supplementary materials


xu5716 scheme

Acta Cryst. (2013). E69, m431-m432    [ doi:10.1107/S1600536813017881 ]

Tetrakis([mu]-3-chlorobenzoato-[kappa]2O:O')bis[(N,N-diethylnicotinamide-[kappa]N1)copper(II)]

N. Bozkurt, T. Tunç, N. Çaylak Delibas, H. Necefoglu and T. Hökelek

Abstract top

In the title centrosymmetric binuclear CuII complex, [Cu2(C7H4ClO2)4(C10H14N2O)2], the two CuII cations [Cu...Cu = 2.6314 (4) Å] are bridged by four 3-chlorobenzoate (CB) anions. The four carboxylate O atoms around each CuII cation form a distorted square-planar arrangement, the distorted square-pyramidal coordination geometry being completed by the pyridine N atom of the N,N-diethylnicotinamide (DENA) molecule. The dihedral angle between the benzene ring and the carboxylate group is 4.49 (11)° in one of the independent CB ligands and 12.00 (10)° in the other. The benzene rings of the independent CB ligands are oriented at a dihedral angle of 84.13 (6)°. In the crystal, weak C-H...O hydrogen bonds link the binuclear complex molecules into supramolecular chains running along [101].

Comment top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound is a binuclear compound, consisting of four chlorobenzoate (CB) ligands. The structures of similar complexes of the Cu2+, Zn2+ and Co2+ ions, [Cu(C6H5COO)2(C5H5N)]2 (Usubaliev et al., 1980); [Cu(C6H5CO2)2(Py)]2 (Speier & Fulop, 1989); [Cu2(C6H5COO)4(C10H14N2O)2] (Hökelek et al., 1995); [Cu2(C8H7O2)4(C6H6N2O)2] (Necefoğlu et al., 2010a); [Cu2(C7H4IO2)4(H2O)2] (Aydın et al., 2012); [Zn2(C11H14NO2)4(C10H14N2O)2] (Hökelek et al., 2009a); [Zn2(C8H8NO2)4(C10H14N2O)2].2H2O (Hökelek et al., 2009b); [Zn2(C9H10NO2)4(C10H14N2O)2] (Hökelek et al., 2009c); [Zn2(C8H7O2)4(C10H14N2O)2] (Necefoğlu et al., 2010b) and [Co2(C11H14NO2)4(C10H14N2O)2] (Hökelek et al., 2011) have also been determined. In these structures, the benzoate ion acts as a bidentate ligand.

The title dimeric complex, [Cu2(CB)4(DENA)2], has a centre of symmetry and two CuII atoms are surrounded by four CB groups and two DENA molecules. The CB groups act as bridging ligands. The Cu1···Cu1a [symmetry code: (a) 1 - x, - y, 1 - z] distance is 2.6314 (4) Å. The average Cu-O distance is 1.9734 (13) Å (Table 1), and four O atoms of the bridging CB ligands around each Cu atom form a distorted square plane. The Cu atom lies 1.3997 (2) Å below the least-squares plane. The average O-Cu-O bond angle is 89.41 (6)°. A distorted square-pyramidal arrangement around each Cu atom is completed by the DENA N atom at 2.1454 (14) Å from the Cu atom (Table 1). The N1-Cu1···Cu1a angle is 173.85 (4)° and the dihedral angle between plane through Cu1, O1, O2, C1, Cu1a, O1a, O2a, C1a and the plane through Cu1, O3, O4, C8, Cu1a, O3a, O4a, C8a is 89.76(1.45)°. The dihedral angles between the planar carboxylate groups [(O1/O2/C1) and (O3/O4/C8)] and the adjacent benzene rings A (C2—C7) and B (C9—C14) are 4.49 (11) and 12.00 (10) °, respectively, while that between rings A, B and C (N1/C15–C19) are A/B = 84.13 (6), A/C = 57.94 (6) and B/C = 37.95 (7) °.

In the crystal structure, weak intermolecular C—H···O interactions (Table 2) link the molecules into infinite chains through the centrosymmetric dimers running along the [1 0 1] direction.

Related literature top

For niacin, see: Krishnamachari (1974). For N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Speier & Fulop (1989); Usubaliev et al. (1980); Hökelek et al. (1995, Hökelek et al. (2009a,b,c, 2011); Necefoğlu et al. (2010a,b); Aydın et al. (2012).

