inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Zinc mercury(II) tetra­kis­(seleno­cyanate)

aSchool of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, People's Republic of China, and bState Key Laboratory of Crystal Materials (Shandong University), Jinan 250100, People's Republic of China
*Correspondence e-mail: sunhaiqing@sina.com

(Received 1 August 2013; accepted 10 August 2013; online 17 August 2013)

The title crystal, [HgZn(NCSe)4]n, a coordination polymer, has a diamond-like network. In the crystal, the metal ions, Zn2+ and Hg2+, are both located on fourfold inversion axes and mimic the role of C atoms in the structure of diamond, and the linear seleno­cyanate bridges replace the C—C bonds. The C—N—Zn unit is almost linear and the C—Se—Hg unit is nearly a right angle. Thus, the HgZn4 (or ZnHg4) arrangement is midway between a tetra­hedron and a square plane, with two types of Hg—Zn—Hg (or Zn—Hg—Zn) angles of 92.38 (6) and 156.45 (6)°.

Related literature

For background to coordination polymers, see: Batten et al. (2009[Batten, S. R., Neville, S. M. & Turner, D. R. (2009). In Coordination Polymers: Design, Analysis and Application. Cambridge: Royal Society of Chemistry.]). For diamond-like networks, see: Sun et al. (2006[Sun, H.-Q., Yu, W.-T., Yuan, D.-R., Wang, X.-Q. & Liu, L.-Q. (2006). Acta Cryst. E62, i88-i90.]); Evans et al. (1999[Evans, O. R., Xiong, R.-G., Wang, Z.-Y., Wong, G.-K. & Lin, W.-B. (1999). Angew. Chem. Int. Ed. 38, 536-538.]). For similar structures, see: Wang et al. (2001[Wang, X.-Q., Xu, D., Lu, M.-K., Yuan, D.-R., Zhang, G.-H., Meng, F.-Q., Guo, S.-Y., Zhou, M., Liu, J.-R. & Li, X.-R. (2001). Cryst. Res. Technol. 36, 73-84.], 2007[Wang, X.-Q., Yu, W.-T., Xu, D., Sun, H.-Q. & Liu, W.-L. (2007). Acta Cryst. E63, i45-i46.]); Sun et al. (2005[Sun, H.-Q., Yu, W.-T., Yuan, D.-R., Wang, X.-Q. & Xue, G. (2005). Acta Cryst. E61, i111-i112.], 2006[Sun, H.-Q., Yu, W.-T., Yuan, D.-R., Wang, X.-Q. & Liu, L.-Q. (2006). Acta Cryst. E62, i88-i90.]); Tian et al. (1999[Tian, Y.-P., Yu, W.-T., Fang, Q., Wang, X.-Q., Yuan, D.-R., Xu, D. & Jiang, M.-H. (1999). Acta Cryst. C55, 1393-1395.]); Xu et al. (1999[Xu, D., Yu, W.-T., Wang, X.-Q., Yuan, D.-R., Lu, M.-K., Yang, P., Guo, S.-Y., Meng, F.-Q. & Jiang, M.-H. (1999). Acta Cryst. C55, 1203-1205.]); Yan et al. (1999[Yan, Y.-X., Fang, Q., Yuan, D.-R., Tian, Y.-P., Liu, Z., Wang, X.-M., Jiang, M.-H., Williams, D., Siu, A. & Cai, Z.-G. (1999). Chin. Chem. Lett. 10, 257-260.]); Yuan et al. (1997[Yuan, D.-R., Xu, D., Fang, Q., Yu, W.-T. & Jiang, M.-H. (1997). Appl. Phys. Lett. 70, 544-546.]).

Experimental

Crystal data
  • [HgZn(NCSe)4]

  • Mr = 685.88

  • Tetragonal, [I \overline 4]

  • a = 11.2716 (1) Å

  • c = 4.6981 (1) Å

  • V = 596.89 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 27.02 mm−1

  • T = 293 K

  • 0.13 × 0.12 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (APEX2; Bruker, 2005[Bruker (2005). APEX2and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.127, Tmax = 0.173

  • 2476 measured reflections

  • 1244 independent reflections

  • 1113 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.053

  • S = 0.86

  • 1244 reflections

  • 33 parameters

  • Δρmax = 1.35 e Å−3

  • Δρmin = −0.81 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 467 Friedel pairs

  • Absolute structure parameter: 0.026 (10)

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Coordination polymers, which contain ions linked by coordinated ligands into an infinite array, have extensive applications such as porosity, magnetism, non-linear optical activity, reactive networks, heterogenous catalysis and luminescence (Batten et al. 2009). [AB(SCN)4]n and [AB(SeCN)4]n (where A and B = Zn, Cd, Hg or Mn) are coordination polymers that have non-linear optical property (Wang et al., 2007, 2001; Sun et al., 2006, 2005; Yuan et al. 1997). [ZnHg(SeCN)4]n is a new member of this group.

