Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[aquabis(3-chlorobenzoato- $\kappa^2 O, O'$)cadmium]- μ -N, N-diethylnicotin-amide- $\kappa^2 N^1$:O]

Nihat Bozkurt,^a Tuncay Tunç,^b Nagihan Çaylak Delibaş,^c Hacali Necefoğlu^a and Tuncer Hökelek^d*

^aDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, ^bAksaray University, Science Education Department, 68100, Aksaray, Turkey, ^cDepartment of Physics, Sakarya University, 54187 Esentepe, Sakarya, Turkey, and ^dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey Correspondence e-mail: merzifon@hacettepe.edu.tr

Received 11 July 2013; accepted 16 July 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.006 Å; R factor = 0.046; wR factor = 0.093; data-to-parameter ratio = 20.0.

In the crystal of the title Cd^{II} polymeric complex, [Cd- $(C_7H_4ClO_2)_2(C_{10}H_{14}N_2O)(H_2O)]_n$, the Cd^{II} cation is chelated by two chlorobenzoate anions and coordinated by two N,Ndiethylnicotinamide (DENA) ligands and one water molecule in a distorted NO₆ pentagonal-bipyramidal geometry. The Cd^{II} cations are bridged by the pyridine N atom and carbonyl O atom of the DENA ligand to form a polymeric chain running along the b axis. Intermolecular $O-H \cdots O$ hydrogen bonds between coordinating water molecules and carboxylate groups link adjacent chains into layers parallel to the bc plane. $\pi - \pi$ contacts between benzene rings [shortest centroidcentroid distance = 3.912(2) Å] further stabilizes the crystal structure. In the molecule, weak $C-H \cdots O$ hydrogen bonds occur between the pyridine ring and carboxylate groups; the dihedral angles between the carboxylate groups and adjacent benzene rings are 4.6 (3) and 12.8 (3) $^{\circ}$, while the benzene rings are oriented at a dihedral angle of $1.89 (13)^{\circ}$.

Related literature

For niacin, see: Krishnamachari (1974). For *N*,*N*-diethylnicotinamide, see: Bigoli *et al.* (1972). For related structures, see: Çaylak Delibaş *et al.* (2013); Greenaway *et al.* (1984); Hökelek *et al.* (1995); Hökelek & Necefoğlu (1996); Hökelek *et al.* (2009*a*,*b*,*c*,*d*,*e*,*f*,*g*); Hökelek *et al.* (2011); Necefoğlu *et al.* (2010*a*,*b*); Sertçelik *et al.* (2013).

Experimental

Crystal data

 $\begin{array}{l} [\mathrm{Cd}(\mathrm{C_7H_4ClO_2})_2(\mathrm{C_{10}H_{14}N_2O}) - \\ (\mathrm{H_2O})] \\ M_r = 619.76 \\ \mathrm{Monoclinic, } C2/c \\ a = 25.1809 \ (5) \ \mathrm{\AA} \\ b = 7.0161 \ (3) \ \mathrm{\AA} \\ c = 30.6755 \ (6) \ \mathrm{\AA} \end{array}$

Data collection

Bruker SMART BREEZE CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2012) $T_{min} = 0.823, T_{max} = 0.897$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.093$ S = 1.356531 reflections 326 parameters 4 restraints 100329 measured reflections 6531 independent reflections 6170 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$

 $\beta = 106.203 \ (3)^{\circ}$

Z = 8

V = 5204.2 (3) Å³

Mo $K\alpha$ radiation

 $0.35 \times 0.15 \times 0.10 \text{ mm}$

 $\mu = 1.09 \text{ mm}^-$

T = 296 K

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.77 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -1.02 \text{ e } \text{\AA}^{-3}$

Table 1

Selected bond lengths (Å).

Cd1-O1	2.504 (3)	Cd1-O5	2.410 (3)
Cd1-O2	2.323 (3)	Cd1-O6	2.314 (3)
Cd1-O3	2.421 (3)	Cd1-N1	2.305 (3)
Cd1-O4	2.360 (3)		

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O6-H61\cdots O2^{i}$	0.85 (4)	1.94 (4)	2.753 (5)	160 (4)
$O6-H62\cdots O4^{1}$	0.86(4)	2.11 (4)	2.838 (4)	142 (5)
C15−H15···O1	0.93	2.52	3.181 (5)	128
C19−H19···O3	0.93	2.47	3.130 (5)	128

Symmetry code: (i) -x + 1, -y + 2, -z.

Data collection: *APEX2* (Bruker, 2012); cell refinement: *SAINT* (Bruker, 2012); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics:

ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2009).

The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State of Planning Organization).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5721).

