supplementary materials


xu5715 scheme

Acta Cryst. (2013). E69, m435-m436    [ doi:10.1107/S1600536813018059 ]

Dichloridobis[3-(4-methoxyphenyl)-2-methyl-5-(piperidin-1-yl)-2,3-dihydro-1,2,4-oxadiazole-[kappa]N4]platinum(II)

A. S. Kritchenkov, L. V. Lavnevich, G. L. Starova, N. A. Bokach and V. A. Kalibabchuk

Abstract top

In title compound, [PtCl2(C15H21N3O2)2], the PtII cation, located on an inversion center, is coordinated by two Cl- anions and two 3-(4-methoxyphenyl)-2-methyl-5-(piperidin-1-yl)-2,3-dihydro-1,2,4-oxadiazole ligands in a distorted Cl2N2 square-planar geometry. The dihydrooxadiazole and piperidine rings display envelope (with the non-coordinating N atom as the flap atom) and chair conformations, respectively. In the crystal, weak C-H...Cl hydrogen bonds link the molecules into supramolecular chains running along the b axis. The piperidine ring is disordered over two positions with the occupancy ratio of 0.528 (4):0.472 (4).

Comment top

In the past decade, a great attention has been paid to metal-mediated cycloaddition (CA) of dipoles to nitriles because the activation of nitrile substrates by a suitable metal center often results in promotion of CAs, which are not feasible in so-called pure organic chemistry (Coley et al., 2008, Wagner et al., 2010). Thus, the metal-mediated CA represents an efficient route to free and/or coordinated heterocycles that could be either difficult to obtain or even inaccessible via metal-free protocols (Bokach et al., 2006, 2011). Furthermore, an interest in 2,3-dihydro-1,2,4-oxadiazole and their platinum complexes is caused by their potential application in medicine. Despite 2,3-dihydro-1,2,4-oxadiazoles are known, examples of 5-dialkylamino-2,3-dihydro-1,2,4-oxadiazoles and, in particular, their metal complexes are rare. Therefore, the synthesis of new complexes bearing the rare heterocycles as ligands and investigation of their properties, including their biological activity, are of interest. As an amplification of our project focused on metal-mediated CA and reactivity of metal-bound dialkylcyanamides (Kritchenkov et al., 2011)) we synthesized and characterized the title compound by a single-crystal X-ray diffraction.

In the crystal structure of the title compound, the Pt atom is in the inversion center and coordinated by two Cl atoms and two N atoms (Fig. 1) of the heterocycles in trans-position. The Pt(1)–N(3) bond length (Table 1) is typical for (imine)PtII species (Allen et al., 1987). The N(3)–C(2) (1.307 (3) Å) distance is characteristic for the N=C double bond (Fritsky et al., 2006; Penkova et al., 2009), while the N(3)–C(4) and N(5)–C(4) (1.472 (3) and 1.480 (3) Å), correspondingly, are specific for the N–C single bonds (Allen et al., 1987). In the complex, the C(4) atom of the heterocyclic ligand exhibits the RR/SS configuration.

In the crystal structure, the complexes interact with each other via the weak C—H···Cl hydrogen bond (Table 2), forming the supramolecular chains running along the b axis.

Related literature top

For applications of platinum species bearing N-bound 2,3-dihydro-1,2,4-oxadiazoles, see: Coley et al. (2008); Wagner et al. (2010). For the synthesis of platinum complexes bearing 2,3-dihydro-1,2,4-oxadiazole ligands, see: Kritchenkov et al. (2011). For related structures, see: Bokach & Kukushkin (2006); Bokach et al. (2011); Fritsky et al. (2006); Penkova et al. (2009). For standard bond lengths, see: Allen et al. (1987).

Experimental top

Title compound was synthesized and isolated as pure solid by the described method (Kritchenkov et al., 2011). The crystal was obtained by a slow evaporation of chloroform (RT) solution of the title compound. Hexane was added to the solution for improvement of crystallization of the complex.

