

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# r-2,c-6-Diphenylpiperidine

# V. Maheshwaran,<sup>a</sup> S. Abdul Basheer,<sup>b</sup> A. Akila,<sup>b</sup> S. Ponnuswamy<sup>b</sup> and M. N. Ponnuswamy<sup>a</sup>\*

<sup>a</sup>Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and <sup>b</sup>Department of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, India Correspondence e-mail: mnpsy2004@yahoo.com

Received 1 July 2013; accepted 23 July 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.043; wR factor = 0.125; data-to-parameter ratio = 16.8.

In the title compound,  $C_{17}H_{19}N$ , the piperidine ring adopts a chair conformation. The phenyl rings substituted at the 2- and 6-positions of the piperidine ring subtend dihedral angles of 81.04 (7) and 81.10 (7)° with the best plane of the piperidine ring. The crystal packing features  $C-H\cdots\pi$  interactions.

#### **Related literature**

For the biological activity of piperidine derivatives, see: Aridoss *et al.* (2009); Boehringer & Söhne GmbH (1961); Jain *et al.* (2005); Kubota *et al.* (1998); Mobio *et al.* (1989); Rubiralta *et al.* (1991). For the synthesis of the title compound, see: Ponnuswamy *et al.* (2002). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983).



#### Experimental

Crystal data  $C_{17}H_{19}N$   $M_r = 237.33$ Triclinic,  $P\overline{1}$  a = 5.6450 (9) Å b = 11.2255 (17) Å c = 11.5281 (17) Å  $\alpha = 73.911$  (9)°  $\beta = 89.898$  (9)°

| $\gamma = 81.466 \ (9)^{\circ}$           |
|-------------------------------------------|
| $V = 693.53 (18) \text{ Å}^3$             |
| Z = 2                                     |
| Mo $K\alpha$ radiation                    |
| $\mu = 0.07 \text{ mm}^{-1}$              |
| T = 293  K                                |
| $0.21 \times 0.19 \times 0.18 \text{ mm}$ |

# organic compounds

9781 measured reflections

2813 independent reflections

2113 reflections with  $I > 2\sigma(I)$ 

H atoms treated by a mixture of

Data collection

Bruker SMART APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2008)  $T_{min} = 0.986, T_{max} = 0.988$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$   $wR(F^2) = 0.125$  S = 1.062813 reflections 167 parameters

independent and constrained refinement  $\Delta \rho_{\rm max} = 0.11 \ {\rm e} \ {\rm \AA}^{-3}$ 

 $R_{\rm int} = 0.032$ 

 $\Delta \rho_{\rm min} = -0.20 \text{ e} \text{ Å}^{-3}$ 

#### Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C13-C18 and C7-C12 rings, respectively.

| $D - H \cdots A$                                                          | D-H                  | $H \cdot \cdot \cdot A$ | $D \cdots A$                        | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|---------------------------------------------------------------------------|----------------------|-------------------------|-------------------------------------|--------------------------------------|
| $C3-H3A\cdots Cg1^{i}$ $C10-H10\cdots Cg1^{ii}$ $C16-H16\cdots Cg2^{iii}$ | 0.97<br>0.93<br>0.93 | 3.00<br>3.01<br>3.03    | 3.719 (2)<br>3.760 (2)<br>3.799 (2) | 132<br>139<br>141                    |
|                                                                           |                      |                         |                                     |                                      |

Symmetry codes: (i) -x + 2, -y + 1, -z + 2; (ii) -x + 1, -y + 2, -z + 1; (iii) x, y - 1, z.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

SP thanks the UGC, New Delhi, for financial assistance in the form of a Major Research Project.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6919).