References

- Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.
- Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2013). Acta Cryst. E69, m191-m192.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Greenaway, F. T., Pezeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). *Inorg. Chim. Acta*, **93**, 67–71.

metal-organic compounds

- Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m1582-m1583.
- Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009e). Acta Cryst. E**65**, m627–m628.
- Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009f). Acta Cryst. E65, m1037-m1038.
- Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009g). Acta Cryst. E65, m1365–m1366.
- Hökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128-1131.
- Hökelek, T., Necefoğlu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020-2023.
- Hökelek, T., Sağlam, E. G., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2011). Acta Cryst. E67, m28-m29.
- Hökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m955–m956.
- Hökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m1328–m1329.
- Hökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009d). Acta Cryst. E65, m1416–m1417.
- Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.
- Necefoğlu, H., Çimen, E., Tercan, B., Dal, H. & Hökelek, T. (2010a). Acta Cryst. E66, m334-m335.
- Necefoğlu, H., Çimen, E., Tercan, B., Dal, H. & Hökelek, T. (2010b). Acta Cryst. E66, m485-m486.
- Sertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2013). Acta Cryst. E69, m290–m291.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2013). E69, m466-m467 [doi:10.1107/S160053681301965X]

catena-Poly[[aquabis(3-chlorobenzoato- $\kappa^2 O, O'$)cadmium]- μ -N,N-diethyl-nicotinamide- $\kappa^2 N^1$:O]

Nihat Bozkurt, Tuncay Tunç, Nagihan Çaylak Delibaş, Hacali Necefoğlu and Tuncer Hökelek

S1. Comment

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative *N*,*N*-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli *et al.*, 1972), the title compound was synthesized and its crystal structure is reported herein.

The structures of some DENA and/or NA complexes of the Cu^{2+} , Zn^{2+} and Co^{2+} ions, $[Cu_2(C_6H_5COO)_4(C_{10}H_{14}N_2O)_2]$ (Hökelek *et al.*, 1995); $[Cu_2(C_8H_7O_2)_4(C_6H_6N_2O)_2]$ (Necefoğlu *et al.*, 2010*a*); $[Zn_2(C_{11}H_{14}NO_2)_4(C_{10}H_{14}N_2O)_2]$ (Hökelek *et al.*, 2009*a*); $[Zn_2(C_8H_8NO_2)_4(C_{10}H_{14}N_2O)_2]$.2H₂O (Hökelek *et al.*, 2009*b*); $[Zn_2(C_9H_{10}NO_2)_4(C_{10}H_{14}N_2O)_2]$ (Hökelek *et al.*, 2009*c*); $[Zn_2(C_8H_7O_2)_4(C_{10}H_{14}N_2O)_2]$ (Necefoğlu *et al.*, 2010*b*) and $[Co_2(C_{11}H_{14}NO_2)_4(C_{10}H_{14}N_2O)_2]$ (Hökelek *et al.*, 2011) have also been determined. In these structures, the benzoate ion acts as a bidentate ligand.

The asymmetric unit of the title Cd^{II} complex, [Cd(CB)₂(DENA)(H₂O)]_n, contains two 3-chlorobenzoate (CB), one *N*,*N*-diethylnicotinamide (DENA) ligands and one coordinated water molecule; the CB ions act as bidentate ligands (Fig. 1). The coordination number of the Cd^{II} ion is six. Intramolecular C—H···O hydrogen bonds (Fig. 1 and Table 2) link the DENA ligand to the carboxyl groups. The O1—Cd1—O2 and O3—Cd1—O4 angles are 53.75 (10)° and 54.23 (9)°, respectively. The corresponding O—M—O (where *M* is a , metal) angles are 53.50 (14)° in [Cu₂(C₈H₅O₃)₄(C₆H₆N₂O)₄] (Sertçelik *et al.*, 2013), 53.45 (4)° and 51.97 (4)° in [Cd(C₇H₅O₃)₂(C₆H₆NO)(H₂O)₂].2(H₂O) (Caylak Delibaş *et al.*, 2013), 52.91 (4)° and 53.96 (4)° in [Cd(C₈H₅O₃)₂(C₆H₆N₂O)₂(H₂O)].H₂O (Hökelek *et al.*, 2009*d*), 60.70 (4)° in [Co(C₉H₁₀NO₂)₂(C₆H₆N₂O)(H₂O)₂] (Hökelek *et al.*, 2009*e*), 58.45 (9)° in [Mn(C₉H₁₀NO₂)₂- (C₆H₆N₂O)(H₂O)₂] (Hökelek *et al.*, 2009*f*), 60.03 (6)° in [Zn(C₈H₈NO₂)₂(C₆H₆N₂O)].H₂O (Hökelek *et al.*, 2009*g*), 58.3 (3)° in [Zn₂(C₁₀H₁₄N₂O)₂(C₇H₅O₃)₄].2H₂O (Hökelek & Necefoğlu, 1996) and 55.2 (1)° in [Cu(Asp)₂(py)₂] (where Asp is acetyl-salicylate and py is pyridine) (Greenaway *et al.*, 1984). The dihedral angles between the planar carboxylate groups [(O1/O2/C1) and (O3/O4/C8)] and the adjacent benzene rings A (C2—C7) and B (C9—C14) are 4.56 (28)° and 12.84 (26)°, respectively, while that between rings A, B and C (N1/C15–C19) are A/B = 1.89 (13), A/C = 34.83 (13) and B/C = 35.13 (11)°.

