[Journal logo]

Volume 69 
Part 8 
Pages m435-m436  
August 2013  

Received 22 June 2013
Accepted 1 July 2013
Online 6 July 2013

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.003 Å
Disorder in main residue
R = 0.020
wR = 0.042
Data-to-parameter ratio = 20.0
Details
Open access

Dichloridobis[3-(4-methoxyphenyl)-2-methyl-5-(piperidin-1-yl)-2,3-dihydro-1,2,4-oxadiazole-[kappa]N4]platinum(II)

aDepartment of Chemistry, Saint Petersburg State University, Universitetsky Pr. 26, 198504 Stary Petergof, Russian Federation, and bO.O. Bohomolets National Medical University, Department of General Chemistry, Shevchenko blvd. 13, 01004 Kiev, Ukraine
Correspondence e-mail: kalibabchuk@ukr.net

In title compound, [PtCl2(C15H21N3O2)2], the PtII cation, located on an inversion center, is coordinated by two Cl- anions and two 3-(4-methoxyphenyl)-2-methyl-5-(piperidin-1-yl)-2,3-dihydro-1,2,4-oxadiazole ligands in a distorted Cl2N2 square-planar geometry. The dihydrooxadiazole and piperidine rings display envelope (with the non-coordinating N atom as the flap atom) and chair conformations, respectively. In the crystal, weak C-H...Cl hydrogen bonds link the molecules into supramolecular chains running along the b axis. The piperidine ring is disordered over two positions with the occupancy ratio of 0.528 (4):0.472 (4).

Related literature

For applications of platinum species bearing N-bound 2,3-dihydro-1,2,4-oxadiazoles, see: Coley et al. (2008[Coley, H. M., Sarju, J. & Wagner, G. (2008). J. Med. Chem. 51, 135-141.]); Wagner et al. (2010[Wagner, G., Marchant, A. & Sayer, J. (2010). Dalton Trans. 39, 7747-7759.]). For the synthesis of platinum complexes bearing 2,3-dihydro-1,2,4-oxadiazole ligands, see: Kritchenkov et al. (2011[Kritchenkov, A. S., Bokach, N. A., Haukka, M. & Kukushkin, V. Y. (2011). Dalton Trans. 40, 4175-4182.]). For related structures, see: Bokach & Kukushkin (2006[Bokach, N. A. & Kukushkin, V. Y. (2006). Russ. Chem. Bull. 55, 1869-1882.]); Bokach et al. (2011[Bokach, N. A., Balova, I. A., Haukka, M. & Kukushkin, V. Y. (2011). Organometallics, 30, 595-602.]); Fritsky et al. (2006[Fritsky, I. O., Kozlowski, H., Kanderal, O. M., Haukka, M., Swiatek-Kozlowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125-4127.]); Penkova et al. (2009[Penkova, L. V., Maciag, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozlowski, H., Meyer, F. & Fritsky, I. O. (2009). Inorg. Chem. 48, 6960-6971.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [PtCl2(C15H21N3O2)2]

  • Mr = 816.69

  • Monoclinic, P 21 /n

  • a = 12.77795 (19) Å

  • b = 8.57581 (15) Å

  • c = 15.1086 (3) Å

  • [beta] = 95.0717 (17)°

  • V = 1649.13 (5) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 4.46 mm-1

  • T = 100 K

  • 0.22 × 0.18 × 0.15 mm

Data collection
  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.617, Tmax = 1.000

  • 13705 measured reflections

  • 5072 independent reflections

  • 3997 reflections with I > 2[sigma](I)

  • Rint = 0.026

Refinement
  • R[F2 > 2[sigma](F2)] = 0.020

  • wR(F2) = 0.042

  • S = 1.05

  • 5072 reflections

  • 253 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 1.00 e Å-3

  • [Delta][rho]min = -0.64 e Å-3

Table 1
Selected bond lengths (Å)

Pt1-N3 2.0293 (16)
Pt1-Cl1 2.3108 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
C14-H14C...Cl1i 0.96 2.76 3.423 (3) 127
Symmetry code: (i) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). Diamond. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5715 ).


Acknowledgements

This work was supported by a Saint Petersburg State University research grant (2013-2015, 12.38.781.2013) and the RFBR 12-03-33071. The XRD study was performed at the X-ray Diffraction Centre of Saint Petersburg State University.

References

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
Bokach, N. A., Balova, I. A., Haukka, M. & Kukushkin, V. Y. (2011). Organometallics, 30, 595-602.  [CSD] [CrossRef] [ChemPort]
Bokach, N. A. & Kukushkin, V. Y. (2006). Russ. Chem. Bull. 55, 1869-1882.  [Web of Science] [CrossRef] [ChemPort]
Brandenburg, K. (2009). Diamond. Crystal Impact GbR, Bonn, Germany.
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Coley, H. M., Sarju, J. & Wagner, G. (2008). J. Med. Chem. 51, 135-141.  [Web of Science] [CrossRef] [PubMed] [ChemPort]
Fritsky, I. O., Kozlowski, H., Kanderal, O. M., Haukka, M., Swiatek-Kozlowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125-4127.  [CSD] [CrossRef]
Kritchenkov, A. S., Bokach, N. A., Haukka, M. & Kukushkin, V. Y. (2011). Dalton Trans. 40, 4175-4182.  [CSD] [CrossRef] [ChemPort] [PubMed]
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. New York: Academic Press.
Penkova, L. V., Maciag, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozlowski, H., Meyer, F. & Fritsky, I. O. (2009). Inorg. Chem. 48, 6960-6971.  [Web of Science] [CSD] [CrossRef] [PubMed] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Wagner, G., Marchant, A. & Sayer, J. (2010). Dalton Trans. 39, 7747-7759.  [CrossRef] [ChemPort] [PubMed]


Acta Cryst (2013). E69, m435-m436   [ doi:10.1107/S1600536813018059 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.