Refinement top

The piperidine ring was found to be disordered over two positions, the occupancies were refined to 0.528 (4)/0.472 (4). H atoms were placed in calculated positions with C—H = 0.93–0.98 Å and included in the refinement in the riding model approximation, Uiso(H) set to 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View to the C30H42Cl2N6O4Pt complex in the structure of 1. Thermal ellipsoids are drawn at the 50% probability level.
Dichloridobis[3-(4-methoxyphenyl)-2-methyl-5-(piperidin-1-yl)-2,3-dihydro-1,2,4-oxadiazole-κN4]platinum(II) top
Crystal data top
[PtCl2(C15H21N3O2)2]F(000) = 816
Mr = 816.69Dx = 1.645 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6284 reflections
a = 12.77795 (19) Åθ = 2.7–31.7°
b = 8.57581 (15) ŵ = 4.46 mm1
c = 15.1086 (3) ÅT = 100 K
β = 95.0717 (17)°Prizm, light-yellow
V = 1649.13 (5) Å30.22 × 0.18 × 0.15 mm
Z = 2
Data collection top
Agilent Xcalibur Eos
diffractometer
5072 independent reflections
Radiation source: Enhance (Mo) X-ray Source3997 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 16.2096 pixels mm-1θmax = 31.8°, θmin = 2.7°
ω scansh = 1817
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
k = 1111
Tmin = 0.617, Tmax = 1.000l = 2121
13705 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.042H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0128P)2]
where P = (Fo2 + 2Fc2)/3
5072 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 1.00 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
[PtCl2(C15H21N3O2)2]V = 1649.13 (5) Å3
Mr = 816.69Z = 2
Monoclinic, P21/nMo Kα radiation
a = 12.77795 (19) ŵ = 4.46 mm1
b = 8.57581 (15) ÅT = 100 K
c = 15.1086 (3) Å0.22 × 0.18 × 0.15 mm
β = 95.0717 (17)°
Data collection top
Agilent Xcalibur Eos
diffractometer
5072 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
3997 reflections with I > 2σ(I)
Tmin = 0.617, Tmax = 1.000Rint = 0.026
13705 measured reflectionsθmax = 31.8°
Refinement top
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.042Δρmax = 1.00 e Å3
S = 1.05Δρmin = 0.64 e Å3
5072 reflectionsAbsolute structure: ?
253 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. The piperidine ring was found to be disordered over two positions with the occupancies 0.528/0.472. The non-hydrogen atoms were refined anisotropically. Carbon- and nitrogen-bonded H atoms were placed in calculated positions and were included in the refinement in the "riding" model approximation, with Uiso(H) set to 1.5Ueq(C) and C—H 0.96 Å for the methyl groups, 1.2Ueq(C) and C—H 0.98 Å for the tertiary CH groups, 1.2Ueq(C) and C—H 0.93 Å for the carbon atoms of the benzene rings, and 1.2Ueq(N) and N—H 0.91 Å for the tertiary NH groups.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt10.00000.50000.00000.01251 (3)
Cl10.01009 (4)0.73071 (6)0.07781 (3)0.02001 (11)
N30.13951 (13)0.4505 (2)0.06907 (11)0.0160 (4)
N50.24273 (14)0.3416 (2)0.18442 (12)0.0217 (4)
O10.30566 (12)0.4436 (2)0.12999 (11)0.0321 (4)
O130.17565 (13)0.0800 (2)0.31245 (12)0.0383 (4)
C20.23174 (17)0.5175 (3)0.07460 (16)0.0246 (5)
C40.15295 (15)0.3037 (2)0.11921 (13)0.0177 (4)
H40.17260.21990.07980.021*
C60.31081 (18)0.2079 (3)0.20773 (16)0.0315 (6)
H6A0.27080.12750.23340.047*