Experimental top

The title compound was prepared by the reaction of CuSO4.5H2O (1.25 g, 5 mmol) in H2O (100 ml) and diethylnicotinamide (1.78 g, 10 mmol) in H2O (20 ml) with sodium 3-chlorobenzoate (1.79 g, 10 mmol) in H2O (100 ml). The mixture was set aside to crystallize at ambient temperature for five days, giving green single crystals.

Refinement top

The C-bound H-atoms were positioned geometrically with C—H = 0.93, 0.97 and 0.96 Å, for aromatic, methylene and methyl H-atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H-atoms and k = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (a) 1 - x, - y, 1 - z]. Hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the packing of the title compound. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
Tetrakis(µ-3-chlorobenzoato-κ2O:O')bis[(N,N-diethylnicotinamide-κN1)copper(II)] top
Crystal data top
[Cu2(C7H4ClO2)4(C10H14N2O)2]F(000) = 1132
Mr = 1105.75Dx = 1.452 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9380 reflections
a = 12.6077 (4) Åθ = 2.5–29.9°
b = 16.7569 (5) ŵ = 1.11 mm1
c = 12.1402 (4) ÅT = 296 K
β = 99.647 (2)°Block, green
V = 2528.54 (14) Å30.35 × 0.25 × 0.20 mm
Z = 2
Data collection top
Bruker SMART BREEZE CCD
diffractometer
5166 independent reflections
Radiation source: fine-focus sealed tube4702 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 26.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1515
Tmin = 0.711, Tmax = 0.724k = 2020
78293 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0449P)2 + 1.301P]
where P = (Fo2 + 2Fc2)/3
5166 reflections(Δ/σ)max = 0.002
309 parametersΔρmax = 0.70 e Å3
85 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Cu2(C7H4ClO2)4(C10H14N2O)2]V = 2528.54 (14) Å3
Mr = 1105.75Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.6077 (4) ŵ = 1.11 mm1
b = 16.7569 (5) ÅT = 296 K
c = 12.1402 (4) Å0.35 × 0.25 × 0.20 mm
β = 99.647 (2)°
Data collection top
Bruker SMART BREEZE CCD
diffractometer
5166 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
4702 reflections with I > 2σ(I)
Tmin = 0.711, Tmax = 0.724Rint = 0.026
78293 measured reflectionsθmax = 26.4°
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.083Δρmax = 0.70 e Å3
S = 1.04Δρmin = 0.45 e Å3
5166 reflectionsAbsolute structure: ?
309 parametersAbsolute structure parameter: ?
85 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.580773 (15)0.980853 (12)0.578926 (15)0.02838 (8)
Cl10.53514 (7)0.79998 (5)0.03442 (5)0.0761 (2)
Cl20.92843 (7)1.31020 (5)0.55213 (9)0.1053 (3)
O10.63814 (10)0.91758 (8)0.46442 (10)0.0409 (3)
O20.49984 (11)0.95064 (9)0.33241 (11)0.0458 (3)
O30.64805 (10)1.07718 (8)0.52693 (11)0.0422 (3)
O40.51122 (10)1.10927 (8)0.39242 (11)0.0405 (3)
O51.04739 (13)1.05214 (11)0.83585 (15)0.0658 (5)
N10.70894 (11)0.96124 (10)0.71646 (12)0.0347 (3)
N21.06037 (13)0.95243 (12)0.71450 (16)0.0502 (4)
C10.58602 (14)0.91427 (10)0.36697 (15)0.0343 (4)
C20.62814 (15)0.86185 (11)0.28384 (15)0.0373 (4)
C30.57253 (17)0.85814 (12)0.17511 (16)0.0433 (4)
H30.51230.89000.15290.052*
C40.6080 (2)0.80633 (14)0.10029 (17)0.0518 (5)
C50.6965 (2)0.75909 (16)0.1303 (2)0.0661 (7)