In the crystal, the Cd^{II} ions [Cd1···Cd1a = 7.0161 (5) Å; symmetry code: (a) x, y - 1, z] are bridged by the N and O atoms of the DENA ligands forming polymeric chains running along the *b*-axis direction, where the coordination number of each Cd^{II} atom is seven within a CdO₆N donor set (Fig. 2). The average Cd—O distance is 2.389 (3) Å (Table 1). The Cd atom lies 0.0972 (3) Å below and 0.0127 (3) Å above of the carboxylate groups [(O1/O2/C1) and (O3/O4/C8)], respectively. Strong intermolecular O—H···O hydrogen bonds (Table 2) between water molecules and carboxylate groups link the adjacent chains into layers parallel to the *bc* plane. π ··· π contacts between the benzene rings Cg1—Cg2ⁱ, [symmetry code: (i) 1 - *x*, 2 - *y*, - *z*, where Cg1 and Cg2 are the centroids of the rings A (C2—C7) and B (C9—C14), respectively] may further stabilize the structure, with centroid-centroid distance of 3.912 (2) Å.

S2. Experimental

The title compound was prepared by the reaction of $CdSO_4.8H_2O$ (1.283 g, 5 mmol) in H_2O (100 ml) and diethylnicotinamide (1.780 g, 10 mmol) in H_2O (10 ml) with sodium 3-chlorobenzoate (1.790 g, 10 mmol) in H_2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for ten days, giving colorless single crystals.

S3. Refinement

Atoms H61 and H62 (for H₂O) were located in a difference Fourier map and were refined freely. The C-bound H-atoms were positioned geometrically with C—H = 0.93, 0.97 and 0.96 Å, for aromatic, methylene and methyl H-atoms, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = k \times U_{eq}(C)$, where k = 1.5 for methyl H-atoms and k = 1.2 for all other H-atoms.

Figure 1

The asymmetric unit of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

Figure 2

Part of the polymeric chain of the title compound [symmetry codes: (a) x, y - 1, z; (b) x, 1 + y, z]. Hydrogen atoms have been omitted for clarity.

6531 reflections

326 parameters

4 restraints

catena-Poly[[aquabis(3-chlorobenzoato- $\kappa^2 O, O'$)cadmium]- μ -N,N-diethylnicotinamide- $\kappa^2 N^1$:O]

Crystal data	
$\begin{bmatrix} Cd(C_7H_4ClO_2)_2(C_{10}H_{14}N_2O)(H_2O) \end{bmatrix}$ $M_r = 619.76$ Monoclinic, C2/c Hall symbol: -C2yc a = 25.1809 (5) Å b = 7.0161 (3) Å c = 30.6755 (6) Å $\beta = 106.203$ (3)° V = 5204.2 (3) Å ³ 7 = 8	F(000) = 2496 $D_x = 1.582 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 9713 reflections $\theta = 2.5-28.4^{\circ}$ $\mu = 1.09 \text{ mm}^{-1}$ T = 296 K Rod-shaped, colourless $0.35 \times 0.15 \times 0.10 \text{ mm}$
Data collection	
Bruker SMART BREEZE CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2012) $T_{min} = 0.823, T_{max} = 0.897$	100329 measured reflections 6531 independent reflections 6170 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$ $\theta_{max} = 28.4^\circ, \ \theta_{min} = 1.4^\circ$ $h = -33 \rightarrow 33$ $k = -9 \rightarrow 9$ $l = -41 \rightarrow 40$
Refinement	
Refinement on F^2	S = 1.35

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.093$

Primary atom site location: structure-invariant direct methods	H atoms treated by a mixture of independent and constrained refinement
Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0097P)^2 + 22.0143P]$ where $P = (F^2 + 2F^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} = 0.001$
neighbouring sites	$\Delta \rho_{\text{max}} = 0.77 \text{ e } \text{A}^{-3}$ $\Delta \rho_{\text{min}} = -1.02 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2	2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Cd1	0.430006 (10)	0.86384 (4)	0.032753 (9)	0.03649 (8)	
Cl1	0.67865 (6)	0.6435 (2)	0.24132 (4)	0.0797 (4)	
Cl2	0.20678 (5)	1.2006 (2)	-0.17853 (4)	0.0741 (4)	
01	0.50773 (11)	0.7328 (5)	0.09538 (10)	0.0534 (7)	
O2	0.50591 (11)	1.0331 (5)	0.07578 (9)	0.0533 (7)	
O3	0.35198 (12)	0.9354 (4)	-0.03179 (10)	0.0547 (8)	
O4	0.41552 (11)	1.1524 (4)	-0.00840 (9)	0.0500 (7)	
O5	0.39003 (12)	0.9782 (4)	0.09065 (10)	0.0498 (7)	
O6	0.47410 (12)	0.7107 (5)	-0.01422 (11)	0.0485 (7)	
H61	0.472 (2)	0.785 (7)	-0.0367 (12)	0.083 (19)*	
H62	0.5081 (12)	0.709 (10)	0.0016 (18)	0.13 (3)*	
N1	0.38036 (12)	0.6005 (4)	0.04343 (10)	0.0349 (6)	
N2	0.42885 (14)	1.1630 (5)	0.15138 (11)	0.0453 (8)	
C1	0.52769 (14)	0.8941 (6)	0.10063 (12)	0.0420 (9)	
C2	0.57856 (13)	0.9332 (6)	0.13935 (12)	0.0368 (8)	
C3	0.60309 (14)	0.7865 (6)	0.16792 (12)	0.0410 (8)	
H3	0.5892	0.6631	0.1627	0.049*	
C4	0.64831 (15)	0.8243 (6)	0.20430 (13)	0.0451 (9)	
C5	0.66979 (17)	1.0049 (8)	0.21233 (15)	0.0575 (12)	
H5	0.7004	1.0287	0.2369	0.069*	
C6	0.6455 (2)	1.1492 (8)	0.18368 (16)	0.0648 (13)	
H6	0.6597	1.2721	0.1888	0.078*	
C7	0.59975 (17)	1.1136 (6)	0.14707 (15)	0.0516 (10)	
H7	0.5835	1.2125	0.1278	0.062*	
C8	0.37094 (14)	1.0967 (5)	-0.03489 (11)	0.0367 (8)	
C9	0.33859 (14)	1.2296 (5)	-0.07074 (11)	0.0328 (7)	
C10	0.29377 (14)	1.1625 (5)	-0.10465 (11)	0.0364 (7)	
H10	0.2847	1.0337	-0.1060	0.044*	
C11	0.26293 (16)	1.2868 (6)	-0.13623 (13)	0.0458 (9)	