#### References

- Aridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2009). *Eur. J. Med. Chem.* 44, 577–592.
- Boehringer & Söhne GmbH (1961). Chem. Abstr. 55, 24796g.
- Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Jain, R., Chen, D., White, R. J., Patel, D. V. & Yuan, Z. (2005). Curr. Med. Chem. 12, 1607–1627.
- Kubota, H., Fujii, M., Ikeda, K., Takeuchi, M., Shibanuma, T. & Isomura, Y. (1998). Chem. Pharm. Bull. 46, 351–354.
- Mobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sargeeva, N. D., Lin, S., Stashenko, E. E., Prostakov, N. S. & Andreeva, E. I. (1989). *Khim. Farm. Zh.* 23, 421–427.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Ponnuswamy, S., Venkatraj, M., Jeyaraman, R., Suresh Kumar, M., Kumaran, D. & Ponnuswamy, M. N. (2002). *Indian J. Chem. Sect. B*, 41, 614–627.
- Rubiralta, M., Giralt, E. & Diez, A. (1991). Piperidine: Structure, Preparation, Reactivity, and Synthetic Applications of Piperidine and its Derivatives, pp. 225–312. Amsterdam: Elsevier.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

# supporting information

Acta Cryst. (2013). E69, o1371 [doi:10.1107/S1600536813020382]

# r-2,c-6-Diphenylpiperidine

# V. Maheshwaran, S. Abdul Basheer, A. Akila, S. Ponnuswamy and M. N. Ponnuswamy

## S1. Comment

Piperidines are valuable heterocyclic compounds found in natural substances and pharmaceutical products (Rubiralta *et al.*, 1991; Jain *et al.*, 2005; Kubota *et al.*, 1998). Several 2,6-substituted piperidine derivatives were found to be useful as tranquilisers (Boehringer & Söhne GmbH, 1961) and possess a wide range of biological activities such as antiviral, antimalarial, antibacterial and antifungal activities (Aridoss *et al.*, 2009, Mobio *et al.*, 1989). In view of the above importance, the crystallographic study of the title compound has been carried out to establish its molecular structure.

The *ORTEP* plot of the molecule is shown in Fig. 1. The piperidine ring adopts a chair conformation with puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983):  $q_2=0.0420$  (15) Å,  $q_3 = -0.5799$  (15) Å,  $\varphi_2 = 190$  (2)° and  $\Delta_s$  (N1& C4)= 0.75 (12)°. The phenyl rings at 2,6-positions of the piperidine ring occupy equatorial positions. The corresponding torsion angles are [C13—C2—C3—C4] -178.62 (11)° & [C4—C5—C6—C7] 177.89 (12)°, respectively. The dihedral angle between the two phenyl rings is 60.0 (7)°. The phenyl rings [C7—C12 & C13—C18] are twisted away from the best plane of the piperidine moiety by 81.04 (7)° & 81.10 (7)°, respectively. The molecules in the unit cell are connected by C—H … $\pi$  interactions (Fig. 2 & Table. 1; Cg1 is the centroid of the ring C13 to C18 and Cg2 is the centroid of the ring C7 to C12).

## **S2.** Experimental

A mixture of piperidin-4-one (10 m*M*) and 80% hydrazine hydrate (3.1 ml) in diethylene glycol (100 ml) was heated on a steam bath for 2 hrs (Ponnuswamy *et al.*, 2002). Potassium hydroxide pellets (2.8 g) were added to the mixture and the contents were allowed to reflux vigorously on a heating mantle for another 2 hrs and the reaction mixture was cooled. The product formed was filtered and recrystallized from ethanol.

## **S3. Refinement**

All H atoms were found in a difference map. Nevertheless, those bonded to C were positioned geometrically (C–H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with  $U_{iso}(H) = 1.2U_{eq}(C)$ . The H atom bonded to N was freely refined.



## Figure 1

The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 30% probability level.



## Figure 2

The crystal packing of the molecules viewed down *a*-axis.

## *r*-2,*c*-6-Diphenylpiperidine

Crystal data  $C_{17}H_{19}N$  $M_r = 237.33$ 

Triclinic,  $P\overline{1}$ Hall symbol: -P 1 a = 5.6450 (9) Å b = 11.2255 (17) Å c = 11.5281 (17) Å  $a = 73.911 (9)^{\circ}$   $\beta = 89.898 (9)^{\circ}$   $\gamma = 81.466 (9)^{\circ}$   $V = 693.53 (18) \text{ Å}^{3}$  Z = 2F(000) = 256