H50.71860.72420.07900.079*
C60.7521 (2)0.76385 (16)0.2371 (2)0.0678 (7)
H60.81270.73220.25810.081*
C70.71904 (18)0.81551 (13)0.31447 (19)0.0493 (5)
H70.75790.81880.38650.059*
C80.60290 (14)1.12046 (10)0.44801 (14)0.0319 (3)
C90.66516 (15)1.19115 (11)0.41815 (16)0.0368 (4)
C100.75758 (17)1.21469 (12)0.48927 (19)0.0463 (5)
H100.78141.18670.55490.056*
C110.81362 (19)1.28015 (14)0.4613 (2)0.0620 (6)
C120.7809 (2)1.32217 (15)0.3639 (3)0.0749 (8)
H120.82021.36590.34610.090*
C130.6896 (2)1.29872 (15)0.2938 (3)0.0700 (7)
H130.66681.32670.22800.084*
C140.63081 (19)1.23348 (13)0.32036 (19)0.0506 (5)
H140.56851.21820.27270.061*
C150.81050 (14)0.97600 (11)0.70628 (15)0.0361 (4)
H150.82500.99110.63660.043*
C160.89570 (14)0.97002 (11)0.79394 (15)0.0353 (4)
C170.87265 (15)0.94853 (12)0.89783 (15)0.0412 (4)
H170.92730.94520.95950.049*
C180.76805 (17)0.93223 (14)0.90842 (16)0.0468 (5)
H180.75120.91670.97700.056*
C190.68845 (15)0.93925 (13)0.81604 (16)0.0425 (4)
H190.61780.92820.82370.051*
C201.00821 (15)0.99464 (13)0.78250 (17)0.0429 (4)
C211.02241 (19)0.87796 (16)0.6595 (2)0.0649 (7)
H2110.96380.85740.69370.078*
H2121.08030.83910.67170.078*
C220.9840 (3)0.8867 (3)0.5347 (3)0.1069 (13)
H2210.92320.92200.52190.160*
H2220.96350.83540.50300.160*
H2231.04100.90830.50030.160*
C231.17124 (19)0.97631 (17)0.7067 (2)0.0660 (7)
H2311.18780.95890.63530.079*
H2321.17611.03410.70920.079*
C241.25301 (19)0.9423 (2)0.7983 (3)0.0759 (8)
H2411.24680.88520.79830.114*
H2421.32380.95700.78640.114*
H2431.24090.96300.86890.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02465 (11)0.03345 (13)0.02565 (12)0.00047 (7)0.00020 (8)0.00112 (8)
Cl10.1050 (5)0.0886 (5)0.0378 (3)0.0216 (4)0.0206 (3)0.0159 (3)
Cl20.0775 (5)0.0876 (5)0.1497 (8)0.0475 (4)0.0157 (5)0.0400 (6)
O10.0411 (7)0.0475 (8)0.0346 (7)0.0051 (6)0.0077 (5)0.0066 (6)
O20.0428 (7)0.0565 (8)0.0370 (7)0.0102 (6)0.0033 (6)0.0131 (6)
O30.0388 (7)0.0412 (7)0.0432 (7)0.0097 (6)0.0030 (5)0.0079 (6)
O40.0352 (7)0.0427 (7)0.0420 (7)0.0059 (5)0.0018 (5)0.0078 (6)
O50.0505 (9)0.0705 (11)0.0739 (11)0.0157 (8)0.0032 (8)0.0230 (9)
N10.0292 (7)0.0439 (8)0.0293 (7)0.0024 (6)0.0000 (6)0.0020 (6)
N20.0353 (8)0.0583 (11)0.0583 (11)0.0018 (8)0.0114 (7)0.0050 (9)
C10.0339 (9)0.0340 (9)0.0370 (9)0.0054 (7)0.0115 (7)0.0037 (7)
C20.0426 (10)0.0342 (9)0.0386 (9)0.0065 (7)0.0175 (8)0.0034 (7)
C30.0485 (11)0.0447 (11)0.0396 (10)0.0073 (9)0.0152 (8)0.0041 (8)
C40.0713 (14)0.0516 (12)0.0372 (10)0.0171 (11)0.0227 (10)0.0097 (9)
C50.0912 (19)0.0568 (14)0.0586 (14)0.0074 (13)0.0371 (13)0.0140 (12)
C60.0772 (17)0.0645 (16)0.0668 (15)0.0230 (13)0.0275 (13)0.0051 (13)
C70.0532 (12)0.0502 (12)0.0475 (11)0.0052 (9)0.0175 (9)0.0023 (9)
C80.0336 (8)0.0320 (8)0.0313 (8)0.0012 (7)0.0089 (7)0.0025 (7)
C90.0388 (9)0.0325 (9)0.0422 (10)0.0010 (7)0.0160 (7)0.0024 (7)
C100.0464 (11)0.0413 (10)0.0532 (12)0.0095 (9)0.0141 (9)0.0081 (9)
C110.0547 (13)0.0458 (12)0.0905 (18)0.0178 (10)0.0269 (12)0.0182 (12)
C120.0827 (19)0.0418 (12)0.112 (2)0.0138 (12)0.0507 (17)0.0072 (14)
C130.0880 (19)0.0502 (14)0.0798 (18)0.0066 (13)0.0367 (15)0.0238 (13)
