organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Benzyl-1-{[3-(4-chloro­phen­yl)isoxazol-5-yl]meth­yl}-1H-benzimidazol-2(3H)-one

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202 Fès, Morocco, bUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181, Ecole Nationale Supérieure de Chimie de Lille, France, cUSR 3290 Miniaturisation pour l'Analyse, la Synthèse et la Protéomique, 59655 Villeneuve d'Ascq Cedex, Université Lille 1, France, and dLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: amal_haoudi@yahoo.fr

(Received 12 August 2013; accepted 15 August 2013; online 17 August 2013)

In the title compound, C24H18ClN3O2, the benzimidazole plane is nearly perpendicular to the phenyl ring and to the isoxazole ring, making dihedral angles of 75.95 (7) and 73.04 (8)°, respectively, but the two residues point in opposite directions with respect to the benzimidazole plane. The dihedral angle between the chloro­phenyl and isoxazole rings is 7.95 (8)°. In the crystal, mol­ecules are linked by pairs of C—H⋯O hydrogen bonds into inversion dimers.

Related literature

For the biological activity of isoxazoline derivatives, see: Sakuma et al. (2011[Sakuma, S., Endo, T., Nakamura, H., Yamazaki, S. & Yamakawa, T. (2011). Bioorg. Med. Chem. Lett. 21, 240-244.]); Hu et al. (2010[Hu, D., Liu, S., Huang, T., Tu, H., Li, W., Zhu, X. & Zhang, A. (2010). Chin. J. Org. Chem. 30, 1366-1371.]); Wang et al. (2010[Wang, S., Yan, J., Chen, J., Zhang, T., Zhao, Y. & Xue, M. (2010). Eur. J. Med. Chem. 45, 2663-2670.]). For benzimidazol-2-one derivatives, see: Belaziz et al. (2012[Belaziz, D., Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Saadi, M. & El Ammari, L. (2012). Acta Cryst. E68, o3069.]).

[Scheme 1]

Experimental

Crystal data
  • C24H18ClN3O2

  • Mr = 415.86

  • Triclinic, [P \overline 1]

  • a = 8.5427 (2) Å

  • b = 9.8290 (2) Å

  • c = 13.2658 (3) Å

  • α = 81.133 (1)°

  • β = 78.763 (1)°

  • γ = 64.343 (1)°

  • V = 981.73 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.60 × 0.39 × 0.13 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.688, Tmax = 0.746

  • 70806 measured reflections

  • 5994 independent reflections

  • 4622 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.143

  • S = 1.03

  • 5994 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯O2i 0.93 2.53 3.1949 (19) 129
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Isoxazoline derivatives have attracted considerable attention and are found in many important bioactive heterocycles. These pharmacophores play an important role in medicinal (Sakuma et al., 2011, Wang et al., 2010) and agrochemical industry (Hu et al., 2010). The integration of isoxazoline moiety in benzimidazole scaffolds may lead to new hybrid molecules containing two pharmacophores in the same molecule with broad biological activity profiles.

As a continuation of our research work devoted to the development of substituted benzimidazol-2-one derivatives (Belaziz et al., 2012), we report in this paper the synthesis of a new isoxazolinylmethyl benzimidazole derivatives. The title compound was obtained by using p-chlorobenzaldoxime to react with the 1-allyl-3-benzyl-benzimidazole in 1,3-dipolar cycloaddition.

The title compound is build up from a fused five- and six-membered rings linked, on opposite sides, to a benzyl residue and to a chlorobenzyl- dihydroisoxazole residue (Fig. 1). The benzimidazole plane makes dihedral angles of 75.95 (7) ° and 73.04 (8) ° with the phenyl ring and the isoxazole ring, respectively. The dihedral angle between the chlorophenyl ring and the isoxazole ring is of 7.95 (8) ° while that between the two aromatic six-membered rings is 68.48 (8)°.

In the crystal, the molecules are linked by C–H···O hydrogen bonds to centrosymmetric dimers (Fig. 2 and Table 2).

Related literature top

For the biological activity of isoxazoline derivatives, see: Sakuma et al. (2011); Hu et al. (2010); Wang et al. (2010). For benzimidazol-2-one derivatives, see: Belaziz et al. (2012).