C12	0.2747 (2)	1.4770 (7)	-0.13478 (15)	0.0583 (12)
H12	0.2530	1.5599	-0.1561	0.070*
C13	0.3196 (2)	1.5445 (6)	-0.10090 (16)	0.0606 (12)
H13	0.3280	1.6737	-0.0994	0.073*
C14	0.35155 (18)	1.4214 (6)	-0.06956 (13)	0.0465 (9)
H14	0.3821	1.4673	-0.0474	0.056*
C15	0.40358 (14)	0.4560 (5)	0.07000 (12)	0.0363 (7)
H15	0.4418	0.4552	0.0822	0.044*
C16	0.37313 (15)	0.3070 (5)	0.08017 (12)	0.0346 (7)
C17	0.31657 (15)	0.3072 (6)	0.06121 (13)	0.0442 (9)
H17	0.2951	0.2065	0.0665	0.053*
C18	0.29234 (16)	0.4580 (7)	0.03445 (15)	0.0523 (10)
H18	0.2542	0.4629	0.0220	0.063*
C19	0.32558 (15)	0.6014 (6)	0.02650 (13)	0.0442 (9)
H19	0.3091	0.7037	0.0085	0.053*
C20	0.39878 (15)	1.1380 (5)	0.10824 (13)	0.0408 (8)
C21	0.43608 (18)	1.3440 (7)	0.17587 (14)	0.0530 (10)
H21A	0.4277	1.3260	0.2046	0.064*
H21B	0.4101	1.4362	0.1583	0.064*
C22	0.4944 (2)	1.4228 (8)	0.18486 (17)	0.0724 (14)
H22A	0.4972	1.5408	0.2012	0.109*
H22B	0.5026	1.4446	0.1565	0.109*
H22C	0.5203	1.3328	0.2026	0.109*
C23	0.4519 (2)	0.9923 (7)	0.17814 (16)	0.0606 (12)
H23A	0.4863	1.0261	0.2004	0.073*
H23B	0.4601	0.8969	0.1581	0.073*
C24	0.4129 (3)	0.9093 (9)	0.2021 (2)	0.097 (2)
H24A	0.4306	0.8052	0.2210	0.146*
H24B	0.3802	0.8641	0.1802	0.146*
H24C	0.4029	1.0056	0.2207	0.146*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.03456 (13)	0.03444 (13)	0.03743 (13)	-0.00848 (11)	0.00502 (9)	0.00642 (11)
Cl1	0.0728 (8)	0.0926 (10)	0.0612 (7)	0.0290 (8)	-0.0022 (6)	0.0143 (7)
Cl2	0.0523 (6)	0.1018 (11)	0.0533 (6)	-0.0002 (7)	-0.0100 (5)	0.0020 (7)
01	0.0415 (15)	0.0632 (19)	0.0483 (16)	-0.0173 (14)	0.0008 (12)	-0.0009 (14)
O2	0.0414 (15)	0.070 (2)	0.0435 (15)	-0.0062 (14)	0.0043 (12)	0.0154 (15)
O3	0.0528 (16)	0.0446 (16)	0.0570 (17)	-0.0091 (13)	-0.0005 (13)	0.0198 (14)
O4	0.0392 (14)	0.0561 (17)	0.0474 (15)	-0.0072 (13)	-0.0002 (11)	0.0094 (14)
05	0.0609 (17)	0.0322 (14)	0.0653 (18)	-0.0061 (13)	0.0322 (15)	-0.0015 (13)
06	0.0440 (16)	0.0526 (17)	0.0512 (17)	-0.0086 (13)	0.0173 (13)	0.0004 (14)
N1	0.0369 (14)	0.0292 (15)	0.0384 (15)	-0.0081 (12)	0.0103 (12)	0.0011 (12)
N2	0.0537 (19)	0.0402 (18)	0.0457 (18)	0.0070 (15)	0.0200 (15)	0.0106 (14)
C1	0.0291 (16)	0.063 (3)	0.0349 (18)	-0.0060 (17)	0.0107 (14)	0.0010 (18)
C2	0.0260 (15)	0.049 (2)	0.0356 (17)	-0.0057 (14)	0.0095 (13)	-0.0025 (15)
C3	0.0344 (17)	0.048 (2)	0.0401 (19)	-0.0016 (16)	0.0102 (15)	-0.0038 (17)