All the [AB(SCN)4]n and [AB(SeCN)4]n have similar structure. The [ZnHg(SeCN)4]n is of no exception. The Zn and Hg atoms are connected by SeCN- ions, forming an infinite three-dimensional network (see Fig. 1). Each Zn or Hg node is 4-coordinated with Zn—N or Hg—Se bond. The ZnN4 and HgSe4 tetrahedra are slightly distorted from an ideal one. The Zn—N—C—Se is nearly linear, but the C—Se—Hg is bent. The whole structure might be defined as a diamond-like network with Zn and Hg nodes and bent bonds. The HgZn4 (or ZnHg4) tetrahedra have a significant distortion from an ideal one, with two types of Hg—Zn—Hg (or Zn—Hg—Zn) angles, 92.38 (6)° and 156.45 (6)°. Along the c-direction there are irregular octagon channels.

Related literature top

For background to coordination polymers, see: Batten et al. (2009). For diamond-like networks, see: Sun et al. (2006); Evans et al. (1999). For similar structures, see: Wang et al. (2001, 2007); Sun et al. (2005, 2006); Tian et al. (1999); Xu et al. (1999); Yan et al. (1999); Yuan et al. (1997)

Experimental top

Sodium metasilicate nonahydrate (Na2SiO3.9H2O), ZnCl2 and KSeCN solution were mixed together with stirring for 1 h. Then the sol is put into a test tube. Glacial acetic acid was added to adjust pH to 3.1. The above solution was sealed and gelled on standing for 72 h. Then some HgCl2 solution was added on top of the gel. Within 20 d the ZMSC crystal grew in the gel medium.

Refinement top

The unusually large residual electron density (1.347 e Å-3) is found near the Hg atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Packing diagram of [ZnHg(NCSe)4]n (viewed down the c axis), with displacement ellipsoids drawn at the 50% probability level.
Zinc mercury(II) tetrakis(selenocyanate) top
Crystal data top
[HgZn(NCSe)4]Dx = 3.816 Mg m3
Mr = 685.88Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4Cell parameters from 1556 reflections
Hall symbol: I -4θ = 2.6–34.8°
a = 11.2716 (1) ŵ = 27.02 mm1
c = 4.6981 (1) ÅT = 293 K
V = 596.89 (2) Å3Prism, colourless
Z = 20.13 × 0.12 × 0.10 mm
F(000) = 596
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1244 independent reflections
Radiation source: fine-focus sealed tube1113 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 38.1°, θmin = 2.6°
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
h = 1619
Tmin = 0.127, Tmax = 0.173k = 1711
2476 measured reflectionsl = 67
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2)]
R[F2 > 2σ(F2)] = 0.026(Δ/σ)max < 0.001
wR(F2) = 0.053Δρmax = 1.35 e Å3
S = 0.86Δρmin = 0.81 e Å3
1244 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
33 parametersExtinction coefficient: 0.0047 (3)
0 restraintsAbsolute structure: Flack (1983), 467 Friedel pairs
Primary atom site location: isomorphous structure methodsAbsolute structure parameter: 0.026 (10)
Crystal data top
[HgZn(NCSe)4]Z = 2
Mr = 685.88Mo Kα radiation
Tetragonal, I4µ = 27.02 mm1
a = 11.2716 (1) ÅT = 293 K
c = 4.6981 (1) Å0.13 × 0.12 × 0.10 mm
V = 596.89 (2) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1244 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
1113 reflections with I > 2σ(I)
Tmin = 0.127, Tmax = 0.173Rint = 0.029
2476 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.053Δρmax = 1.35 e Å3
S = 0.86Δρmin = 0.81 e Å3
1244 reflectionsAbsolute structure: Flack (1983), 467 Friedel pairs
33 parametersAbsolute structure parameter: 0.026 (10)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.00000.00000.00000.02909 (11)
Se10.12160 (4)0.15390 (4)0.31572 (11)0.03115 (13)
Zn10.00000.50000.25000.0289 (2)
N10.0462 (4)0.3643 (3)0.0118 (16)0.0374 (9)
C10.0756 (4)0.2818 (4)0.1106 (10)0.0280 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.02405 (11)0.02405 (11)0.0392 (2)0.0000.0000.000
Se10.0322 (2)0.0250 (2)0.0363 (3)0.00208 (18)0.0073 (2)0.00031 (19)
Zn10.0242 (3)0.0242 (3)0.0382 (6)0.0000.0000.000
N10.040 (2)0.0242 (16)0.048 (2)0.0011 (14)0.004 (3)0.004 (2)
C10.0241 (19)0.0219 (18)0.038 (2)0.0019 (15)0.0023 (17)0.0046 (17)
Geometric parameters (Å, º) top
Hg1—Se12.6623 (5)Zn1—N1iv1.966 (6)
Hg1—Se1i2.6623 (5)Zn1—N1v1.966 (6)
Hg1—Se1ii2.6623 (5)Zn1—N1vi1.966 (6)
Hg1—Se1iii2.6623 (5)Zn1—N11.966 (6)
Se1—C11.810 (5)N1—C11.141 (7)
Se1—Hg1—Se1i108.084 (11)N1iv—Zn1—N1vi110.6 (4)
Se1—Hg1—Se1ii112.28 (2)N1v—Zn1—N1vi108.91 (18)
Se1i—Hg1—Se1ii108.084 (11)N1iv—Zn1—N1108.91 (18)
Se1—Hg1—Se1iii108.084 (11)N1v—Zn1—N1110.6 (4)
Se1i—Hg1—Se1iii112.28 (2)N1vi—Zn1—N1108.91 (18)
Se1ii—Hg1—Se1iii108.084 (11)C1—N1—Zn1175.5 (6)
C1—Se1—Hg194.29 (14)N1—C1—Se1178.1 (5)
N1iv—Zn1—N1v108.91 (18)
Se1i—Hg1—Se1—C114.76 (14)N1iv—Zn1—N1—C169 (5)
Se1ii—Hg1—Se1—C1133.89 (14)N1vi—Zn1—N1—C152 (5)
Se1iii—Hg1—Se1—C1106.99 (14)Hg1—Se1—C1—N1140 (12)
Symmetry codes: (i) y, x, z; (ii) x, y, z; (iii) y, x, z; (iv) y1/2, x+1/2, z1/2; (v) x, y+1, z; (vi) y+1/2, x+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[HgZn(NCSe)4]
Mr685.88
Crystal system, space groupTetragonal, I4
Temperature (K)293
a, c (Å)11.2716 (1), 4.6981 (1)
V3)596.89 (2)
Z2
Radiation typeMo Kα
µ (mm1)27.02
Crystal size (mm)0.13 × 0.12 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(APEX2; Bruker, 2005)
Tmin, Tmax0.127, 0.173
No. of measured, independent and
observed [I > 2σ(I)] reflections
2476, 1244, 1113
Rint0.029
(sin θ/λ)max1)0.868
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.053, 0.86
No. of reflections1244
No. of parameters33
Δρmax, Δρmin (e Å3)1.35, 0.81
Absolute structureFlack (1983), 467 Friedel pairs
Absolute structure parameter0.026 (10)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 2012).

