supplementary materials


xu5719 scheme

Acta Cryst. (2013). E69, m458-m459    [ doi:10.1107/S1600536813018989 ]

Aquabis(3-chlorobenzoato-[kappa]O)bis(N,N-diethylnicotinamide-[kappa]N)copper(II)

N. Bozkurt, T. Tunç, N. Çaylak Delibas, H. Necefoglu and T. Hökelek

Abstract top

The title compound, [Cu(C7H4ClO2)2(C10H14N2O)2(H2O)], has twofold symmetry with the CuII cation and the O atom of the coordinating water molecule located on the axis. The CuII cation is coordinated by two carboxylate O atoms of chlorobenzoate (CB) anions, two N atoms of N,N-diethylnicotinamide (DENA) ligands and one water molecule in a distorted N2O3 square-pyramidal geometry. The benzene and pyridine rings are oriented at a dihedral angle of 82.51 (6)°. In the anionic ligand, the carboxylate group is twisted away from the attached benzene ring by 12.85 (11)°. In the crystal, O-H...O hydrogen bonds between the coordinating water molecule and the carboxyl group link the complex molecules into supramolecular chains running along the c-axis direction.

Comment top

As a part of our ongoing investigations of transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The asymmetric unit of the title mononuclear CuII complex, (Fig. 1), contains one-half molecule, the CuII cation is located on a twofold rotation axis and is coordinated by carboxylate O atoms of two chlorobenzoate (CB) anions, N atoms of two N,N-diethylnicotinamide (DENA) ligands and by one water molecule, located on a twofold rotation axis, all ligands coordinating in a monodentate manner. The crystal structures of similar complexes of CuII, CoII, NiII, MnII and ZnII cations, [Cu(C7H5O2)2(C10H14N2O)2] (Hökelek et al., 1996); [Cu(C9H9O2)2(C10H14N2O)2(H2O)2] (Necefoğlu et al., 2011a); [Cu(C7H4FO2)2(C10H14N2O)2(H2O)2] (Necefoğlu et al., 2011b); [Co(C6H6N2O)2(C7H4NO4)2(H2O)2] (Hökelek & Necefoğlu, 1998); [Co(C9H9O2)2(C10H14N2O)2(H2O)2] (Necefoğlu et al., 2011c); [Ni(C7H4ClO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009a); [Mn(C9H10NO2)2(H2O)4].2H2O (Hökelek & Necefoğlu, 2007) and [Zn(C7H4BrO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009b) have also been reported. In the first copper(II) complex mentioned above the two benzoate ions coordinate to the CuII atom as bidentate ligands, while in the other structures all the ligands coordinate in a monodentate manner.

In the title complex, the four symmetry related O and N atoms (O1, O1a and N1, N1a) [symmetry code: (a) - x, 1 - y, z] in the equatorial plane around the CuII cation form a distorted square-planar arrangement, while the distorted square-pyramidal coordination is completed by the water O atom (O4) in the axial position.

The Cu—O bond lengths are 1.9346 (11) Å (for benzoate oxygen) and 2.238 (2) Å (for water oxygen), and the Cu—N bond length is 2.0303 (14) Å, close to standard values (Allen et al., 1987). The Cu atom is displaced out of the mean-plane of the carboxylate group (O1/C1/O2) by -0.1606 (1) Å. The dihedral angle between the planar carboxylate group and the adjacent benzene ring A (C2—C7) is 12.85 (11)°. The benzene A (C2—C7) and the pyridine B (N1/C8—C12) rings are oriented at a dihedral angle of 82.51 (6)°.

In the crystal, strong O—H···O hydrogen bonds (Table 2) link the water hydrogens to the carboxylate oxygens into infinite chains along the c-axis.

Related literature top

For literature on niacin, see: Krishnamachari (1974). For information on the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek et al. (1996, 2009a,b); Hökelek & Necefoğlu (1998, 2007); Necefoğlu et al. (2011a,b,c). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the reaction of CuSO4.5H2O (1.25 g, 5 mmol) in H2O (100 ml) and diethylnicotinamide (1.78 g, 10 mmol) in H2O (20 ml) with sodium 3-chlorobenzoate (1.79 g, 10 mmol) in H2O (100 ml). The mixture was set aside to crystallize at ambient temperature for five days, giving blue single crystals.

Refinement top

Atom H41 (for H2O) was located in a difference Fourier map and was refined freely. The C-bound H-atoms were positioned geometrically with C—H = 0.93, 0.97 and 0.96 Å, for aromatic, methylene and methyl H-atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H-atoms and k = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (a) 2 - x, 1 - y, z]. Hydrogen atoms have been omitted for clarity.
Aquabis(3-chlorobenzoato-κO)bis(N,N-diethylnicotinamide-κN)copper(II) top
Crystal data top
[Cu(C7H4ClO2)2(C10H14N2O)2(H2O)]F(000) = 1556
Mr = 749.13Dx = 1.406 Mg m3
Orthorhombic, Iba2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: I 2 -2cCell parameters from 9278 reflections
a = 15.9185 (9) Åθ = 2.2–30.7°
b = 19.2366 (11) ŵ = 0.82 mm1
c = 11.5535 (7) ÅT = 296 K
V = 3537.9 (4) Å3Block, blue
Z = 40.35 × 0.20 × 0.15 mm
Data collection top
Bruker SMART BREEZE CCD
diffractometer
6232 independent reflections
Radiation source: fine-focus sealed tube5189 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
φ and ω scansθmax = 32.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 2323
Tmin = 0.821, Tmax = 0.884k = 2828
75834 measured reflectionsl = 1716
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.049P)2 + 0.4582P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
6232 reflectionsΔρmax = 0.25 e Å3
224 parametersΔρmin = 0.39 e Å3
1 restraintAbsolute structure: Flack (1983), with no Friedel pairs measured
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.027 (10)
Crystal data top
[Cu(C7H4ClO2)2(C10H14N2O)2(H2O)]V = 3537.9 (4) Å3
Mr = 749.13Z = 4
Orthorhombic, Iba2Mo Kα radiation
a = 15.9185 (9) ŵ = 0.82 mm1
b = 19.2366 (11) ÅT = 296 K
c = 11.5535 (7) Å0.35 × 0.20 × 0.15 mm
Data collection top
Bruker SMART BREEZE CCD
diffractometer
6232 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
5189 reflections with I > 2σ(I)
Tmin = 0.821, Tmax = 0.884Rint = 0.048
75834 measured reflectionsθmax = 32.3°
Refinement top
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086Δρmax = 0.25 e Å3
S = 1.06Δρmin = 0.39 e Å3
6232 reflectionsAbsolute structure: Flack (1983), with no Friedel pairs measured
224 parametersAbsolute structure parameter: 0.027 (10)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.00000.50000.41873 (3)0.03000 (6)
Cl11.46828 (3)0.59979 (3)0.63513 (5)0.06445 (15)
O11.11786 (6)0.52434 (6)0.41852 (13)0.0393 (2)
O21.14688 (8)0.52348 (10)0.60832 (13)0.0614 (4)
O30.84439 (11)0.72659 (11)0.16031 (16)0.0800 (5)
O41.00000.50000.22505 (18)0.0538 (6)
H411.0395 (19)0.4937 (15)0.185 (4)0.083 (10)*
N10.96843 (7)0.60210 (6)0.42656 (14)0.0353 (2)
N20.74305 (10)0.72799 (9)0.29566 (14)0.0469 (3)
C11.16668 (9)0.52875 (9)0.50510 (15)0.0363 (3)
C21.25768 (9)0.54254 (8)0.47400 (14)0.0349 (3)