C4	0.0351 (18)	0.060 (3)	0.0383 (19)	0.0069 (17)	0.0074 (15)	-0.0016 (18)
C5	0.041 (2)	0.080 (3)	0.045 (2)	-0.013 (2)	0.0015 (18)	-0.014 (2)
C6	0.062 (3)	0.059 (3)	0.068 (3)	-0.023 (2)	0.008 (2)	-0.014 (2)
C7	0.049 (2)	0.046 (2)	0.058 (2)	-0.0066 (19)	0.0110 (19)	0.002 (2)
C8	0.0339 (17)	0.045 (2)	0.0324 (17)	-0.0001 (15)	0.0108 (13)	0.0058 (15)
C9	0.0377 (17)	0.0326 (17)	0.0300 (16)	-0.0011 (14)	0.0128 (13)	0.0032 (13)
C10	0.0373 (17)	0.0345 (18)	0.0376 (18)	-0.0006 (14)	0.0109 (14)	0.0006 (14)
C11	0.041 (2)	0.060 (3)	0.0341 (19)	0.0080 (18)	0.0072 (15)	0.0051 (18)
C12	0.070 (3)	0.053 (3)	0.048 (2)	0.018 (2)	0.011 (2)	0.018 (2)
C13	0.085 (3)	0.033 (2)	0.061 (3)	0.003 (2)	0.016 (2)	0.007 (2)
C14	0.059 (2)	0.037 (2)	0.040 (2)	-0.0086 (18)	0.0097 (17)	-0.0011 (16)
C15	0.0350 (17)	0.0350 (18)	0.0388 (18)	-0.0089 (14)	0.0102 (14)	0.0001 (15)
C16	0.0413 (18)	0.0294 (16)	0.0366 (17)	-0.0043 (14)	0.0168 (14)	-0.0004 (14)
C17	0.0406 (19)	0.041 (2)	0.054 (2)	-0.0147 (16)	0.0187 (17)	0.0038 (17)
C18	0.0332 (18)	0.060 (3)	0.061 (3)	-0.0097 (18)	0.0097 (17)	0.012 (2)
C19	0.0403 (19)	0.039 (2)	0.052 (2)	-0.0046 (16)	0.0100 (16)	0.0093 (17)
C20	0.0464 (19)	0.0345 (18)	0.049 (2)	-0.0065 (16)	0.0265 (17)	0.0047 (16)
C21	0.061 (3)	0.055 (3)	0.043 (2)	0.009 (2)	0.0142 (19)	0.0029 (19)
C22	0.070 (3)	0.079 (4)	0.062 (3)	-0.010 (3)	0.010 (2)	0.000 (3)
C23	0.069 (3)	0.056 (3)	0.065 (3)	0.022 (2)	0.032 (2)	0.024 (2)
C24	0.116 (5)	0.085 (4)	0.117 (5)	0.037 (4)	0.076 (4)	0.059 (4)

Geometric parameters (Å, °)

Cd1—O1	2.504 (3)	C9—C10	1.386 (5)
Cd1—O2	2.323 (3)	C9—C14	1.383 (5)
Cd103	2.421 (3)	C10—C11	1.372 (5)
Cd104	2.360 (3)	C10—H10	0.9300
Cd105	2.410 (3)	C11—C12	1.365 (6)
Cd106	2.314 (3)	C12—C13	1.388 (7)
Cd1—N1	2.305 (3)	C12—H12	0.9300
Cd1—C1	2.752 (4)	C13—H13	0.9300
Cd1—C8	2.732 (3)	C14—C13	1.373 (6)
Cl1—C4	1.732 (4)	C14—H14	0.9300
Cl2—C11	1.739 (4)	C15—C16	1.383 (5)
01—C1	1.230 (5)	C15—H15	0.9300
O3—C8	1.242 (4)	C16—C17	1.380 (5)
O4—C8	1.251 (4)	C16—C20 ⁱ	1.502 (5)
O6—H61	0.856 (17)	C17—C18	1.373 (6)
O6—H62	0.86 (2)	C17—H17	0.9300
O5—C20	1.237 (5)	C18—H18	0.9300
N1-C15	1.330 (4)	C19—C18	1.374 (5)
N1-C19	1.331 (5)	C19—H19	0.9300
N2-C21	1.461 (5)	C20—N2	1.340 (5)
N2—C23	1.476 (5)	C20—C16 ⁱⁱ	1.502 (5)
C1—O2	1.265 (5)	C21—C22	1.521 (6)
C2-C1	1.509 (5)	C21—H21A	0.9700
С2—С3	1.381 (5)	C21—H21B	0.9700