H6B0.36740.23970.24990.047*
H6C0.33890.16870.15520.047*
C70.06220 (15)0.2522 (2)0.16910 (13)0.0164 (4)
C80.04130 (17)0.0942 (3)0.17501 (14)0.0215 (5)
H80.08050.02320.14510.026*
C90.03721 (18)0.0406 (3)0.22485 (16)0.0251 (5)
H90.04920.06590.22950.030*
C100.09774 (17)0.1454 (3)0.26766 (14)0.0239 (5)
C110.07848 (17)0.3051 (3)0.26166 (13)0.0229 (5)
H110.11930.37610.28990.027*
C120.00224 (17)0.3571 (3)0.21309 (13)0.0201 (5)
H120.01620.46330.21000.024*
C140.2437 (2)0.1821 (4)0.3538 (2)0.0573 (9)
H14A0.27500.25420.31060.086*
H14B0.20430.23860.40040.086*
H14C0.29780.12260.37830.086*
N1A0.2753 (9)0.6289 (16)0.0262 (9)0.024 (2)0.528 (4)
C16A0.2130 (12)0.7065 (14)0.0497 (9)0.0144 (16)0.528 (4)
H16A0.14050.67190.05310.017*0.528 (4)
H16B0.24170.68080.10520.017*0.528 (4)
C17A0.2194 (3)0.8876 (5)0.0328 (3)0.0284 (12)0.528 (4)
H17A0.18380.94180.08320.034*0.528 (4)
H17B0.18370.91300.01940.034*0.528 (4)
C18A0.3334 (4)0.9427 (6)0.0193 (3)0.0326 (13)0.528 (4)
H18A0.36670.92970.07400.039*0.528 (4)
H18B0.33531.05260.00400.039*0.528 (4)
C19A0.3931 (5)0.8491 (7)0.0547 (4)0.0465 (18)0.528 (4)
H19A0.46640.87970.05950.056*0.528 (4)
H19B0.36500.87290.11070.056*0.528 (4)
C20A0.3849 (4)0.6741 (7)0.0376 (4)0.0412 (16)0.528 (4)
H20A0.41880.64790.01540.049*0.528 (4)
H20B0.42020.61780.08730.049*0.528 (4)
N1B0.2575 (10)0.6571 (17)0.0444 (10)0.0193 (18)0.472 (4)
C16B0.2104 (14)0.7419 (16)0.0325 (10)0.022 (2)0.472 (4)
H16C0.18360.84090.01330.026*0.472 (4)
H16D0.15180.68250.06020.026*0.472 (4)
C17B0.2883 (4)0.7704 (7)0.0991 (3)0.0319 (14)0.472 (4)
H17C0.25500.82960.14850.038*0.472 (4)
H17D0.31090.67140.12190.038*0.472 (4)
C18B0.3841 (4)0.8600 (7)0.0579 (4)0.0354 (15)0.472 (4)
H18C0.36320.96350.04060.043*0.472 (4)
H18D0.43550.87070.10100.043*0.472 (4)
C19B0.4330 (5)0.7707 (9)0.0244 (4)0.0401 (17)0.472 (4)
H19C0.46020.67120.00620.048*0.472 (4)
H19D0.49100.83020.05310.048*0.472 (4)
C20B0.3518 (4)0.7444 (7)0.0884 (4)0.0313 (15)0.472 (4)
H20C0.32900.84400.11020.038*0.472 (4)
H20D0.38230.68480.13880.038*0.472 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.00901 (5)0.01308 (6)0.01504 (5)0.00236 (4)0.00124 (3)0.00214 (5)
Cl10.0188 (2)0.0172 (3)0.0235 (2)0.00130 (19)0.00079 (19)0.0069 (2)
N30.0136 (8)0.0151 (8)0.0185 (9)0.0028 (6)0.0025 (7)0.0011 (7)
N50.0157 (9)0.0199 (10)0.0283 (10)0.0044 (7)0.0048 (8)0.0064 (8)
O10.0148 (8)0.0358 (9)0.0435 (10)0.0079 (7)0.0099 (7)0.0215 (8)
O130.0265 (10)0.0429 (11)0.0482 (11)0.0006 (8)0.0184 (8)0.0072 (9)
C20.0170 (10)0.0261 (13)0.0292 (12)0.0034 (9)0.0059 (9)0.0084 (10)
C40.0147 (10)0.0155 (11)0.0223 (11)0.0003 (8)0.0016 (8)0.0010 (8)
C60.0219 (12)0.0269 (13)0.0441 (15)0.0002 (10)0.0059 (11)0.0114 (11)
C70.0116 (9)0.0200 (11)0.0166 (10)0.0031 (8)0.0033 (7)0.0008 (8)
C80.0200 (11)0.0199 (12)0.0249 (11)0.0012 (9)0.0038 (9)0.0053 (9)
C90.0225 (12)0.0213 (12)0.0318 (13)0.0069 (9)0.0037 (10)0.0019 (9)
C100.0182 (11)0.0328 (14)0.0207 (11)0.0034 (9)0.0028 (9)0.0021 (10)
C110.0215 (11)0.0296 (13)0.0176 (10)0.0065 (9)0.0023 (9)0.0039 (9)
C120.0229 (11)0.0172 (11)0.0189 (11)0.0002 (8)0.0047 (9)0.0023 (9)
C140.0452 (19)0.067 (2)0.065 (2)0.0210 (16)0.0385 (16)0.0228 (17)
N1A0.005 (3)0.029 (5)0.038 (6)0.001 (2)0.001 (3)0.013 (4)