C140.0570 (13)0.0455 (11)0.0523 (12)0.0032 (9)0.0178 (10)0.0091 (9)
C150.0328 (9)0.0463 (10)0.0284 (8)0.0019 (7)0.0030 (7)0.0019 (7)
C160.0298 (8)0.0374 (9)0.0368 (9)0.0048 (7)0.0002 (7)0.0041 (7)
C170.0390 (10)0.0477 (11)0.0323 (9)0.0063 (8)0.0071 (7)0.0005 (8)
C180.0478 (11)0.0610 (13)0.0305 (9)0.0047 (9)0.0032 (8)0.0074 (9)
C190.0341 (9)0.0564 (12)0.0366 (9)0.0003 (8)0.0053 (7)0.0065 (9)
C200.0325 (9)0.0496 (11)0.0430 (10)0.0018 (8)0.0034 (8)0.0001 (9)
C210.0471 (12)0.0638 (15)0.0857 (17)0.0030 (11)0.0162 (12)0.0228 (13)
C220.087 (2)0.141 (3)0.086 (2)0.022 (2)0.0043 (18)0.052 (2)
C230.0429 (12)0.0784 (18)0.0805 (18)0.0069 (11)0.0214 (12)0.0006 (14)
C240.0368 (12)0.092 (2)0.100 (2)0.0002 (12)0.0133 (12)0.0083 (17)
Geometric parameters (Å, º) top
Cu1—Cu1i2.6314 (4)C9—C101.386 (3)
Cu1—O11.9791 (13)C9—C141.388 (3)
Cu1—O2i1.9688 (13)C10—C111.378 (3)
Cu1—O31.9755 (13)C10—H100.9300
Cu1—O4i1.9703 (13)C11—C121.378 (4)
Cu1—N12.1454 (14)C12—H120.9300
Cl1—C41.740 (2)C13—C121.369 (4)
Cl2—C111.741 (3)C13—H130.9300
O1—C11.255 (2)C14—C131.388 (3)
O2—C11.255 (2)C14—H140.9300
O2—Cu1i1.9688 (13)C15—H150.9300
O3—C81.259 (2)C16—C151.383 (2)
O4—Cu1i1.9703 (13)C16—C201.506 (3)
O4—C81.251 (2)C17—C161.388 (3)
O5—C201.218 (3)C17—C181.374 (3)
N1—C151.330 (2)C17—H170.9300
N1—C191.330 (2)C18—H180.9300
N2—C201.340 (3)C19—C181.379 (3)
N2—C211.458 (3)C19—H190.9300
N2—C231.472 (3)C21—C221.519 (4)
C1—C21.500 (2)C21—H2110.9700
C2—C31.388 (3)C21—H2120.9700
C2—C71.383 (3)C22—H2210.9600
C3—C41.384 (3)C22—H2220.9600
C3—H30.9300C22—H2230.9600
C4—C51.367 (4)C23—C241.496 (4)
C5—C61.369 (4)C23—H2320.9700
C5—H50.9300C23—H2310.9700
C6—H60.9300C24—H2410.9600
C7—C61.392 (3)C24—H2420.9600
C7—H70.9300C24—H2430.9600
C8—C91.499 (2)
O1—Cu1—Cu1i87.05 (4)C10—C11—Cl2118.7 (2)
O1—Cu1—N198.53 (6)C10—C11—C12121.7 (2)
O2i—Cu1—Cu1i81.29 (4)C12—C11—Cl2119.57 (19)
O2i—Cu1—O1168.33 (6)C11—C12—H12120.5
O2i—Cu1—O389.25 (6)C13—C12—C11119.1 (2)
O2i—Cu1—O4i88.70 (6)C13—C12—H12120.5
O2i—Cu1—N193.11 (6)C12—C13—C14120.5 (3)
O3—Cu1—Cu1i83.65 (4)C12—C13—H13119.8
O3—Cu1—O189.21 (6)C14—C13—H13119.8
O3—Cu1—N193.79 (6)C9—C14—C13119.9 (2)
O4i—Cu1—Cu1i84.77 (4)C9—C14—H14120.0
O4i—Cu1—O190.49 (6)C13—C14—H14120.0
O4i—Cu1—O3168.41 (5)N1—C15—C16123.41 (17)
O4i—Cu1—N197.71 (6)N1—C15—H15118.3
N1—Cu1—Cu1i173.85 (4)C16—C15—H15118.3
C1—O1—Cu1119.39 (12)C15—C16—C17117.64 (17)
C1—O2—Cu1i126.70 (12)C15—C16—C20122.09 (17)
C8—O3—Cu1123.38 (11)C17—C16—C20119.91 (16)
C8—O4—Cu1i122.52 (12)C16—C17—H17120.4
C15—N1—Cu1120.69 (12)C18—C17—C16119.14 (16)
C19—N1—Cu1120.94 (12)C18—C17—H17120.4
C19—N1—C15118.21 (15)C17—C18—C19119.09 (18)
C20—N2—C21125.21 (18)C17—C18—H18120.5
C20—N2—C23117.7 (2)C19—C18—H18120.5
C21—N2—C23116.48 (19)N1—C19—C18122.49 (18)
O1—C1—O2125.52 (16)N1—C19—H19118.8
O1—C1—C2118.14 (16)C18—C19—H19118.8
O2—C1—C2116.33 (16)O5—C20—N2123.2 (2)
C3—C2—C1119.11 (17)O5—C20—C16118.15 (19)
C7—C2—C1121.25 (17)N2—C20—C16118.64 (18)
C7—C2—C3119.61 (18)N2—C21—C22113.6 (3)
C2—C3—H3120.5N2—C21—H211108.9
C4—C3—C2119.0 (2)N2—C21—H212108.9
C4—C3—H3120.5C22—C21—H211108.9
C3—C4—Cl1118.5 (2)C22—C21—H212108.9
C5—C4—Cl1119.61 (17)H211—C21—H212107.7
C5—C4—C3121.8 (2)C21—C22—H221109.5
C4—C5—C6119.0 (2)C21—C22—H222109.5
C4—C5—H5120.5C21—C22—H223109.5
C6—C5—H5120.5H221—C22—H222109.5
C5—C6—C7120.8 (2)H221—C22—H223109.5
C5—C6—H6119.6H222—C22—H223109.5
C7—C6—H6119.6N2—C23—C24113.1 (2)
C2—C7—C6119.8 (2)N2—C23—H232109.0
C2—C7—H7120.1N2—C23—H231109.0
C6—C7—H7120.1C24—C23—H232109.0
O3—C8—C9116.81 (15)C24—C23—H231109.0
O4—C8—O3125.68 (16)H232—C23—H231107.8
O4—C8—C9117.52 (16)C23—C24—H243109.5
C10—C9—C8119.60 (18)C23—C24—H242109.5
C10—C9—C14119.75 (19)C23—C24—H241109.5
C14—C9—C8120.64 (18)H243—C24—H242109.5
C9—C10—H10120.5H243—C24—H241109.5
C11—C10—C9119.0 (2)H242—C24—H241109.5
C11—C10—H10120.5
Cu1i—Cu1—O1—C11.49 (13)O1—C1—C2—C3179.12 (17)
O2i—Cu1—O1—C12.7 (4)O1—C1—C2—C72.9 (3)
O3—Cu1—O1—C185.17 (14)O2—C1—C2—C31.7 (3)
O4i—Cu1—O1—C183.25 (14)O2—C1—C2—C7176.27 (18)
N1—Cu1—O1—C1178.88 (13)C1—C2—C3—C4176.33 (17)
Cu1i—Cu1—O3—C80.31 (14)C7—C2—C3—C41.7 (3)
O1—Cu1—O3—C886.81 (15)C3—C2—C7—C61.9 (3)
O2i—Cu1—O3—C881.63 (15)C1—C2—C7—C6176.0 (2)
O4i—Cu1—O3—C81.8 (4)C2—C3—C4—Cl1178.00 (15)
N1—Cu1—O3—C8174.70 (14)C2—C3—C4—C50.4 (3)
O1—Cu1—N1—C1552.96 (15)Cl1—C4—C5—C6179.0 (2)
O1—Cu1—N1—C19131.61 (16)C3—C4—C5—C60.7 (4)
O2i—Cu1—N1—C15126.27 (15)C4—C5—C6—C70.4 (4)
O2i—Cu1—N1—C1949.16 (16)C2—C7—C6—C50.9 (4)
O3—Cu1—N1—C1536.82 (15)O3—C8—C9—C1012.2 (2)
O3—Cu1—N1—C19138.61 (16)O3—C8—C9—C14168.16 (18)
O4i—Cu1—N1—C15144.62 (14)O4—C8—C9—C10168.11 (17)
O4i—Cu1—N1—C1939.95 (16)O4—C8—C9—C1411.5 (3)
Cu1—O1—C1—O22.8 (3)C8—C9—C10—C11179.51 (18)
Cu1—O1—C1—C2176.35 (11)C14—C9—C10—C110.1 (3)
Cu1i—O2—C1—O12.6 (3)C8—C9—C14—C13179.86 (19)
Cu1i—O2—C1—C2176.52 (12)C10—C9—C14—C130.5 (3)
Cu1—O3—C8—O40.1 (3)C9—C10—C11—Cl2179.02 (16)
Cu1—O3—C8—C9179.54 (11)C9—C10—C11—C120.7 (3)
Cu1i—O4—C8—O30.3 (3)C10—C11—C12—C130.7 (4)
Cu1i—O4—C8—C9179.96 (11)Cl2—C11—C12—C13179.1 (2)
Cu1—N1—C15—C16175.23 (14)C14—C13—C12—C110.0 (4)
C19—N1—C15—C160.3 (3)C9—C14—C13—C120.6 (4)
Cu1—N1—C19—C18174.76 (16)C17—C16—C15—N10.9 (3)
C15—N1—C19—C180.8 (3)C20—C16—C15—N1174.04 (18)
C21—N2—C20—O5172.2 (2)C15—C16—C20—O5113.2 (2)
C21—N2—C20—C167.7 (3)C15—C16—C20—N266.8 (3)
C23—N2—C20—O51.4 (3)C17—C16—C20—O559.7 (3)
C23—N2—C20—C16178.50 (19)C17—C16—C20—N2120.2 (2)
C20—N2—C21—C22107.6 (3)C18—C17—C16—C151.7 (3)
C23—N2—C21—C2281.5 (3)C18—C17—C16—C20174.99 (19)
C20—N2—C23—C2483.6 (3)C16—C17—C18—C191.3 (3)
C21—N2—C23—C2488.0 (3)N1—C19—C18—C170.0 (3)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O5ii0.932.453.221 (3)140
Symmetry code: (ii) x+2, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Cu2(C7H4ClO2)4(C10H14N2O)2]
Mr1105.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.6077 (4), 16.7569 (5), 12.1402 (4)
β (°) 99.647 (2)
V3)2528.54 (14)
Z2
Radiation typeMo Kα
µ (mm1)1.11
Crystal size (mm)0.35 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART BREEZE CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2012)
Tmin, Tmax0.711, 0.724
No. of measured, independent and
observed [I > 2σ(I)] reflections
78293, 5166, 4702
Rint0.026
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.083, 1.04
No. of reflections5166
No. of parameters309
No. of restraints85
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.45