C2—C7	1.368 (6)	C22—H22A	0.9600
C3—C4	1.380 (5)	C22—H22B	0.9600
С3—Н3	0.9300	C22—H22C	0.9600
C4—C5	1.372 (6)	C23—C24	1.500 (6)
C5—C6	1.368 (7)	С23—Н23А	0.9700
С5—Н5	0.9300	С23—Н23В	0.9700
С6—Н6	0.9300	C24—H24A	0.9600
C7—C6	1.389 (6)	C24—H24B	0.9600
С7—Н7	0.9300	C24—H24C	0.9600
C9—C8	1.497 (5)		
O1—Cd1—C1	26.54 (11)	С7—С6—Н6	119.8
01—Cd1—C8	161.03 (10)	$C_{2}-C_{7}-C_{6}$	120.1 (4)
02-Cd1-01	53.75 (10)	C2-C7-H7	119.9
02 - Cd1 - 03	135 22 (10)	C6-C7-H7	119.9
02 - Cd1 - 04	81 10 (10)	O3-C8-Cd1	62.38 (19)
02 - Cd1 - 05	81.83 (10)	03 - C8 - 04	122.0(3)
02 - Cd1 - C1	27.21(11)	03 - C8 - C9	122.0(3) 118.8(3)
02 - Cd1 - C1	$108\ 24\ (11)$	04 - C8 - Cd1	5957(19)
02 - Cd1 - C3	170.39(10)	$O_4 = C_8 = C_4$	1102(3)
$O_3 = Cd_1 = C_1$	170.39(10) 162.33(11)	C_{1} C_{2} C_{3} C_{4}	119.2(3) 1780(3)
$O_3 = Cd_1 = C_1$	102.33(11) 27.04(10)	$C_{2} = C_{3} = C_{4}$	178.0(3)
03 - Cd1 - Cd	27.04(10) 124 15 (0)	$C_{10} - C_{9} - C_{8}$	120.1(3)
04 - Cd1 - 01	134.13(9)	$C_{14} = C_{9} = C_{8}$	120.7(3)
04 - Cd1 - 05	54.25 (9) 04.28 (10)	C14 - C9 - C10	119.1 (5)
04 - Cd1 - 03	94.28 (10)	C_{11} C_{10} C_{10} C_{10}	120.1
	108.10 (11)	CII = CI0 = C9	119.7 (4)
04—Cd1—C8	27.19 (10)	CII—CI0—HI0	120.1
05-Cd1-01	87.40 (10)	C10-C11-C12	119.2 (3)
05-Cd1-03	97.07 (11)		121.6 (4)
	83.43 (10)	C12—C11—C12	119.2 (3)
05-Cd1-C8	96.30 (10)	C11—C12—C13	118.8 (4)
06—Cd1—O1	84.21 (11)	С11—С12—Н12	120.6
O6—Cd1—O2	97.43 (11)	C13—C12—H12	120.6
O6—Cd1—O3	90.46 (11)	C12—C13—H13	119.8
O6—Cd1—O4	95.42 (11)	C14—C13—C12	120.4 (4)
O6—Cd1—O5	170.03 (11)	C14—C13—H13	119.8
O6—Cd1—C1	91.39 (11)	C9—C14—H14	119.8
O6—Cd1—C8	93.37 (11)	C13—C14—C9	120.4 (4)
N1—Cd1—O1	86.30 (10)	C13—C14—H14	119.8
N1—Cd1—O2	136.21 (10)	N1—C15—C16	122.6 (3)
N1—Cd1—O3	86.21 (10)	N1—C15—H15	118.7
N1—Cd1—O4	139.00 (10)	C16—C15—H15	118.7
N1-Cd1-O5	78.90 (10)	C15—C16—C20 ⁱ	123.4 (3)
N1-Cd1-O6	95.16 (10)	C17—C16—C15	118.4 (3)
N1—Cd1—C1	111.11 (11)	C17-C16-C20 ⁱ	118.1 (3)
N1—Cd1—C8	112.67 (10)	С16—С17—Н17	120.4
C8—Cd1—C1	135.29 (12)	C18—C17—C16	119.1 (3)
C1Cd1	88.1 (2)	С18—С17—Н17	120.4