 

Acknowledgements

The authors thank the Open Project of the State Key Laboratory of Crystal Materials (grant No. KF0804) and the Excellent Mid-youthful Scientist Encouraging Foundation of Shandong province (grant No. BS2010CL037) for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBatten, S. R., Neville, S. M. & Turner, D. R. (2009). In Coordination Polymers: Design, Analysis and Application. Cambridge: Royal Society of Chemistry.  Google Scholar
First citationBruker (2005). APEX2and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEvans, O. R., Xiong, R.-G., Wang, Z.-Y., Wong, G.-K. & Lin, W.-B. (1999). Angew. Chem. Int. Ed. 38, 536–538.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, H.-Q., Yu, W.-T., Yuan, D.-R., Wang, X.-Q. & Liu, L.-Q. (2006). Acta Cryst. E62, i88–i90.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, H.-Q., Yu, W.-T., Yuan, D.-R., Wang, X.-Q. & Xue, G. (2005). Acta Cryst. E61, i111–i112.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, Y.-P., Yu, W.-T., Fang, Q., Wang, X.-Q., Yuan, D.-R., Xu, D. & Jiang, M.-H. (1999). Acta Cryst. C55, 1393–1395.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-Q., Xu, D., Lu, M.-K., Yuan, D.-R., Zhang, G.-H., Meng, F.-Q., Guo, S.-Y., Zhou, M., Liu, J.-R. & Li, X.-R. (2001). Cryst. Res. Technol. 36, 73–84.  Web of Science CrossRef Google Scholar
First citationWang, X.-Q., Yu, W.-T., Xu, D., Sun, H.-Q. & Liu, W.-L. (2007). Acta Cryst. E63, i45–i46.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationXu, D., Yu, W.-T., Wang, X.-Q., Yuan, D.-R., Lu, M.-K., Yang, P., Guo, S.-Y., Meng, F.-Q. & Jiang, M.-H. (1999). Acta Cryst. C55, 1203–1205.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, Y.-X., Fang, Q., Yuan, D.-R., Tian, Y.-P., Liu, Z., Wang, X.-M., Jiang, M.-H., Williams, D., Siu, A. & Cai, Z.-G. (1999). Chin. Chem. Lett. 10, 257–260.  CAS Google Scholar
First citationYuan, D.-R., Xu, D., Fang, Q., Yu, W.-T. & Jiang, M.-H. (1997). Appl. Phys. Lett. 70, 544–546.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds