mn1- $\mathrm{O}^{\text {iv }}$	2.1670 (10)	P2-O6	1.5201 (11)
$\mathrm{Mn} 1-\mathrm{O}^{\text {v }}$	2.1672 (9)	P2-O7	1.5352 (11)
$\mathrm{Mnl-O3}{ }^{\text {i }}$	2.1672 (9)	P2-O8	1.5721 (11)
$\mathrm{Mn} 1-\mathrm{O}{ }^{\text {ii }}$	2.1786 (10)	$\mathrm{P} 2-\mathrm{Sr} 1^{\text {vii }}$	3.2838 (4)
$\mathrm{Mn} 1-\mathrm{O} 1^{\text {vi }}$	2.1786 (10)	O8-H8	0.8200
$\mathrm{Mn} 2-\mathrm{O} 2{ }^{\text {vii }}$	2.1189 (10)		
O3 ${ }^{\text {i }} \mathrm{Sr} 1-\mathrm{O} 4$	148.09 (3)	$\mathrm{O6}^{\text {iv }}-\mathrm{Mn} 1-\mathrm{O}^{\text {i }}$	92.85 (4)
$\mathrm{O} 3{ }^{\text {i }}$ - $\mathrm{Sr} 1-\mathrm{O}^{\text {ii }}$	79.54 (3)	$\mathrm{O} 3^{v}-\mathrm{Mn} 1-\mathrm{O} 3^{\text {i }}$	180.0
$\mathrm{O} 4-\mathrm{Sr} 1-\mathrm{O}^{\text {ii }}$	88.83 (3)	O6-Mnl-O1 ${ }^{\text {ii }}$	97.99 (4)
O3i-Sr1-O7iii	93.63 (3)	$\mathrm{O}^{\mathrm{iv}}-\mathrm{Mn1}-\mathrm{O} 1^{\text {ii }}$	82.01 (4)
$\mathrm{O} 4-\mathrm{Sr1}-\mathrm{O} 7{ }^{\text {iii }}$	95.05 (3)	$\mathrm{O} 3^{\mathrm{v}}-\mathrm{Mn} 1-\mathrm{O} 1^{\text {ii }}$	88.84 (4)
O8 ${ }^{\text {ii- }}$ - Sr1-O7 ${ }^{\text {iii }}$	172.09 (3)	$\mathrm{O} 3-\mathrm{Mn} 1-\mathrm{O} 1^{\text {ii }}$	91.16 (4)
$\mathrm{O} 3-\mathrm{Sr} 1-\mathrm{O} 5^{\text {ii }}$	118.41 (3)	$\mathrm{O} 6-\mathrm{Mn} 1-\mathrm{O} 1^{\text {vi }}$	82.01 (4)
$\mathrm{O} 4-\mathrm{Sr} 1-\mathrm{O} 5^{\text {ii }}$	74.91 (4)	O6 ${ }^{\text {iv }}-\mathrm{Mn} 1-\mathrm{O} 1^{\text {vi }}$	97.99 (4)
$\mathrm{O} 8^{\text {ii- }} \mathrm{Sr} 1-\mathrm{O} 5^{\text {ii }}$	53.21 (3)	$\mathrm{O}^{\mathrm{v}}-\mathrm{Mn} 1-\mathrm{O} 1^{\text {vi }}$	91.16 (4)
O7iii- $\mathrm{Sr}^{\text {i }}-\mathrm{O} 5^{\text {ii }}$	134.52 (3)	O3i-Mn1-O1 ${ }^{\text {vi }}$	88.84 (4)
$\mathrm{O} 3-\mathrm{Sr} 1-\mathrm{O} 4^{\text {i }}$	55.56 (3)	$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Mn} 1-\mathrm{O} 1^{\text {vi }}$	180.0
$\mathrm{O} 4-\mathrm{Sr} 1-\mathrm{O} 4^{\text {i }}$	145.79 (2)	$\mathrm{O} 2{ }^{\text {vii }}-\mathrm{Mn} 2-\mathrm{O}^{\text {vi }}$	128.50 (4)
$\mathrm{O} 8^{\mathrm{ii}}-\mathrm{Srl}-\mathrm{O} 4^{\text {i }}$	69.60 (3)	$\mathrm{O} 2{ }^{\text {vii }}-\mathrm{Mn} 2-\mathrm{O} 5^{\text {iii }}$	104.08 (4)
$\mathrm{O} 7^{\text {iii }}-\mathrm{Sr} 1-\mathrm{O} 4^{\text {i }}$	109.86 (3)	$\mathrm{O} 1{ }^{\text {vi}}-\mathrm{Mn} 2-\mathrm{O} 5{ }^{\text {iii }}$	92.78 (4)
$\mathrm{O} 5^{\text {ii- }} \mathrm{Sr} 1-\mathrm{O} 4^{\text {i }}$	70.92 (3)	$\mathrm{O} 2{ }^{\text {vii }}-\mathrm{Mn} 2-\mathrm{O} 2^{\text {v }}$	77.72 (4)
O3 ${ }^{\text {i }}$ - $\mathrm{Sr} 1-\mathrm{O} 6$	67.65 (3)	$\mathrm{O} 1^{\text {vi}}-\mathrm{Mn} 2-\mathrm{O} 2^{\text {v }}$	92.21 (4)
$\mathrm{O} 4-\mathrm{Sr} 1-\mathrm{O} 6$	80.44 (3)	$\mathrm{O} 5^{\text {iii }}-\mathrm{Mn} 2-\mathrm{O} 2^{\mathrm{v}}$	171.78 (4)