C1	95.6 (2)	C17—C18—C19	118.7 (4)
C8—O3—Cd1	90.6 (2)	C17—C18—H18	120.7
C8—O4—Cd1	93.2 (2)	C19—C18—H18	120.7
C20—O5—Cd1	124.3 (2)	N1—C19—C18	122.9 (4)
Cd1—O6—H61	107 (4)	N1-C19-H19	118.5
Cd1—Q6—H62	103 (5)	C18—C19—H19	118.5
H61—O6—H62	107 (4)	05-C20-N2	122.2 (4)
C15—N1—Cd1	122.3(2)	O5-C20-C16 ⁱⁱ	1180(3)
C15-N1-C19	1182(3)	N^{2} C 20 C 16 ⁱⁱ	119.8 (3)
C19 - N1 - Cd1	110.2(3) 119.0(2)	$N_2 - C_{21} - C_{22}$	112.6 (4)
$C_{20} = N_{2} = C_{21}$	125.2(3)	$N_2 = C_{21} = H_{21}A$	109.1
$C_{20} = N_2 = C_{23}$	123.2(3) 118.0(4)	$N_2 = C_2 I = H_2 I R$ $N_2 = C_2 I = H_2 I R$	109.1
$C_{20} = N_2 = C_{23}$	116.5(3)	C^{22}	109.1
$C_2 = C_2 $	65 A (2)	C22 - C21 - H21R	109.1
$O_1 = C_1 = C_0 $	1225(3)	$\frac{1}{1210}$	107.8
01 - 01 - 02	122.5(3) 110.7(4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.8
$O_1 = C_1 = C_2$	57 16 (10)	$C_{21} = C_{22} = H_{22}R$	109.5
02-C1-Cd1	37.10 (19)	$C_{21} = C_{22} = H_{22B}$	109.5
02-C1-C2	11/./(4) 172.1(2)	C_{21} — C_{22} — $H_{22}C$	109.5
$C_2 = C_1 = C_1$	1/3.1(3)	H22A—C22—H22B	109.5
$C_{3} - C_{2} - C_{1}$	119.7 (3)	H22A - C22 - H22C	109.5
C/-C2-C1	120.6 (4)	H22B - C22 - H22C	109.5
C/-C2-C3	119.7 (3)	N2-C23-C24	112.3 (4)
С2—С3—Н3	120.3	N2—C23—H23A	109.2
C4—C3—C2	119.5 (4)	N2—C23—H23B	109.2
С4—С3—Н3	120.3	C24—C23—H23A	109.2
C3—C4—Cl1	120.2 (3)	C24—C23—H23B	109.2
C5—C4—Cl1	118.6 (3)	H23A—C23—H23B	107.9
C5—C4—C3	121.2 (4)	C23—C24—H24A	109.5
C4—C5—H5	120.5	C23—C24—H24B	109.5
C6—C5—C4	119.0 (4)	C23—C24—H24C	109.5
С6—С5—Н5	120.5	H24A—C24—H24B	109.5
C5—C6—C7	120.5 (4)	H24A—C24—H24C	109.5
С5—С6—Н6	119.8	H24B—C24—H24C	109.5
O2—Cd1—O1—C1	1.3 (2)	Cd1—O5—C20—N2	-109.6 (3)
O4—Cd1—O1—C1	13.0 (3)	Cd1	72.2 (4)
O5—Cd1—O1—C1	-80.5 (2)	C15—N1—Cd1—O1	-9.4 (3)
O6—Cd1—O1—C1	104.9 (2)	C15—N1—Cd1—O2	-31.9 (3)
N1—Cd1—O1—C1	-159.5 (2)	C15—N1—Cd1—O3	164.6 (3)
C8—Cd1—O1—C1	21.4 (5)	C15—N1—Cd1—O4	178.8 (2)
O1—Cd1—O2—C1	-1.3(2)	C15—N1—Cd1—O5	-97.5 (3)
O3—Cd1—O2—C1	-176.7 (2)	C15—N1—Cd1—O6	74.4 (3)
O4—Cd1—O2—C1	-172.8(2)	C15—N1—Cd1—C1	-19.0(3)
O5—Cd1—O2—C1	91.5 (2)	C15—N1—Cd1—C8	170.3 (3)
O6—Cd1—O2—C1	-78.4 (2)	C19—N1—Cd1—O1	163.1 (3)
N1—Cd1—O2—C1	27.0 (3)	C19—N1—Cd1—O2	140.6 (3)
C8—Cd1—O2—C1	-174.5 (2)	C19—N1—Cd1—O3	-22.9(3)
O2—Cd1—O3—C8	4.5 (3)	C19—N1—Cd1—O4	-8.6 (4)