#### Data collection

| 9781 measured reflections                                                 |
|---------------------------------------------------------------------------|
| 2813 independent reflections                                              |
| 2113 reflections with $I > 2\sigma(I)$                                    |
| $R_{\rm int} = 0.032$                                                     |
| $\theta_{\text{max}} = 26.6^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$ |
| $h = -7 \rightarrow 7$                                                    |
| $k = -13 \rightarrow 14$                                                  |
| $l = -14 \rightarrow 14$                                                  |
|                                                                           |

 $D_{\rm x} = 1.136 {\rm Mg} {\rm m}^{-3}$ 

 $\theta = 1.8 - 26.6^{\circ}$ 

 $\mu = 0.07 \text{ mm}^{-1}$ 

Block, white

 $0.21 \times 0.19 \times 0.18 \text{ mm}$ 

T = 293 K

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 2113 reflections

#### Refinement

| Secondary atom site location: difference Fourier           |
|------------------------------------------------------------|
| map                                                        |
| Hydrogen site location: inferred from                      |
| neighbouring sites                                         |
| H atoms treated by a mixture of independent                |
| and constrained refinement                                 |
| $w = 1/[\sigma^2(F_o^2) + (0.0582P)^2 + 0.0755P]$          |
| where $P = (F_o^2 + 2F_c^2)/3$                             |
| $(\Delta/\sigma)_{\rm max} < 0.001$                        |
| $\Delta \rho_{\rm max} = 0.11 \text{ e } \text{\AA}^{-3}$  |
| $\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$ |
|                                                            |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x          | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|------------|--------------|--------------|-----------------------------|--|
| C2  | 0.3110 (2) | 0.28559 (11) | 0.14071 (11) | 0.0526 (3)                  |  |
| H2  | 0.4718     | 0.2820       | 0.1084       | 0.063*                      |  |
| C3  | 0.1318 (3) | 0.28661 (13) | 0.04187 (13) | 0.0649 (4)                  |  |
| H3A | -0.0288    | 0.2927       | 0.0720       | 0.078*                      |  |
| H3B | 0.1375     | 0.3595       | -0.0264      | 0.078*                      |  |
| C4  | 0.1868 (3) | 0.16823 (14) | 0.00071 (13) | 0.0762 (4)                  |  |
| H4A | 0.3376     | 0.1680       | -0.0398      | 0.091*                      |  |