C16A0.015 (2)0.011 (4)0.016 (4)0.006 (3)0.007 (3)0.002 (3)
C17A0.025 (2)0.027 (3)0.033 (3)0.0048 (18)0.0040 (19)0.004 (2)
C18A0.033 (3)0.029 (3)0.033 (3)0.018 (2)0.008 (2)0.009 (2)
C19A0.039 (4)0.048 (4)0.047 (4)0.029 (3)0.025 (3)0.023 (3)
C20A0.018 (2)0.047 (4)0.056 (4)0.010 (2)0.010 (2)0.031 (3)
N1B0.006 (4)0.023 (5)0.029 (5)0.007 (3)0.002 (3)0.006 (3)
C16B0.019 (3)0.021 (7)0.026 (6)0.010 (4)0.005 (4)0.002 (4)
C17B0.025 (3)0.045 (3)0.025 (3)0.014 (2)0.004 (2)0.010 (2)
C18B0.023 (3)0.042 (4)0.041 (3)0.019 (2)0.002 (2)0.009 (3)
C19B0.026 (3)0.054 (5)0.038 (4)0.020 (3)0.011 (3)0.016 (3)
C20B0.033 (3)0.030 (3)0.028 (3)0.022 (2)0.014 (2)0.008 (2)
Geometric parameters (Å, º) top
Pt1—N3i2.0293 (16)N1A—C20A1.449 (14)
Pt1—N32.0293 (16)N1A—C16A1.49 (2)
Pt1—Cl1i2.3108 (5)C16A—C17A1.574 (11)
Pt1—Cl12.3108 (5)C16A—H16A0.9700
N3—C21.307 (3)C16A—H16B0.9700
N3—C41.471 (3)C17A—C18A1.528 (6)
N5—C61.463 (3)C17A—H17A0.9700
N5—C41.481 (2)C17A—H17B0.9700
N5—O11.485 (2)C18A—C19A1.525 (7)
O1—C21.362 (2)C18A—H18A0.9700
O13—C101.372 (3)C18A—H18B0.9700
O13—C141.417 (3)C19A—C20A1.525 (9)
C2—N1B1.333 (17)C19A—H19A0.9700
C2—N1A1.353 (16)C19A—H19B0.9700
C4—C71.504 (3)C20A—H20A0.9700
C4—H40.9800C20A—H20B0.9700
C6—H6A0.9600N1B—C16B1.45 (2)
C6—H6B0.9600N1B—C20B1.520 (16)
C6—H6C0.9600C16B—C17B1.496 (18)
C7—C81.386 (3)C16B—H16C0.9700
C7—C121.389 (3)C16B—H16D0.9700
C8—C91.385 (3)C17B—C18B1.530 (6)
C8—H80.9300C17B—H17C0.9700
C9—C101.383 (3)C17B—H17D0.9700
C9—H90.9300C18B—C19B1.544 (8)
C10—C111.395 (3)C18B—H18C0.9700
C11—C121.391 (3)C18B—H18D0.9700
C11—H110.9300C19B—C20B1.497 (10)
C12—H120.9300C19B—H19C0.9700
C14—H14A0.9600C19B—H19D0.9700
C14—H14B0.9600C20B—H20C0.9700
C14—H14C0.9600C20B—H20D0.9700
N3i—Pt1—N3180.0C17A—C16A—H16A110.2
N3i—Pt1—Cl1i90.20 (5)N1A—C16A—H16B110.2
N3—Pt1—Cl1i89.80 (5)C17A—C16A—H16B110.2
N3i—Pt1—Cl189.80 (5)H16A—C16A—H16B108.5
N3—Pt1—Cl190.20 (5)C18A—C17A—C16A111.2 (7)
Cl1i—Pt1—Cl1180.0C18A—C17A—H17A109.4
C2—N3—C4106.24 (16)C16A—C17A—H17A109.4
C2—N3—Pt1133.39 (15)C18A—C17A—H17B109.4
C4—N3—Pt1120.06 (12)C16A—C17A—H17B109.4
C6—N5—C4113.41 (17)H17A—C17A—H17B108.0
C6—N5—O1104.81 (17)C19A—C18A—C17A110.2 (4)
C4—N5—O1100.75 (14)C19A—C18A—H18A109.6
C2—O1—N5103.55 (16)C17A—C18A—H18A109.6
C10—O13—C14117.7 (2)C19A—C18A—H18B109.6
N3—C2—N1B128.4 (6)C17A—C18A—H18B109.6
N3—C2—N1A133.4 (6)H18A—C18A—H18B108.1
N1B—C2—N1A19.0 (6)C20A—C19A—C18A111.8 (4)
N3—C2—O1114.03 (19)C20A—C19A—H19A109.3
N1B—C2—O1116.7 (6)C18A—C19A—H19A109.3
N1A—C2—O1111.4 (6)C20A—C19A—H19B109.3
N3—C4—N5101.72 (15)C18A—C19A—H19B109.3
N3—C4—C7116.68 (17)H19A—C19A—H19B107.9
N5—C4—C7108.50 (16)N1A—C20A—C19A109.5 (7)
N3—C4—H4109.8N1A—C20A—H20A109.8
N5—C4—H4109.8C19A—C20A—H20A109.8
C7—C4—H4109.8N1A—C20A—H20B109.8
N5—C6—H6A109.5C19A—C20A—H20B109.8
N5—C6—H6B109.5H20A—C20A—H20B108.2
H6A—C6—H6B109.5C2—N1B—C16B128.7 (13)
N5—C6—H6C109.5C2—N1B—C20B120.2 (12)
H6A—C6—H6C109.5C16B—N1B—C20B111.1 (12)
H6B—C6—H6C109.5N1B—C16B—C17B111.5 (12)
C8—C7—C12119.0 (2)N1B—C16B—H16C109.3
C8—C7—C4118.74 (19)C17B—C16B—H16C109.3
C12—C7—C4122.15 (19)N1B—C16B—H16D109.3
C9—C8—C7120.8 (2)C17B—C16B—H16D109.3
C9—C8—H8119.6H16C—C16B—H16D108.0
C7—C8—H8119.6C16B—C17B—C18B111.4 (6)
C10—C9—C8120.0 (2)C16B—C17B—H17C109.4
C10—C9—H9120.0C18B—C17B—H17C109.4