Experimental top

To 1-allylbenzimidozol-2-one (0.40 g, 2.3 mmol), potassium carbonate (0.63 g, 4,55 mmol) and tetra-n-butylammonium bromide (0.07 g, 0.22 mmol) in DMF (15 ml) was added benzyl chloride (0.32 g, 2.53 mmol). Stirring was continued at room temperature for 6 h. The salt was removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/ hexane (1/2) as eluent. The compound was recrystallized from hexane/acetate to give colorless crystals. To the obtained compound (1-allyl-3-benzyl-benzimidazol-2-one) (0.20 g, 0.76 mmol) was added p-chlorobenzaldoxime (0.15 g, 1 mmol) in chloroform (10 ml) and 4% solution of sodium hypochlorite solution (commercial bleach) (4 ml) at 0°C. Stirring was continued for 6 h. The organic layer was dried and the solvent evaporated under reduced pressure. The residue was then purified by column chromatography on silica gel by using a mixture of hexane and ethyl acetate (1/1) as eluent. Colourless crystals were isolated when the solvent was allowed to evaporate (Yield: 68%; mp: 467 K).

Refinement top

All H atoms could be located in a difference Fourier map. Nevertheless, they were placed in calculated positions with C—H = 0.93 Å (aromatic), and C—H = 0.97 Å (methylene) and refined as riding on their parent atoms with Uiso(H) = 1.2 Ueq (C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : Molecular plot the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. : Intermolecular interactions in the title compound building a dimers. Hydrogen bonds are shown as dashed lines.
3-Benzyl-1-{[3-(4-chlorophenyl)isoxazol-5-yl]methyl}-1H-benzimidazol-2(3H)-one top
Crystal data top
C24H18ClN3O2Z = 2
Mr = 415.86F(000) = 432
Triclinic, P1Dx = 1.407 Mg m3
Hall symbol: -P 1Melting point: 467 K
a = 8.5427 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8290 (2) ÅCell parameters from 9881 reflections
c = 13.2658 (3) Åθ = 2.7–29.9°
α = 81.133 (1)°µ = 0.22 mm1
β = 78.763 (1)°T = 296 K
γ = 64.343 (1)°Prism, colourless
V = 981.73 (4) Å30.60 × 0.39 × 0.13 mm
Data collection top
Bruker APEXII CCD
diffractometer
5994 independent reflections
Radiation source: fine-focus sealed tube4622 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 30.6°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.688, Tmax = 0.746k = 1414
70806 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0745P)2 + 0.2335P]
where P = (Fo2 + 2Fc2)/3
5994 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C24H18ClN3O2γ = 64.343 (1)°
Mr = 415.86V = 981.73 (4) Å3
Triclinic, P1Z = 2
a = 8.5427 (2) ÅMo Kα radiation
b = 9.8290 (2) ŵ = 0.22 mm1
c = 13.2658 (3) ÅT = 296 K
α = 81.133 (1)°0.60 × 0.39 × 0.13 mm
β = 78.763 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5994 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4622 reflections with I > 2σ(I)
Tmin = 0.688, Tmax = 0.746Rint = 0.029
70806 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.03Δρmax = 0.55 e Å3
5994 reflectionsΔρmin = 0.35 e Å3