| H4B | 0.0619       | 0.1672        | -0.0565      | 0.091*     |
|-----|--------------|---------------|--------------|------------|
| C5  | 0.2026 (3)   | 0.05172 (13)  | 0.10787 (13) | 0.0680 (4) |
| H5A | 0.2539       | -0.0222       | 0.0809       | 0.082*     |
| H5B | 0.0452       | 0.0454        | 0.1407       | 0.082*     |
| C6  | 0.3782 (2)   | 0.05592 (11)  | 0.20619 (12) | 0.0547 (3) |
| H6  | 0.5379       | 0.0580        | 0.1730       | 0.066*     |
| C7  | 0.3915 (2)   | -0.05597 (11) | 0.31576 (12) | 0.0525 (3) |
| C8  | 0.5902 (3)   | -0.14804 (13) | 0.34202 (13) | 0.0643 (4) |
| H8  | 0.7197       | -0.1406       | 0.2919       | 0.077*     |
| C9  | 0.5997 (3)   | -0.25123 (14) | 0.44165 (15) | 0.0737 (4) |
| Н9  | 0.7353       | -0.3123       | 0.4580       | 0.088*     |
| C10 | 0.4108 (3)   | -0.26438 (14) | 0.51663 (13) | 0.0699 (4) |
| H10 | 0.4176       | -0.3341       | 0.5835       | 0.084*     |
| C11 | 0.2118 (3)   | -0.17362 (14) | 0.49196 (15) | 0.0747 (4) |
| H11 | 0.0829       | -0.1816       | 0.5425       | 0.090*     |
| C12 | 0.2023 (3)   | -0.07085 (13) | 0.39271 (14) | 0.0685 (4) |
| H12 | 0.0662       | -0.0101       | 0.3769       | 0.082*     |
| C13 | 0.2607 (2)   | 0.39961 (11)  | 0.18678 (11) | 0.0501 (3) |
| C14 | 0.0632 (3)   | 0.41659 (13)  | 0.25525 (13) | 0.0618 (4) |
| H14 | -0.0411      | 0.3577        | 0.2714       | 0.074*     |
| C15 | 0.0190 (3)   | 0.51912 (14)  | 0.29970 (15) | 0.0735 (4) |
| H15 | -0.1140      | 0.5289        | 0.3459       | 0.088*     |
| C16 | 0.1715 (3)   | 0.60761 (14)  | 0.27597 (15) | 0.0754 (4) |
| H16 | 0.1422       | 0.6768        | 0.3063       | 0.090*     |
| C17 | 0.3659 (3)   | 0.59283 (14)  | 0.20757 (15) | 0.0734 (4) |
| H17 | 0.4680       | 0.6527        | 0.1908       | 0.088*     |
| C18 | 0.4119 (3)   | 0.48965 (12)  | 0.16320 (12) | 0.0604 (4) |
| H18 | 0.5453       | 0.4804        | 0.1172       | 0.072*     |
| N1  | 0.30501 (19) | 0.17179 (9)   | 0.24060 (10) | 0.0527 (3) |
| H1  | 0.397 (3)    | 0.1732 (13)   | 0.3027 (14)  | 0.066 (4)* |
|     |              |               |              |            |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|
| C2  | 0.0521 (7)  | 0.0509 (7)  | 0.0556 (7)  | -0.0122 (5) | 0.0034 (6)  | -0.0143 (6) |
| C3  | 0.0785 (9)  | 0.0594 (8)  | 0.0559 (8)  | -0.0142 (7) | -0.0073 (7) | -0.0128 (6) |
| C4  | 0.1052 (12) | 0.0700 (9)  | 0.0583 (8)  | -0.0204 (8) | -0.0091 (8) | -0.0225 (7) |
| C5  | 0.0859 (10) | 0.0597 (8)  | 0.0655 (9)  | -0.0183 (7) | -0.0016 (7) | -0.0255 (7) |
| C6  | 0.0543 (7)  | 0.0504 (7)  | 0.0614 (8)  | -0.0093 (5) | 0.0064 (6)  | -0.0183 (6) |
| C7  | 0.0547 (7)  | 0.0476 (7)  | 0.0595 (7)  | -0.0083 (5) | 0.0012 (6)  | -0.0217 (6) |
| C8  | 0.0604 (8)  | 0.0652 (9)  | 0.0672 (9)  | -0.0004 (7) | 0.0016 (7)  | -0.0231 (7) |
| C9  | 0.0791 (10) | 0.0627 (9)  | 0.0734 (10) | 0.0087 (7)  | -0.0137 (8) | -0.0192 (8) |
| C10 | 0.0935 (11) | 0.0570 (8)  | 0.0580 (8)  | -0.0140 (8) | -0.0090 (8) | -0.0130 (7) |
| C11 | 0.0819 (11) | 0.0673 (9)  | 0.0728 (10) | -0.0147 (8) | 0.0162 (8)  | -0.0145 (8) |
| C12 | 0.0646 (9)  | 0.0564 (8)  | 0.0788 (10) | -0.0017 (6) | 0.0114 (7)  | -0.0134 (7) |
| C13 | 0.0523 (7)  | 0.0469 (7)  | 0.0489 (7)  | -0.0089(5)  | -0.0042(5)  | -0.0093 (5) |
| C14 | 0.0610 (8)  | 0.0571 (8)  | 0.0674 (8)  | -0.0119 (6) | 0.0053 (7)  | -0.0160 (7) |
| C15 | 0.0747 (10) | 0.0723 (10) | 0.0744 (10) | -0.0002 (8) | 0.0043 (8)  | -0.0277 (8) |
|     |             |             |             |             |             |             |

# supporting information

| C16 | 0.0932 (12) | 0.0606 (9) | 0.0760 (10) | -0.0017 (8) | -0.0151 (9) | -0.0300 (8) |
|-----|-------------|------------|-------------|-------------|-------------|-------------|
| C17 | 0.0845 (11) | 0.0602 (9) | 0.0810 (10) | -0.0244 (8) | -0.0089 (9) | -0.0215 (8) |
| C18 | 0.0621 (8)  | 0.0595 (8) | 0.0618 (8)  | -0.0179 (6) | -0.0014 (6) | -0.0162 (6) |
| N1  | 0.0583 (6)  | 0.0468 (6) | 0.0540 (6)  | -0.0091 (5) | -0.0049 (5) | -0.0154 (5) |

Geometric parameters (Å, °)

| C2—N1      | 1.4685 (16) | C9—C10      | 1.370 (2)   |
|------------|-------------|-------------|-------------|
| C2—C13     | 1.5064 (17) | С9—Н9       | 0.9300      |
| C2—C3      | 1.5217 (19) | C10—C11     | 1.372 (2)   |
| C2—H2      | 0.9800      | C10—H10     | 0.9300      |
| C3—C4      | 1.5211 (19) | C11—C12     | 1.376 (2)   |
| С3—НЗА     | 0.9700      | C11—H11     | 0.9300      |
| С3—Н3В     | 0.9700      | C12—H12     | 0.9300      |
| C4—C5      | 1.521 (2)   | C13—C14     | 1.3857 (18) |
| C4—H4A     | 0.9700      | C13—C18     | 1.3881 (17) |
| C4—H4B     | 0.9700      | C14—C15     | 1.375 (2)   |
| С5—С6      | 1.522 (2)   | C14—H14     | 0.9300      |
| C5—H5A     | 0.9700      | C15—C16     | 1.380 (2)   |
| C5—H5B     | 0.9700      | C15—H15     | 0.9300      |
| C6—N1      | 1.4648 (16) | C16—C17     | 1.367 (2)   |
| С6—С7      | 1.5072 (18) | C16—H16     | 0.9300      |
| С6—Н6      | 0.9800      | C17—C18     | 1.382 (2)   |
| С7—С8      | 1.3789 (19) | C17—H17     | 0.9300      |
| C7—C12     | 1.3867 (19) | C18—H18     | 0.9300      |
| С8—С9      | 1.381 (2)   | N1—H1       | 0.891 (16)  |
| C8—H8      | 0.9300      |             |             |
|            |             |             |             |
| N1-C2-C13  | 109.73 (10) | С9—С8—Н8    | 119.5       |
| N1-C2-C3   | 108.14 (10) | C10—C9—C8   | 120.55 (14) |
| C13—C2—C3  | 113.09 (11) | С10—С9—Н9   | 119.7       |
| N1—C2—H2   | 108.6       | С8—С9—Н9    | 119.7       |
| С13—С2—Н2  | 108.6       | C9—C10—C11  | 119.28 (14) |
| С3—С2—Н2   | 108.6       | C9—C10—H10  | 120.4       |
| C4—C3—C2   | 111.00 (12) | C11—C10—H10 | 120.4       |
| С4—С3—Н3А  | 109.4       | C10-C11-C12 | 120.17 (15) |
| С2—С3—Н3А  | 109.4       | C10-C11-H11 | 119.9       |
| C4—C3—H3B  | 109.4       | C12—C11—H11 | 119.9       |
| С2—С3—Н3В  | 109.4       | C11—C12—C7  | 121.37 (14) |
| НЗА—СЗ—НЗВ | 108.0       | C11—C12—H12 | 119.3       |
| C3—C4—C5   | 110.73 (12) | C7—C12—H12  | 119.3       |
| C3—C4—H4A  | 109.5       | C14—C13—C18 | 118.18 (12) |
| C5—C4—H4A  | 109.5       | C14—C13—C2  | 120.72 (11) |
| C3—C4—H4B  | 109.5       | C18—C13—C2  | 121.09 (12) |
| C5—C4—H4B  | 109.5       | C15—C14—C13 | 121.03 (13) |
| H4A—C4—H4B | 108.1       | C15—C14—H14 | 119.5       |
| C4—C5—C6   | 111.35 (11) | C13—C14—H14 | 119.5       |
| C4—C5—H5A  | 109.4       | C14—C15—C16 | 120.15 (15) |