C8—C9—H9120.0C16B—C17B—H17D109.4
O13—C10—C9115.2 (2)C18B—C17B—H17D109.4
O13—C10—C11125.0 (2)H17C—C17B—H17D108.0
C9—C10—C11119.9 (2)C17B—C18B—C19B109.3 (4)
C12—C11—C10119.5 (2)C17B—C18B—H18C109.8
C12—C11—H11120.2C19B—C18B—H18C109.8
C10—C11—H11120.2C17B—C18B—H18D109.8
C7—C12—C11120.7 (2)C19B—C18B—H18D109.8
C7—C12—H12119.6H18C—C18B—H18D108.3
C11—C12—H12119.6C20B—C19B—C18B109.9 (5)
O13—C14—H14A109.5C20B—C19B—H19C109.7
O13—C14—H14B109.5C18B—C19B—H19C109.7
H14A—C14—H14B109.5C20B—C19B—H19D109.7
O13—C14—H14C109.5C18B—C19B—H19D109.7
H14A—C14—H14C109.5H19C—C19B—H19D108.2
H14B—C14—H14C109.5C19B—C20B—N1B111.0 (7)
C2—N1A—C20A124.3 (11)C19B—C20B—H20C109.4
C2—N1A—C16A120.9 (11)N1B—C20B—H20C109.4
C20A—N1A—C16A114.6 (12)C19B—C20B—H20D109.4
N1A—C16A—C17A107.4 (8)N1B—C20B—H20D109.4
N1A—C16A—H16A110.2H20C—C20B—H20D108.0
N3i—Pt1—N3—C249 (15)C8—C9—C10—C111.0 (3)
Cl1i—Pt1—N3—C2116.2 (2)O13—C10—C11—C12179.11 (19)
Cl1—Pt1—N3—C263.8 (2)C9—C10—C11—C120.5 (3)
N3i—Pt1—N3—C4138 (15)C8—C7—C12—C110.7 (3)
Cl1i—Pt1—N3—C456.47 (15)C4—C7—C12—C11177.36 (17)
Cl1—Pt1—N3—C4123.53 (15)C10—C11—C12—C71.4 (3)
C6—N5—O1—C2150.49 (18)N3—C2—N1A—C20A172.2 (6)
C4—N5—O1—C232.6 (2)N1B—C2—N1A—C20A105 (4)
C4—N3—C2—N1B175.5 (7)O1—C2—N1A—C20A5.4 (10)
Pt1—N3—C2—N1B11.1 (8)N3—C2—N1A—C16A2.7 (12)
C4—N3—C2—N1A160.1 (6)N1B—C2—N1A—C16A80 (4)
Pt1—N3—C2—N1A13.3 (7)O1—C2—N1A—C16A169.5 (7)
C4—N3—C2—O16.4 (3)C2—N1A—C16A—C17A125.3 (10)
Pt1—N3—C2—O1179.78 (15)C20A—N1A—C16A—C17A59.3 (12)
N5—O1—C2—N317.2 (3)N1A—C16A—C17A—C18A55.0 (11)
N5—O1—C2—N1B153.3 (5)C16A—C17A—C18A—C19A54.4 (8)
N5—O1—C2—N1A173.3 (5)C17A—C18A—C19A—C20A54.6 (8)
C2—N3—C4—N527.1 (2)C2—N1A—C20A—C19A124.4 (8)
Pt1—N3—C4—N5158.46 (13)C16A—N1A—C20A—C19A60.3 (10)
C2—N3—C4—C7144.93 (19)C18A—C19A—C20A—N1A56.2 (9)
Pt1—N3—C4—C740.6 (2)N3—C2—N1B—C16B30.5 (13)
C6—N5—C4—N3146.99 (18)N1A—C2—N1B—C16B83 (4)
O1—N5—C4—N335.54 (19)O1—C2—N1B—C16B160.6 (9)
C6—N5—C4—C789.4 (2)N3—C2—N1B—C20B153.6 (5)
O1—N5—C4—C7159.12 (16)N1A—C2—N1B—C20B93 (4)
N3—C4—C7—C8144.73 (18)O1—C2—N1B—C20B15.2 (9)
N5—C4—C7—C8101.2 (2)C2—N1B—C16B—C17B118.6 (11)
N3—C4—C7—C1238.6 (3)C20B—N1B—C16B—C17B57.6 (10)
N5—C4—C7—C1275.5 (2)N1B—C16B—C17B—C18B57.4 (11)
C12—C7—C8—C90.8 (3)C16B—C17B—C18B—C19B55.5 (9)
C4—C7—C8—C9175.95 (18)C17B—C18B—C19B—C20B55.6 (7)
C7—C8—C9—C101.7 (3)C18B—C19B—C20B—N1B56.9 (9)
C14—O13—C10—C9176.8 (2)C2—N1B—C20B—C19B118.3 (8)
C14—O13—C10—C111.8 (3)C16B—N1B—C20B—C19B58.2 (10)
C8—C9—C10—O13177.74 (19)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14C···Cl1ii0.962.763.423 (3)127
Symmetry code: (ii) x1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[PtCl2(C15H21N3O2)2]
Mr816.69
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)12.77795 (19), 8.57581 (15), 15.1086 (3)
β (°) 95.0717 (17)
V3)1649.13 (5)
Z2
Radiation typeMo Kα
µ (mm1)4.46
Crystal size (mm)0.22 × 0.18 × 0.15
Data collection
DiffractometerAgilent Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.617, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13705, 5072, 3997
Rint0.026
(sin θ/λ)max1)0.742
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.042, 1.05
No. of reflections5072
No. of parameters253
No. of restraints0
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.00, 0.64