271 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.96270 (18)0.07935 (15)1.15305 (10)0.0408 (3)
C21.0111 (2)0.19835 (18)1.13183 (12)0.0491 (3)
H21.09510.20111.16580.059*
C30.9335 (2)0.31396 (17)1.05931 (11)0.0466 (3)
H30.96590.39471.04460.056*
C40.80752 (16)0.31087 (14)1.00813 (9)0.0362 (2)
C50.75890 (19)0.19111 (17)1.03279 (11)0.0445 (3)
H50.67280.18901.00040.053*
C60.8363 (2)0.07437 (17)1.10491 (12)0.0468 (3)
H60.80350.00611.12060.056*
C70.73329 (17)0.42911 (14)0.92671 (9)0.0362 (2)
C80.62184 (18)0.43492 (16)0.85805 (10)0.0422 (3)
H80.57460.36610.85650.051*
C90.59949 (17)0.56105 (15)0.79592 (10)0.0400 (3)
C100.50513 (19)0.63221 (18)0.70493 (11)0.0480 (3)
H10A0.41190.59970.70840.058*
H10B0.45200.74140.70690.058*
C110.6890 (2)0.68917 (17)0.54875 (11)0.0461 (3)
C120.79140 (18)0.47023 (16)0.47125 (10)0.0436 (3)
C130.8769 (2)0.35197 (19)0.40860 (12)0.0562 (4)
H130.94920.35970.34780.067*
C140.8507 (3)0.2209 (2)0.43976 (15)0.0669 (5)
H140.90870.13870.39960.080*
C150.7409 (3)0.20923 (19)0.52889 (14)0.0628 (4)
H150.72390.12080.54650.075*
C160.6556 (2)0.32735 (18)0.59249 (12)0.0522 (3)
H160.58250.31960.65290.063*
C170.68346 (18)0.45689 (16)0.56272 (10)0.0423 (3)
C180.8719 (2)0.68311 (19)0.37749 (12)0.0511 (3)
H18A0.98170.60690.34710.061*
H18B0.89780.75820.40190.061*
C190.75256 (18)0.75806 (16)0.29623 (10)0.0425 (3)
C200.6070 (2)0.89424 (17)0.31390 (11)0.0463 (3)
H200.58580.93880.37500.056*
C210.4936 (2)0.96400 (18)0.24177 (12)0.0511 (3)
H210.39601.05460.25470.061*
C220.5253 (2)0.8988 (2)0.15014 (12)0.0541 (4)
H220.44930.94570.10140.065*
C230.6691 (2)0.7652 (2)0.13163 (12)0.0570 (4)
H230.69090.72190.06990.068*
C240.7823 (2)0.69410 (19)0.20462 (12)0.0519 (3)
H240.87880.60290.19180.062*
Cl11.06618 (6)0.06917 (5)1.24013 (3)0.05818 (13)
N10.7736 (2)0.54512 (15)0.90688 (11)0.0558 (3)
N20.62261 (16)0.59181 (13)0.60857 (8)0.0439 (3)
N30.79299 (16)0.61217 (14)0.46473 (9)0.0460 (3)
O10.68832 (17)0.63109 (13)0.82270 (9)0.0573 (3)
O20.66140 (18)0.81529 (13)0.56718 (9)0.0607 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0437 (6)0.0438 (6)0.0331 (6)0.0174 (5)0.0066 (5)0.0017 (5)
C20.0552 (8)0.0538 (8)0.0485 (8)0.0288 (7)0.0227 (6)0.0051 (6)
C30.0585 (8)0.0477 (7)0.0469 (7)0.0324 (6)0.0205 (6)0.0059 (6)
C40.0397 (6)0.0411 (6)0.0304 (5)0.0194 (5)0.0054 (4)0.0021 (4)
C50.0482 (7)0.0530 (7)0.0425 (7)0.0304 (6)0.0137 (5)0.0045 (6)
C60.0534 (8)0.0501 (7)0.0465 (7)0.0320 (6)0.0106 (6)0.0061 (6)
C70.0397 (6)0.0404 (6)0.0302 (5)0.0181 (5)0.0046 (4)0.0033 (4)
C80.0461 (7)0.0499 (7)0.0370 (6)0.0251 (6)0.0112 (5)0.0008 (5)
C90.0389 (6)0.0455 (7)0.0324 (6)0.0146 (5)0.0045 (5)0.0037 (5)
C100.0426 (7)0.0542 (8)0.0364 (6)0.0096 (6)0.0093 (5)0.0002 (6)
C110.0496 (7)0.0452 (7)0.0376 (6)0.0130 (6)0.0134 (5)0.0017 (5)
C120.0442 (7)0.0445 (7)0.0364 (6)0.0102 (5)0.0162 (5)0.0010 (5)
C130.0591 (9)0.0556 (9)0.0421 (7)0.0096 (7)0.0122 (6)0.0073 (6)
C140.0808 (12)0.0497 (9)0.0620 (10)0.0106 (8)0.0250 (9)0.0130 (8)