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Cu1—O11.9791 (13)Cu1—O4i1.9703 (13)
Cu1—O2i1.9688 (13)Cu1—N12.1454 (14)
Cu1—O31.9755 (13)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O5ii0.932.453.221 (3)140
Symmetry code: (ii) x+2, y+2, z+2.
Acknowledgements top

The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State Planning Organization).

references
References top

Aydın, Ö., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012). Acta Cryst. E68, m409–m410.

Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.

Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m1582–m1583.

Hökelek, T., Necefoğlu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020–2023.

Hökelek, T., Sağlam, E. G., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2011). Acta Cryst. E67, m28–m29.

Hökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m955–m956.

Hökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m1328–m1329.

Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.

Necefoğlu, H., Çimen, E., Tercan, B., Dal, H. & Hökelek, T. (2010a). Acta Cryst. E66, m334–m335.

Necefoğlu, H., Çimen, E., Tercan, B., Dal, H. & Hökelek, T. (2010b). Acta Cryst. E66, m485–m486.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Speier, G. & Fulop, V. (1989). J. Chem. Soc. Dalton Trans. pp. 2331–2333.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Usubaliev, B. T., Movsumov, E. M., Musaev, F. N., Nadzhafov, G. N., Amiraslanov, I. R. & Mamedov, Kh. S. (1980). Koord. Khim. 6, 1091–1096.