Computer programs: CrysAlis PRO (Agilent, 2012), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).

Selected bond lengths (Å) top
Pt1—N32.0293 (16)Pt1—Cl12.3108 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14C···Cl1i0.962.763.423 (3)127
Symmetry code: (i) x1/2, y1/2, z+1/2.
Acknowledgements top

This work was supported by a Saint Petersburg State University research grant (2013–2015, 12.38.781.2013) and the RFBR 12–03–33071. The XRD study was performed at the X-ray Diffraction Centre of Saint Petersburg State University.

references
References top

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bokach, N. A., Balova, I. A., Haukka, M. & Kukushkin, V. Y. (2011). Organometallics, 30, 595–602.

Bokach, N. A. & Kukushkin, V. Y. (2006). Russ. Chem. Bull. 55, 1869–1882.

Brandenburg, K. (2009). Diamond. Crystal Impact GbR, Bonn, Germany.

Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.

Coley, H. M., Sarju, J. & Wagner, G. (2008). J. Med. Chem. 51, 135–141.

Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127.

Kritchenkov, A. S., Bokach, N. A., Haukka, M. & Kukushkin, V. Y. (2011). Dalton Trans. 40, 4175–4182.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press.

Penkova, L. V., Maciąg, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2009). Inorg. Chem. 48, 6960–6971.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wagner, G., Marchant, A. & Sayer, J. (2010). Dalton Trans. 39, 7747–7759.