O4—Cd1—O3—C8	-0.2 (2)	C19—N1—Cd1—O5	75.1 (3)
O5—Cd1—O3—C8	90.0 (2)	C19—N1—Cd1—O6	-113.0(3)
O6—Cd1—O3—C8	-96.5 (2)	C19—N1—Cd1—C1	153.5 (3)
N1—Cd1—O3—C8	168.3 (2)	C19—N1—Cd1—C8	-17.2(3)
C1—Cd1—O3—C8	-0.5 (5)	Cd1—N1—C15—C16	173.3 (3)
O1—Cd1—O4—C8	174.0 (2)	C19—N1—C15—C16	0.7 (5)
O2—Cd1—O4—C8	-176.5 (2)	Cd1—N1—C19—C18	-174.4(3)
O3—Cd1—O4—C8	0.2 (2)	C15—N1—C19—C18	-1.5 (6)
O5—Cd1—O4—C8	-95.5 (2)	C20—N2—C21—C22	-109.8(5)
O6—Cd1—O4—C8	86.8 (2)	C23—N2—C21—C22	76.9 (5)
N1—Cd1—O4—C8	-17.5 (3)	C20—N2—C23—C24	-89.3 (5)
C1—Cd1—O4—C8	-179.9 (2)	C21—N2—C23—C24	84.5 (6)
O1—Cd1—C1—O2	177.7 (4)	O1—C1—O2—Cd1	2.4 (4)
O2—Cd1—C1—O1	-177.7 (4)	C2—C1—O2—Cd1	-174.6(3)
O3—Cd1—C1—O1	-170.0(3)	C3—C2—C1—O1	1.6 (5)
O3—Cd1—C1—O2	7.8 (5)	C3—C2—C1—O2	178.7 (3)
O4—Cd1—C1—O1	-170.3 (2)	C7—C2—C1—O1	-176.8(4)
O4—Cd1—C1—O2	7.5 (2)	C7—C2—C1—O2	0.4 (5)
O5—Cd1—C1—O1	97.4 (2)	C1—C2—C3—C4	-177.5(3)
O5—Cd1—C1—O2	-84.9 (2)	C7—C2—C3—C4	0.9 (6)
O6—Cd1—C1—O1	-74.1 (2)	C1—C2—C7—C6	177.9 (4)
O6—Cd1—C1—O2	103.6 (2)	C3—C2—C7—C6	-0.5 (6)
N1—Cd1—C1—O1	22.0 (3)	C2—C3—C4—Cl1	178.4 (3)
N1—Cd1—C1—O2	-160.3(2)	C2—C3—C4—C5	-0.8 (6)
C8—Cd1—C1—O1	-170.3(2)	Cl1—C4—C5—C6	-178.9(4)
C8—Cd1—C1—O2	7.4 (3)	C3—C4—C5—C6	0.3 (7)
O1—Cd1—C8—O3	166.4 (3)	C4—C5—C6—C7	0.1 (7)
O1—Cd1—C8—O4	-13.3 (5)	C2—C7—C6—C5	0.0(7)
O2—Cd1—C8—O3	-176.6 (2)	C10—C9—C8—O3	-11.4 (5)
O2—Cd1—C8—O4	3.7 (2)	C10—C9—C8—O4	170.1 (3)
O3—Cd1—C8—O4	-179.7 (4)	C14—C9—C8—O3	166.1 (4)
O4—Cd1—C8—O3	179.7 (4)	C14—C9—C8—O4	-12.4 (5)
O5—Cd1—C8—O3	-93.2 (2)	C8—C9—C10—C11	177.2 (3)
O5—Cd1—C8—O4	87.1 (2)	C14—C9—C10—C11	-0.3 (5)
O6—Cd1—C8—O3	84.4 (2)	C8—C9—C14—C13	-175.9 (4)
O6—Cd1—C8—O4	-95.3 (2)	C10-C9-C14-C13	1.6 (6)
N1—Cd1—C8—O3	-12.6 (3)	C9—C10—C11—Cl2	-179.9 (3)
N1—Cd1—C8—O4	167.7 (2)	C9—C10—C11—C12	-1.1 (6)
C1—Cd1—C8—O3	179.8 (2)	C10-C11-C12-C13	1.1 (7)
C1—Cd1—C8—O4	0.1 (3)	Cl2—C11—C12—C13	-180.0 (4)
Cd1—O1—C1—O2	-2.3 (4)	C11—C12—C13—C14	0.2 (7)
Cd1-01-C1-C2	174.8 (3)	C9-C14-C13-C12	-1.6 (7)
Cd1—O3—C8—O4	0.3 (4)	N1-C15-C16-C17	1.3 (5)
Cd1—O3—C8—C9	-178.2 (3)	N1-C15-C16-C20 ⁱ	176.9 (3)
Cd1—O4—C8—O3	-0.3 (4)	C15—C16—C17—C18	-2.4 (6)
Cd1—O4—C8—C9	178.1 (3)	C20 ⁱ —C16—C17—C18	-178.4 (4)
C20	91.2 (3)	C16—C17—C18—C19	1.7 (6)
C20	37.5 (3)	N1-C19-C18-C17	0.3 (7)

C20-05-Cd1-03	-97.3 (3)	O5-C20-N2-C21	-173.2 (4)	
C20	-42.9 (3)	O5—C20—N2—C23	0.0 (5)	
C20-O5-Cd1-N1	178.0 (3)	C16 ⁱⁱ —C20—N2—C21	5.0 (5)	
C20-O5-Cd1-C1	64.9 (3)	C16 ⁱⁱ —C20—N2—C23	178.2 (3)	
C20	-70.1 (3)			

Symmetry codes: (i) *x*, *y*–1, *z*; (ii) *x*, *y*+1, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
06—H61···O2 ⁱⁱⁱ	0.85 (4)	1.94 (4)	2.753 (5)	160 (4)
O6—H62···O4 ⁱⁱⁱ	0.86 (4)	2.11 (4)	2.838 (4)	142 (5)
C15—H15…O1	0.93	2.52	3.181 (5)	128
С19—Н19…ОЗ	0.93	2.47	3.130 (5)	128

Symmetry code: (iii) -x+1, -y+2, -z.