| С6—С5—Н5А      | 109.4        | C14—C15—H15     | 119.9        |
|----------------|--------------|-----------------|--------------|
| C4—C5—H5B      | 109.4        | C16—C15—H15     | 119.9        |
| C6—C5—H5B      | 109.4        | C17-C16-C15     | 119.52 (14)  |
| H5A—C5—H5B     | 108.0        | C17—C16—H16     | 120.2        |
| N1—C6—C7       | 110.02 (10)  | C15—C16—H16     | 120.2        |
| N1—C6—C5       | 108.40 (11)  | C16—C17—C18     | 120.58 (14)  |
| C7—C6—C5       | 112.75 (10)  | С16—С17—Н17     | 119.7        |
| N1—C6—H6       | 108.5        | С18—С17—Н17     | 119.7        |
| С7—С6—Н6       | 108.5        | C17—C18—C13     | 120.54 (14)  |
| С5—С6—Н6       | 108.5        | С17—С18—Н18     | 119.7        |
| C8—C7—C12      | 117.66 (13)  | C13—C18—H18     | 119.7        |
| C8—C7—C6       | 121.30 (12)  | C6—N1—C2        | 113.14 (10)  |
| C12—C7—C6      | 121.04 (11)  | C6—N1—H1        | 110.1 (9)    |
| C7—C8—C9       | 120.97 (14)  | C2—N1—H1        | 109.7 (9)    |
| С7—С8—Н8       | 119.5        |                 |              |
|                |              |                 |              |
| N1—C2—C3—C4    | -56.90 (15)  | C6—C7—C12—C11   | 179.08 (13)  |
| C13—C2—C3—C4   | -178.62 (11) | N1-C2-C13-C14   | -50.66 (15)  |
| C2—C3—C4—C5    | 53.73 (18)   | C3—C2—C13—C14   | 70.16 (15)   |
| C3—C4—C5—C6    | -53.20 (18)  | N1-C2-C13-C18   | 128.55 (12)  |
| C4—C5—C6—N1    | 55.84 (15)   | C3—C2—C13—C18   | -110.63 (14) |
| C4—C5—C6—C7    | 177.89 (12)  | C18—C13—C14—C15 | -0.6 (2)     |
| N1—C6—C7—C8    | -130.46 (12) | C2-C13-C14-C15  | 178.63 (13)  |
| C5—C6—C7—C8    | 108.40 (14)  | C13—C14—C15—C16 | 0.3 (2)      |
| N1—C6—C7—C12   | 50.58 (15)   | C14—C15—C16—C17 | 0.3 (2)      |
| C5—C6—C7—C12   | -70.56 (16)  | C15—C16—C17—C18 | -0.6 (2)     |
| C12—C7—C8—C9   | -0.1 (2)     | C16—C17—C18—C13 | 0.4 (2)      |
| C6—C7—C8—C9    | -179.06 (12) | C14—C13—C18—C17 | 0.25 (19)    |
| C7—C8—C9—C10   | 0.1 (2)      | C2-C13-C18-C17  | -178.98 (12) |
| C8—C9—C10—C11  | -0.2 (2)     | C7—C6—N1—C2     | 174.32 (10)  |
| C9—C10—C11—C12 | 0.2 (2)      | C5—C6—N1—C2     | -61.97 (13)  |
| C10-C11-C12-C7 | -0.2 (2)     | C13—C2—N1—C6    | -173.66 (10) |
| C8—C7—C12—C11  | 0.1 (2)      | C3—C2—N1—C6     | 62.57 (14)   |
|                |              |                 |              |

# Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C13–C18 and C7–C12 rings, respectively.

| D—H···A                    | D—H  | H···A | D····A    | <i>D</i> —H··· <i>A</i> |
|----------------------------|------|-------|-----------|-------------------------|
| C3—H3 $A$ ··· $Cg1^i$      | 0.97 | 3.00  | 3.719 (2) | 132                     |
| C10—H10…Cg1 <sup>ii</sup>  | 0.93 | 3.01  | 3.760 (2) | 139                     |
| C16—H16…Cg2 <sup>iii</sup> | 0.93 | 3.03  | 3.799 (2) | 141                     |

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+2; (ii) -*x*+1, -*y*+2, -*z*+1; (iii) *x*, *y*-1, *z*.