C31.31396 (9)0.56202 (9)0.56019 (15)0.0391 (3)
H31.29640.56730.63640.047*
C41.39704 (10)0.57329 (8)0.52927 (16)0.0414 (3)
C51.42506 (9)0.56541 (8)0.4176 (2)0.0469 (3)
H51.48120.57290.39920.056*
C61.36773 (12)0.54600 (10)0.33236 (19)0.0514 (4)
H61.38570.54030.25630.062*
C71.28426 (11)0.53510 (9)0.36030 (17)0.0422 (4)
H71.24600.52280.30300.051*
C80.90811 (10)0.62540 (8)0.35534 (15)0.0372 (3)
H80.88020.59360.30840.045*
C90.88569 (10)0.69476 (8)0.34881 (14)0.0398 (3)
C100.92796 (12)0.74174 (8)0.4190 (2)0.0510 (4)
H100.91460.78880.41610.061*
C110.99002 (12)0.71828 (10)0.4931 (2)0.0509 (4)
H111.01880.74900.54090.061*
C121.00827 (10)0.64755 (10)0.49440 (18)0.0412 (3)
H121.04970.63140.54430.049*
C130.82193 (13)0.71794 (10)0.26044 (15)0.0462 (4)
C140.71426 (12)0.71772 (12)0.4142 (2)0.0551 (4)
H14A0.67840.75630.43610.066*
H14B0.76250.71770.46560.066*
C150.6667 (2)0.65112 (17)0.4298 (3)0.0907 (8)
H15A0.64540.64860.50740.136*
H15B0.70360.61250.41590.136*
H15C0.62080.64960.37600.136*
C160.68061 (14)0.75374 (11)0.2115 (2)0.0546 (5)
H16A0.62550.73630.23250.066*
H16B0.69430.73580.13530.066*
C170.6778 (2)0.83180 (13)0.2067 (3)0.0864 (9)
H17A0.64050.84620.14610.130*
H17B0.73320.84950.19160.130*
H17C0.65810.84960.27950.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02380 (9)0.03532 (10)0.03087 (11)0.00119 (8)0.0000.000
Cl10.0404 (2)0.0777 (3)0.0752 (4)0.0116 (2)0.0184 (2)0.0065 (3)
O10.0265 (4)0.0465 (5)0.0449 (5)0.0019 (4)0.0005 (5)0.0018 (7)
O20.0334 (6)0.1087 (12)0.0420 (7)0.0084 (7)0.0062 (5)0.0074 (8)
O30.0700 (10)0.1258 (14)0.0442 (8)0.0380 (10)0.0141 (8)0.0253 (10)
O40.0329 (9)0.1020 (18)0.0265 (10)0.0133 (9)0.0000.000
N10.0290 (5)0.0383 (5)0.0385 (7)0.0010 (4)0.0002 (6)0.0028 (6)
N20.0421 (7)0.0617 (8)0.0369 (7)0.0086 (6)0.0025 (6)0.0013 (7)
C10.0271 (6)0.0404 (8)0.0414 (8)0.0011 (5)0.0034 (5)0.0022 (6)
C20.0259 (6)0.0380 (7)0.0408 (8)0.0008 (5)0.0023 (6)0.0036 (6)
C30.0304 (6)0.0462 (8)0.0409 (8)0.0006 (6)0.0011 (6)0.0060 (6)
C40.0292 (6)0.0394 (7)0.0556 (10)0.0005 (6)0.0050 (6)0.0073 (7)
C50.0283 (6)0.0440 (7)0.0683 (10)0.0026 (5)0.0105 (8)0.0012 (10)
C60.0425 (9)0.0593 (10)0.0523 (11)0.0073 (7)0.0181 (8)0.0060 (8)
C70.0353 (7)0.0488 (9)0.0426 (9)0.0033 (6)0.0052 (7)0.0042 (7)
C80.0340 (7)0.0392 (7)0.0385 (8)0.0023 (5)0.0017 (6)0.0016 (6)
C90.0390 (7)0.0417 (7)0.0389 (8)0.0065 (6)0.0043 (6)0.0030 (6)
C100.0548 (9)0.0352 (6)0.0631 (10)0.0041 (6)0.0000 (11)0.0029 (10)
C110.0458 (9)0.0426 (9)0.0643 (12)0.0027 (7)0.0054 (8)0.0141 (8)
C120.0339 (7)0.0463 (8)0.0435 (9)0.0026 (6)0.0029 (6)0.0071 (7)
C130.0503 (9)0.0505 (9)0.0377 (9)0.0151 (8)0.0031 (7)0.0035 (7)
C140.0438 (8)0.0812 (12)0.0405 (8)0.0058 (8)0.0010 (9)0.0060 (12)
C150.099 (2)0.0903 (18)0.0825 (19)0.0149 (15)0.0178 (19)0.0077 (18)
C160.0501 (10)0.0630 (11)0.0508 (10)0.0082 (8)0.0108 (8)0.0045 (9)
C170.094 (2)0.0615 (13)0.104 (2)0.0226 (13)0.0383 (17)0.0114 (14)
Geometric parameters (Å, º) top
Cu1—N12.0294 (12)C7—H70.9300
Cu1—N1i2.0294 (12)C8—H80.9300
Cu1—O11.9337 (10)C9—C81.383 (2)
Cu1—O1i1.9337 (10)C9—C101.388 (3)
Cu1—O42.238 (2)C9—C131.507 (2)
Cl1—C41.7439 (18)C10—C111.383 (3)
O1—C11.269 (2)C10—H100.9300
O4—H410.79 (4)C11—H110.9300
N1—C81.341 (2)C12—C111.391 (3)
N1—C121.335 (2)C12—H120.9300
N2—C131.334 (2)C13—O31.222 (2)
N2—C141.458 (3)C14—C151.499 (4)
N2—C161.476 (3)C14—H14A0.9700
C1—O21.238 (2)C14—H14B0.9700
C1—C21.516 (2)C15—H15A0.9600
C2—C31.391 (2)C15—H15B0.9600
C2—C71.387 (2)C15—H15C0.9600
C3—C41.387 (2)C16—C171.503 (3)
C3—H30.9300C16—H16A0.9700
C5—C41.373 (3)C16—H16B0.9700
C5—C61.394 (3)C17—H17A0.9600
C5—H50.9300C17—H17B0.9600
C6—H60.9300C17—H17C0.9600
C7—C61.383 (2)
O1—Cu1—O1i179.86 (9)C9—C8—H8118.6
O1—Cu1—O489.93 (5)C8—C9—C10118.11 (16)
O1i—Cu1—O489.93 (5)C8—C9—C13119.75 (16)
O1—Cu1—N190.35 (5)C10—C9—C13121.96 (15)
O1i—Cu1—N189.66 (5)C9—C10—H10120.2
O1—Cu1—N1i89.66 (5)C11—C10—C9119.69 (15)
O1i—Cu1—N1i90.35 (5)C11—C10—H10120.2
N1—Cu1—O492.55 (5)C10—C11—C12118.36 (17)
N1i—Cu1—O492.55 (5)C10—C11—H11120.8
N1i—Cu1—N1174.89 (9)C12—C11—H11120.8
C1—O1—Cu1127.53 (12)N1—C12—C11122.34 (17)
Cu1—O4—H41126 (3)N1—C12—H12118.8
C8—N1—Cu1118.25 (11)C11—C12—H12118.8
C12—N1—Cu1122.85 (12)O3—C13—N2122.97 (18)
C12—N1—C8118.79 (13)O3—C13—C9118.98 (17)
C13—N2—C14124.25 (16)N2—C13—C9118.05 (16)
C13—N2—C16118.78 (16)N2—C14—C15112.8 (2)
C14—N2—C16116.93 (15)N2—C14—H14A109.0
O1—C1—C2114.20 (14)N2—C14—H14B109.0
O2—C1—O1126.72 (15)C15—C14—H14A109.0
O2—C1—C2119.08 (15)C15—C14—H14B109.0
C3—C2—C1119.53 (15)H14A—C14—H14B107.8
C7—C2—C1119.85 (14)C14—C15—H15A109.5
C7—C2—C3120.62 (14)C14—C15—H15B109.5
C2—C3—H3120.9C14—C15—H15C109.5
C4—C3—C2118.15 (16)H15A—C15—H15B109.5
C4—C3—H3120.9H15A—C15—H15C109.5
C3—C4—Cl1119.02 (14)H15B—C15—H15C109.5
C5—C4—Cl1118.68 (12)N2—C16—C17112.26 (19)
C5—C4—C3122.30 (16)N2—C16—H16A109.2
C4—C5—C6118.74 (14)N2—C16—H16B109.2
C4—C5—H5120.6C17—C16—H16A109.2
C6—C5—H5120.6C17—C16—H16B109.2
C5—C6—H6119.8H16A—C16—H16B107.9
C7—C6—C5120.31 (18)C16—C17—H17A109.5
C7—C6—H6119.8C16—C17—H17B109.5
C2—C7—H7120.1C16—C17—H17C109.5
C6—C7—C2119.87 (17)H17A—C17—H17B109.5
C6—C7—H7120.1H17A—C17—H17C109.5
N1—C8—C9122.71 (15)H17B—C17—H17C109.5
N1—C8—H8118.6
O4—Cu1—O1—C1173.97 (13)O1—C1—C2—C713.2 (2)
N1—Cu1—O1—C193.48 (14)O2—C1—C2—C312.1 (2)
N1i—Cu1—O1—C181.41 (14)O2—C1—C2—C7167.34 (19)
O1—Cu1—N1—C8133.82 (13)C1—C2—C3—C4179.08 (15)
O1i—Cu1—N1—C846.04 (13)C7—C2—C3—C40.4 (2)
O1—Cu1—N1—C1242.21 (15)C1—C2—C7—C6178.40 (16)
O1i—Cu1—N1—C12137.94 (15)C3—C2—C7—C61.1 (3)
O4—Cu1—N1—C843.87 (12)C2—C3—C4—Cl1178.47 (12)
O4—Cu1—N1—C12132.15 (14)C2—C3—C4—C50.4 (2)
Cu1—O1—C1—O26.0 (3)C6—C5—C4—Cl1178.34 (14)
Cu1—O1—C1—C2174.59 (9)C6—C5—C4—C30.6 (3)
Cu1—N1—C8—C9175.86 (13)C4—C5—C6—C70.1 (3)
C12—N1—C8—C90.3 (3)C2—C7—C6—C50.9 (3)
Cu1—N1—C12—C11175.38 (16)C10—C9—C8—N10.2 (3)
C8—N1—C12—C110.6 (3)C13—C9—C8—N1175.42 (16)
C14—N2—C13—O3179.6 (2)C8—C9—C10—C110.5 (3)
C14—N2—C13—C90.3 (3)C13—C9—C10—C11175.56 (19)
C16—N2—C13—O32.8 (3)C8—C9—C13—O379.9 (3)
C16—N2—C13—C9177.28 (16)C8—C9—C13—N2100.0 (2)
C13—N2—C14—C15102.9 (3)C10—C9—C13—O395.1 (3)
C16—N2—C14—C1579.5 (3)C10—C9—C13—N285.0 (2)
C13—N2—C16—C1788.5 (3)C9—C10—C11—C120.2 (3)
C14—N2—C16—C1789.2 (3)N1—C12—C11—C100.4 (3)
O1—C1—C2—C3167.34 (15)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O2ii0.79 (4)1.95 (3)2.7367 (17)171 (4)
Symmetry code: (ii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C7H4ClO2)2(C10H14N2O)2(H2O)]
Mr749.13
Crystal system, space groupOrthorhombic, Iba2
Temperature (K)296
a, b, c (Å)15.9185 (9), 19.2366 (11), 11.5535 (7)
V3)3537.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.35 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART BREEZE CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2012)
Tmin, Tmax0.821, 0.884
No. of measured, independent and
observed [I > 2σ(I)] reflections
75834, 6232, 5189
Rint0.048
(sin θ/λ)max1)0.752
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.086, 1.06
No. of reflections6232
No. of parameters224
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.39
Absolute structureFlack (1983), with no Friedel pairs measured
Absolute structure parameter0.027 (10)

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Cu1—N12.0294 (12)Cu1—O42.238 (2)
Cu1—O11.9337 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O2i0.79 (4)1.95 (3)2.7367 (17)171 (4)
Symmetry code: (i) x, y+1, z1/2.
Acknowledgements top

The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State of Planning Organization).

references
References top

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans.2 pp. S1–19.

Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.

Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466–m467.

Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m607–m608.

Hökelek, T., Gündüz, H. & Necefoğlu, H. (1996). Acta Cryst. C52, 2470–2473.

Hökelek, T. & Necefoğlu, H. (1998). Acta Cryst. C54, 1242–1244.

Hökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821–m823.

Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.

Necefoğlu, H., Maracı, A., Aktaş, V., Tercan, B. & Hökelek, T. (2011a). Acta Cryst. E67, m780–m781.

Necefoğlu, H., Maracı, A., Özbek, F. E., Tercan, B. & Hökelek, T. (2011c). Acta Cryst. E67, m619–m620.

Necefoğlu, H., Özbek, F. E., Öztürk, V., Adıgüzel, V. & Hökelek, T. (2011b). Acta Cryst. E67, m1164–m1165.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.