C150.0821 (12)0.0489 (8)0.0619 (10)0.0252 (8)0.0306 (9)0.0021 (7)
C160.0599 (9)0.0520 (8)0.0465 (8)0.0227 (7)0.0213 (7)0.0069 (6)
C170.0436 (6)0.0438 (7)0.0355 (6)0.0116 (5)0.0174 (5)0.0027 (5)
C180.0454 (7)0.0613 (9)0.0436 (7)0.0219 (7)0.0084 (6)0.0060 (6)
C190.0439 (7)0.0489 (7)0.0364 (6)0.0232 (6)0.0040 (5)0.0018 (5)
C200.0536 (8)0.0479 (7)0.0382 (6)0.0217 (6)0.0083 (6)0.0015 (5)
C210.0522 (8)0.0506 (8)0.0506 (8)0.0212 (6)0.0133 (6)0.0026 (6)
C220.0599 (9)0.0698 (10)0.0467 (8)0.0390 (8)0.0180 (7)0.0053 (7)
C230.0686 (10)0.0752 (11)0.0416 (7)0.0425 (9)0.0045 (7)0.0115 (7)
C240.0528 (8)0.0564 (8)0.0448 (7)0.0226 (7)0.0005 (6)0.0091 (6)
Cl10.0641 (2)0.0540 (2)0.0521 (2)0.02165 (18)0.01949 (17)0.01336 (16)
N10.0801 (9)0.0523 (7)0.0520 (7)0.0390 (7)0.0331 (7)0.0130 (6)
N20.0495 (6)0.0440 (6)0.0317 (5)0.0131 (5)0.0093 (4)0.0009 (4)
N30.0494 (6)0.0461 (6)0.0368 (6)0.0158 (5)0.0077 (5)0.0022 (5)
O10.0810 (8)0.0494 (6)0.0542 (6)0.0357 (6)0.0315 (6)0.0140 (5)
O20.0779 (8)0.0466 (6)0.0534 (6)0.0220 (6)0.0090 (6)0.0044 (5)
Geometric parameters (Å, º) top
C1—C21.375 (2)C12—C171.400 (2)
C1—C61.378 (2)C13—C141.389 (3)
C1—Cl11.7342 (13)C13—H130.9300
C2—C31.384 (2)C14—C151.382 (3)
C2—H20.9300C14—H140.9300
C3—C41.3928 (18)C15—C161.386 (2)
C3—H30.9300C15—H150.9300
C4—C51.3845 (18)C16—C171.380 (2)
C4—C71.4701 (17)C16—H160.9300
C5—C61.386 (2)C17—N21.3882 (18)
C5—H50.9300C18—N31.4610 (19)
C6—H60.9300C18—C191.509 (2)
C7—N11.3037 (18)C18—H18A0.9700
C7—C81.4192 (17)C18—H18B0.9700
C8—C91.3394 (19)C19—C241.383 (2)
C8—H80.9300C19—C201.391 (2)
C9—O11.3449 (18)C20—C211.381 (2)
C9—C101.4922 (18)C20—H200.9300
C10—N21.4527 (18)C21—C221.386 (2)
C10—H10A0.9700C21—H210.9300
C10—H10B0.9700C22—C231.371 (3)
C11—O21.2124 (19)C22—H220.9300
C11—N31.3772 (19)C23—C241.390 (2)
C11—N21.388 (2)C23—H230.9300
C12—C131.379 (2)C24—H240.9300
C12—N31.3902 (19)N1—O11.4088 (16)
C2—C1—C6121.31 (13)C15—C14—H14119.1
C2—C1—Cl1119.23 (11)C13—C14—H14119.1
C6—C1—Cl1119.44 (11)C14—C15—C16121.02 (17)
C1—C2—C3119.24 (13)C14—C15—H15119.5
C1—C2—H2120.4C16—C15—H15119.5
C3—C2—H2120.4C17—C16—C15117.41 (16)
C2—C3—C4120.78 (13)C17—C16—H16121.3
C2—C3—H3119.6C15—C16—H16121.3
C4—C3—H3119.6C16—C17—N2131.99 (14)
C5—C4—C3118.59 (12)C16—C17—C12121.66 (14)
C5—C4—C7120.80 (11)N2—C17—C12106.35 (13)
C3—C4—C7120.56 (12)N3—C18—C19111.88 (12)
C4—C5—C6121.11 (12)N3—C18—H18A109.2
C4—C5—H5119.4C19—C18—H18A109.2
C6—C5—H5119.4N3—C18—H18B109.2
C1—C6—C5118.94 (13)C19—C18—H18B109.2
C1—C6—H6120.5H18A—C18—H18B107.9
C5—C6—H6120.5C24—C19—C20118.70 (13)
N1—C7—C8110.87 (12)C24—C19—C18121.82 (14)
N1—C7—C4120.56 (11)C20—C19—C18119.47 (13)
C8—C7—C4128.52 (12)C21—C20—C19120.76 (14)
C9—C8—C7105.03 (12)C21—C20—H20119.6
C9—C8—H8127.5C19—C20—H20119.6
C7—C8—H8127.5C20—C21—C22119.91 (15)
C8—C9—O1109.84 (12)C20—C21—H21120.0
C8—C9—C10133.67 (14)C22—C21—H21120.0
O1—C9—C10116.44 (13)C23—C22—C21119.81 (15)
N2—C10—C9111.65 (11)C23—C22—H22120.1
N2—C10—H10A109.3C21—C22—H22120.1
C9—C10—H10A109.3C22—C23—C24120.32 (14)
N2—C10—H10B109.3C22—C23—H23119.8