O8ii-Sr1-O6	67.36 (3)	$\mathrm{O} 2{ }^{\text {vii }}-\mathrm{Mn} 2-\mathrm{O} 7$	93.58 (4)
O7iii-Sr1-O6	106.45 (3)	$\mathrm{O} 1^{\text {vi}}-\mathrm{Mn} 2-\mathrm{O} 7$	137.06 (4)
$\mathrm{O} 5^{\mathrm{ii}}$ - $\mathrm{Sr} 1-\mathrm{O} 6$	114.99 (3)	$\mathrm{O} 5^{\text {iii }}-\mathrm{Mn} 2-\mathrm{O} 7$	83.28 (4)
O4--Sr1-O6	112.72 (3)	$\mathrm{O} 2{ }^{\mathrm{v}}-\mathrm{Mn} 2-\mathrm{O} 7$	88.62 (4)
$\mathrm{O} 3{ }^{\text {i }}$ - $\mathrm{Sr} 1-\mathrm{O}^{\text {i }}$	122.54 (3)	$\mathrm{O} 2{ }^{\text {vii }}-\mathrm{Mn} 2-\mathrm{O} 6$	154.34 (4)

$\mathrm{O} 4-\mathrm{Sr} 1-\mathrm{O}^{\text {i }}$	89.23 (3)	$\mathrm{O} 1{ }^{\text {vi}}-\mathrm{Mn} 2-\mathrm{O} 6$	76.51 (4)
$\mathrm{O} 8^{\mathrm{ii}}-\mathrm{Sr} 1-\mathrm{O}^{\text {i }}$	117.08 (3)	$\mathrm{O} 5^{\text {iii }}-\mathrm{Mn} 2-\mathrm{O} 6$	77.09 (4)
O7iii-Sr1-O7 ${ }^{\text {i }}$	69.95 (4)	O2v-Mn2-O6	97.77 (4)
$\mathrm{O} 5^{\mathrm{ii}}-\mathrm{Sr} 1-\mathrm{O}^{\text {i }}$	65.75 (3)	O7-Mn2-O6	60.88 (4)
$\mathrm{O} 4-\mathrm{Sr} 1-\mathrm{O} 7^{\mathrm{i}}$	78.31 (3)	$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 2$	111.57 (5)
O6-Sr1-O7 ${ }^{\text {i }}$	168.81 (3)	$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 1$	107.97 (6)
O3 ${ }^{\text {i }}$ - Sr1-O5 ${ }^{\text {iii }}$	93.62 (3)	$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 1$	111.08 (6)
$\mathrm{O} 4-\mathrm{Sr} 1-\mathrm{O} 5^{\text {iii }}$	68.17 (3)	$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 4$	107.70 (6)
$\mathrm{O} 8^{\mathrm{ii}}-\mathrm{Sr} 1-\mathrm{O}{ }^{\text {iii }}$	123.36 (3)	$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 4$	109.65 (6)
O7iii-Sr1-O5 ${ }^{\text {iii }}$	52.59 (3)	$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 4$	108.76 (6)
$\mathrm{O} 5^{\text {iii }}-\mathrm{Sr} 1-\mathrm{O}{ }^{\text {iii }}$	143.06 (3)	O5-P2-O6	115.38 (6)
$\mathrm{O} 4{ }^{\text {i }}$ - Sr1-O5 ${ }^{\text {iii }}$	145.93 (3)	$\mathrm{O} 5-\mathrm{P} 2-\mathrm{O} 7$	113.04 (6)
O6-Sr1-O5 $5^{\text {iii }}$	58.42 (3)	O6-P2-O7	107.71 (6)
O7- $7^{\text {i }} \mathrm{Sr} 1-\mathrm{O} 5^{\text {iii }}$	113.67 (3)	O5-P2-O8	101.19 (6)
O6-Mn1- $\mathrm{O}^{\text {iv }}$	180.0	O6-P2-O8	110.48 (6)
O6-Mn1-O3 ${ }^{\text {v }}$	92.85 (4)	O7-P2-O8	108.78 (6)
$\mathrm{O}^{\mathrm{iv}}-\mathrm{Mn} 1-\mathrm{O} 3^{\mathrm{v}}$	87.15 (4)	$\mathrm{O} 5-\mathrm{P} 2-\mathrm{Mn} 2$	120.08 (4)
$\mathrm{O} 6-\mathrm{Mn} 1-\mathrm{O} 3^{\text {i }}$	87.15 (4)		

Symmetry codes: (i) $-x+1, y-1 / 2,-z+1 / 2$; (ii) $-x+1,-y+1,-z+1$; (iii) $x,-y+3 / 2, z-1 / 2$; (iv) $-x+2,-y+1,-z+1$; (v) $x+1,-y+3 / 2, z+1 / 2$; (vi) $x+1, y, z$; (vii) $-x+1, y+1 / 2,-z+1 / 2$; (viii) $x,-y+3 / 2, z+1 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 8-\mathrm{H} 8 \cdots \mathrm{O} 4$	0.82	1.66	$2.4828(14)$	177