C9—C10—H10B109.3C24—C23—H23119.8
H10A—C10—H10B108.0C19—C24—C23120.49 (15)
O2—C11—N3127.39 (15)C19—C24—H24119.8
O2—C11—N2127.01 (14)C23—C24—H24119.8
N3—C11—N2105.60 (13)C7—N1—O1105.96 (11)
C13—C12—N3132.02 (15)C17—N2—C11110.57 (12)
C13—C12—C17120.70 (15)C17—N2—C10126.87 (13)
N3—C12—C17107.24 (12)C11—N2—C10122.56 (13)
C12—C13—C14117.41 (16)C11—N3—C12110.25 (12)
C12—C13—H13121.3C11—N3—C18122.37 (13)
C14—C13—H13121.3C12—N3—C18126.95 (13)
C15—C14—C13121.78 (16)C9—O1—N1108.30 (11)
C6—C1—C2—C31.2 (2)C24—C19—C20—C210.4 (2)
Cl1—C1—C2—C3177.46 (12)C18—C19—C20—C21178.77 (14)
C1—C2—C3—C40.1 (2)C19—C20—C21—C220.6 (2)
C2—C3—C4—C51.3 (2)C20—C21—C22—C230.1 (2)
C2—C3—C4—C7176.27 (13)C21—C22—C23—C240.5 (3)
C3—C4—C5—C61.6 (2)C20—C19—C24—C230.3 (2)
C7—C4—C5—C6175.95 (13)C18—C19—C24—C23179.41 (15)
C2—C1—C6—C50.9 (2)C22—C23—C24—C190.7 (3)
Cl1—C1—C6—C5177.76 (11)C8—C7—N1—O10.27 (17)
C4—C5—C6—C10.5 (2)C4—C7—N1—O1177.18 (12)
C5—C4—C7—N1176.96 (14)C16—C17—N2—C11179.49 (14)
C3—C4—C7—N15.6 (2)C12—C17—N2—C110.00 (15)
C5—C4—C7—C86.1 (2)C16—C17—N2—C100.9 (2)
C3—C4—C7—C8171.39 (14)C12—C17—N2—C10179.61 (12)
N1—C7—C8—C90.37 (17)O2—C11—N2—C17179.88 (14)
C4—C7—C8—C9176.82 (12)N3—C11—N2—C170.18 (15)
C7—C8—C9—O10.32 (15)O2—C11—N2—C100.5 (2)
C7—C8—C9—C10177.14 (14)N3—C11—N2—C10179.80 (12)
C8—C9—C10—N296.06 (19)C9—C10—N2—C1778.91 (18)
O1—C9—C10—N281.27 (16)C9—C10—N2—C11101.52 (15)
N3—C12—C13—C14177.73 (15)O2—C11—N3—C12179.99 (15)
C17—C12—C13—C140.3 (2)N2—C11—N3—C120.29 (15)
C12—C13—C14—C151.2 (3)O2—C11—N3—C187.1 (2)
C13—C14—C15—C161.7 (3)N2—C11—N3—C18173.20 (12)
C14—C15—C16—C170.6 (2)C13—C12—N3—C11178.00 (15)
C15—C16—C17—N2178.55 (14)C17—C12—N3—C110.30 (15)
C15—C16—C17—C120.9 (2)C13—C12—N3—C189.5 (2)
C13—C12—C17—C161.4 (2)C17—C12—N3—C18172.80 (13)
N3—C12—C17—C16179.37 (12)C19—C18—N3—C1189.12 (17)
C13—C12—C17—N2178.19 (13)C19—C18—N3—C1282.55 (18)
N3—C12—C17—N20.18 (14)C8—C9—O1—N10.17 (16)
N3—C18—C19—C24104.54 (17)C10—C9—O1—N1177.78 (12)
N3—C18—C19—C2074.59 (18)C7—N1—O1—C90.07 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···O2i0.932.533.1949 (19)129
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···O2i0.932.533.1949 (19)128.5
Symmetry code: (i) x+1, y+2, z+1.
 

References

First citationBelaziz, D., Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Saadi, M. & El Ammari, L. (2012). Acta Cryst. E68, o3069.  CSD CrossRef IUCr Journals
First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationHu, D., Liu, S., Huang, T., Tu, H., Li, W., Zhu, X. & Zhang, A. (2010). Chin. J. Org. Chem. 30, 1366–1371.  CAS
First citationSakuma, S., Endo, T., Nakamura, H., Yamazaki, S. & Yamakawa, T. (2011). Bioorg. Med. Chem. Lett. 21, 240–244.  Web of Science CrossRef CAS PubMed
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationWang, S., Yan, J., Chen, J., Zhang, T., Zhao, Y. & Xue, M. (2010). Eur. J. Med. Chem. 45, 2663–2670.  Web of Science CrossRef CAS PubMed
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds