organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1483-o1484

6-Amino-2-(pivaloyl­amino)­pyridinium benzoate

aStructural Chemistry and Crystallography Group, University of Lodz, Pomorska 163/165, PL-90-236 Łódź, Poland, bFaculty of Technology and Chemical Engineering, University of Technology and Life Sciences, Seminaryjna 3, PL-85-326 Bydgoszcz, Poland, and cDepartment of Chemistry, University of Jyväskylä, PO Box 35, FI-40014 Jyväskylä, Finland
*Correspondence e-mail: lilach@uni.lodz.pl

(Received 26 July 2013; accepted 23 August 2013; online 31 August 2013)

In the crystal structure of the title salt, C10H16N3O+·C7H5O2, the cations and anions are linked to each other via N—H⋯O hydrogen bonds, forming infinite chains running along [010]. The crystal structure also features C—H⋯O and ππ stacking inter­actions, which assemble the chains into supra­molecular layers parallel to (100). The ππ stacking inter­actions are observed between the pyridine rings of inversion-related cations with a centroid–centroid distance of 3.867 (2) Å.

Related literature

For co-crystallization of pharmaceuticals, see: Vishweshwar et al. (2006[Vishweshwar, P., McMahon, J. A., Bis, J. A. & Zaworotko, M. J. (2006). J. Pharm. Sci. 95, 499-516.]); Lemmerer (2012[Lemmerer, A. (2012). CrystEngComm, 14, 2465-2478.]). For the crystal structures of related compounds, see: Ośmiałowski et al. (2010b[Ośmiałowski, B., Kolehmainen, E., Dobosz, R., Gawinecki, R., Kauppinen, R., Valkonen, A., Koivukorpi, J. & Rissanen, K. (2010b). J. Phys. Chem. A, 114, 10421-10426.]); Aakeröy et al. (2006[Aakeröy, C. B., Hussain, I. & Desper, J. (2006). Cryst. Growth Des. 6, 474-480.], 2010[Aakeröy, C. B., Rajbanshi, A., Li, Z. J. & Desper, J. (2010). CrystEngComm, 12, 4231-4239.]). For the role of steric effects in hydrogen-bonded compounds, see Ośmiałowski et al. (2012a[Ośmiałowski, B., Kolehmainen, E., Ikonen, S., Valkonen, A., Kwiatkowski, A., Grela, I. & Haapaniemi, E. (2012a). J. Org. Chem. 77, 9609-9619.],b[Ośmiałowski, B., Kolehmainen, E. & Kowalska, M. (2012b). J. Org. Chem. 77, 1653-1662.], 2010a[Ośmiałowski, B., Kolehmainen, E., Gawinecki, R., Dobosz, R. & Kaupinen, R. (2010a). J. Phys. Chem. A, 114, 12881-12887.],b[Ośmiałowski, B., Kolehmainen, E., Dobosz, R., Gawinecki, R., Kauppinen, R., Valkonen, A., Koivukorpi, J. & Rissanen, K. (2010b). J. Phys. Chem. A, 114, 10421-10426.]). For the synthesis of 2-pivaloyl­amino-6-amino­pyridine, see: Ośmiałowski et al. (2010a[Ośmiałowski, B., Kolehmainen, E., Gawinecki, R., Dobosz, R. & Kaupinen, R. (2010a). J. Phys. Chem. A, 114, 12881-12887.]).

[Scheme 1]

Experimental

Crystal data
  • C10H16N3O+·C7H5O2

  • Mr = 315.37

  • Monoclinic, P 21 /c

  • a = 15.1438 (4) Å

  • b = 5.7099 (2) Å

  • c = 18.7388 (6) Å

  • β = 91.967 (2)°

  • V = 1619.38 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 123 K

  • 0.13 × 0.10 × 0.08 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer with APEXII detector

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.988, Tmax = 0.993

  • 10993 measured reflections

  • 3724 independent reflections

  • 2054 reflections with I > 2σ(I)

  • Rint = 0.094

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.141

  • S = 1.00

  • 3724 reflections

  • 220 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O13Ai 0.91 (2) 1.67 (2) 2.571 (2) 170 (2)
N6—H6A⋯O13Bi 0.90 (2) 2.05 (2) 2.934 (3) 167 (2)
N6—H6B⋯O13Bii 0.91 (2) 2.05 (2) 2.869 (3) 149 (2)
N7—H7⋯O13Ai 0.86 (2) 2.24 (2) 2.984 (3) 146 (2)
C4—H4⋯O8iii 0.95 2.49 3.433 (3) 172
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y, -z+1.

Data collection: COLLECT (Bruker, 2008[Bruker (2008). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL2013 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Co-crystallization is used in the pharmaceutical industry to improve the shelf life of drugs (Vishweshwar et al., 2006; Lemmerer, 2012). It is also used in many fields of chemistry, including material science. It is known that 2-acylaminopyridine forms co-crystals with acids, while in 2-aminopyridine acid complexes proton transfer takes place, yielding salts (Aakeröy et al., 2010; 2006). The current report deals with the competition between formation of a salt and co-crystal. It is worth pointing out that the 2-acylamino moiety prefers to form co-crystals, while the 6-amino moiety prefers salt formation. In 2-pivaloylamino pyridine, both groups are present in the same molecule. Moreover, the increased acidity of NH in the –NHCO– group, in general, increases the hydrogen bonding donation ability of the NH proton. On the other hand, we used the sterically demanding pivaloyl group to hinder the efficient NH···OC interaction of the —NHCO—tBu part of the title molecule. Thus the interacting acid is pushed to transfer the proton to the heterocyclic nitrogen and to form a salt with 2-pivaloylamino-6-aminopyridine. It is worth noting that the NH2 group attached to C6 of the pyridine ring causes an increase of electron density at the ring nitrogen. More systematic studies on co-crystallization of 2-acylaminopyridine with benzoic acids are in progress. For the steric effects in hydrogen bonded compounds, refer to our previous publications (Ośmiałowski et al., 2012a,b; 2010a,b).

As illustrated in Figure 1, the asymmetric unit of the title salt, (I), contains one protonated 2-pivaloylamino-6-aminopyridine cation and one benzoate anion, both located in general positions.

The geometric parameters of the 2-pivaloylamino-6-aminopyridine cation are in good agreement with those found for the related structures (Ośmiałowski et al., 2010a,b). In the benzoate anion the C—O distances, 1.268 (3) Å and 1.253 (3) Å, clearly indicate the delocalization of the negative charge within the carboxylate group.

In the crystal of the title salt, cations and anions are connected via four N—H···O hydrogen bonds (Table 1 and Figure 2). The protonated N1 atom and two nitrogen atoms (N6 and N7) interact with the carboxylate oxygen atoms (O13A and O13B; symmetry code (i): x, y + 1, z) and form hydrogen-bonded aggregates. Such structural motifs are further propagated into infinite chains running along b axis by N6—H6B···O13Bii [symmetry code (ii): -x + 1, y + 1/2, -z + 1/2] hydrogen bond. The crystal structure of (I) is further stabilized by an almost linear C4—H4···O8iii interaction (Table 1 and Figure 2) and by π···π stacking interactions; both of which connect the adjacent one-dimensional-chains to produce (100) supramolecular sheets. The thickness of each separate layer is equal to the a unit cell constant. No direction-specific interactions have been found between the supramolecular sheets.

The aforementioned π···π stacking interactions are observed between the pyridine rings of inversion-related cations, with a Cg···Cgiv distance of 3.867 (2) Å and interplanar distance of 3.455 (1) Å; Cg is the centroid of the N2/C2–C6 ring, symmetry code (iv): 1 - x, 1 - y, 1 - z.

Related literature top

For co-crystallization in the pharmaceutical industry, see: Vishweshwar et al. (2006); Lemmerer (2012). For the crystal structures of related compounds, see: Ośmiałowski et al. (2010b); Aakeröy et al. (2006, 2010). For the role of steric effects in hydrogen-bonded compounds, see Ośmiałowski et al. (2012a,b, 2010a,b). For the synthesis of 2-pivaloylamino-6-aminopyridine, see: Ośmiałowski et al. (2010a).

Experimental top

For the synthesis of the title compound, equimolar ammounts of 2-pivaloylamino-6-aminopyridine and benzoic acid were mixed in methanol. The solution was left for a couple of days for slow evaporation and produced single crystals. The parent 2-pivaloylamino-6-aminopyridine was prepared according to a literature procedure (Ośmiałowski et al., 2010a).

Refinement top

All non-hydrogen atoms were refined anisotropically. H atoms bonded to N atoms were located in a difference map and refined with distance restraints of N1—H1 (and N7—H7) = 0.88 (2) Å, N6—H6A (and N6—H6B) = 0.91 (2) Å and with Uiso(H) = 1.2Ueq(N). Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.98 Å and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(methyl C).

Computing details top

Data collection: COLLECT (Bruker, 2008); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A part of the crystal structure of (I), showing the intermolecular interactions as dashed lines [symmetry codes: (i) x,y + 1,z; (ii)-x + 1,y + 1/2,-z + 1/2; (iii)-x + 1,- y,-z + 1].
6-Amino-2-(pivaloylamino)pyridinium benzoate top
Crystal data top
C10H16N3O+·C7H5O2F(000) = 672
Mr = 315.37Dx = 1.293 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.1438 (4) ÅCell parameters from 4257 reflections
b = 5.7099 (2) Åθ = 0.4–28.3°
c = 18.7388 (6) ŵ = 0.09 mm1
β = 91.967 (2)°T = 123 K
V = 1619.38 (9) Å3Block, colourless
Z = 40.13 × 0.10 × 0.08 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer with APEXII detector
3724 independent reflections
Radiation source: fine-focus sealed tube2054 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.094
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.5°
ϕ and ω scansh = 1918
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
k = 77
Tmin = 0.988, Tmax = 0.993l = 2420
10993 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0496P)2]
where P = (Fo2 + 2Fc2)/3
3724 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.24 e Å3
4 restraintsΔρmin = 0.28 e Å3
Crystal data top
C10H16N3O+·C7H5O2V = 1619.38 (9) Å3
Mr = 315.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.1438 (4) ŵ = 0.09 mm1
b = 5.7099 (2) ÅT = 123 K
c = 18.7388 (6) Å0.13 × 0.10 × 0.08 mm
β = 91.967 (2)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer with APEXII detector
3724 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2054 reflections with I > 2σ(I)
Tmin = 0.988, Tmax = 0.993Rint = 0.094
10993 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0664 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.00Δρmax = 0.24 e Å3
3724 reflectionsΔρmin = 0.28 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O80.69413 (12)0.1535 (3)0.54656 (10)0.0370 (5)
N10.57982 (12)0.6015 (4)0.39112 (11)0.0205 (5)
H10.6221 (14)0.710 (4)0.3842 (13)0.025*
N60.48943 (14)0.7758 (4)0.30603 (12)0.0278 (5)
H6A0.5311 (15)0.882 (4)0.2960 (14)0.033*
H6B0.4404 (14)0.774 (4)0.2764 (13)0.033*
N70.68521 (13)0.4637 (4)0.47095 (11)0.0231 (5)
H70.7141 (15)0.580 (4)0.4546 (13)0.028*
C20.60154 (15)0.4307 (4)0.43895 (13)0.0223 (6)
C30.54405 (15)0.2505 (4)0.45137 (14)0.0249 (6)
H30.55820.13070.48500.030*
C40.46378 (16)0.2513 (4)0.41222 (14)0.0261 (6)
H40.42250.12950.42000.031*
C50.44278 (15)0.4204 (4)0.36334 (13)0.0227 (6)
H50.38810.41490.33690.027*
C60.50276 (15)0.6023 (4)0.35252 (13)0.0209 (6)
C80.72715 (16)0.3289 (4)0.52242 (14)0.0234 (6)
C90.81731 (15)0.4228 (4)0.54969 (13)0.0219 (6)
C100.79992 (16)0.5515 (5)0.61949 (14)0.0293 (6)
H10A0.77180.44430.65260.044*
H10B0.76080.68520.60960.044*
H10C0.85600.60720.64090.044*
C110.87823 (17)0.2125 (4)0.56515 (16)0.0326 (7)
H11A0.88960.13080.52040.049*
H11B0.84970.10490.59800.049*
H11C0.93420.26750.58690.049*
C120.86140 (15)0.5877 (5)0.49737 (14)0.0263 (6)
H12A0.87230.50370.45290.040*
H12B0.91760.64360.51850.040*
H12C0.82250.72160.48710.040*
O13A0.71169 (10)0.1201 (3)0.37777 (10)0.0287 (5)
O13B0.64016 (11)0.0950 (3)0.29481 (10)0.0289 (5)
C130.70775 (15)0.0432 (4)0.33191 (13)0.0215 (6)
C140.79105 (15)0.1829 (4)0.32285 (13)0.0203 (6)
C150.87128 (15)0.0994 (4)0.35068 (13)0.0220 (6)
H150.87310.04360.37660.026*
C160.94848 (16)0.2232 (4)0.34092 (14)0.0255 (6)
H161.00310.16490.36000.031*
C170.94615 (16)0.4311 (4)0.30351 (14)0.0271 (6)
H170.99920.51550.29660.033*
C180.86638 (16)0.5174 (5)0.27596 (14)0.0279 (6)
H180.86470.66210.25090.033*
C190.78894 (16)0.3920 (4)0.28499 (13)0.0245 (6)
H190.73450.44940.26520.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O80.0319 (11)0.0331 (11)0.0450 (13)0.0155 (8)0.0117 (9)0.0167 (10)
N10.0153 (11)0.0213 (11)0.0248 (12)0.0069 (8)0.0000 (8)0.0002 (9)
N60.0206 (12)0.0284 (13)0.0339 (14)0.0070 (9)0.0076 (10)0.0059 (11)
N70.0175 (11)0.0242 (12)0.0275 (13)0.0068 (9)0.0028 (9)0.0046 (10)
C20.0197 (13)0.0264 (14)0.0208 (14)0.0036 (10)0.0006 (10)0.0012 (11)
C30.0208 (13)0.0273 (15)0.0266 (15)0.0069 (10)0.0002 (11)0.0067 (11)
C40.0202 (14)0.0284 (14)0.0297 (16)0.0106 (11)0.0016 (11)0.0020 (12)
C50.0166 (12)0.0281 (14)0.0234 (14)0.0049 (10)0.0005 (10)0.0004 (11)
C60.0165 (12)0.0254 (14)0.0210 (14)0.0004 (10)0.0029 (10)0.0029 (11)
C80.0235 (13)0.0221 (14)0.0246 (15)0.0043 (11)0.0006 (11)0.0012 (11)
C90.0172 (12)0.0227 (13)0.0255 (14)0.0018 (10)0.0039 (10)0.0019 (11)
C100.0215 (13)0.0354 (16)0.0309 (15)0.0046 (11)0.0012 (11)0.0032 (13)
C110.0264 (15)0.0257 (16)0.0449 (19)0.0005 (11)0.0076 (12)0.0017 (13)
C120.0171 (13)0.0323 (15)0.0295 (15)0.0046 (11)0.0007 (10)0.0001 (12)
O13A0.0198 (9)0.0276 (10)0.0384 (12)0.0058 (7)0.0032 (8)0.0102 (9)
O13B0.0199 (9)0.0326 (11)0.0335 (11)0.0030 (7)0.0069 (8)0.0078 (9)
C130.0201 (13)0.0225 (14)0.0220 (14)0.0029 (10)0.0016 (10)0.0010 (12)
C140.0186 (13)0.0227 (14)0.0197 (14)0.0027 (10)0.0022 (10)0.0021 (11)
C150.0214 (13)0.0219 (13)0.0227 (14)0.0017 (10)0.0019 (10)0.0010 (11)
C160.0192 (13)0.0288 (15)0.0287 (15)0.0016 (10)0.0012 (10)0.0017 (12)
C170.0251 (14)0.0302 (15)0.0264 (15)0.0118 (11)0.0062 (11)0.0010 (12)
C180.0329 (15)0.0231 (14)0.0278 (15)0.0058 (11)0.0025 (12)0.0051 (12)
C190.0264 (14)0.0230 (14)0.0242 (14)0.0012 (11)0.0008 (11)0.0010 (12)
Geometric parameters (Å, º) top
O8—C81.214 (3)C10—H10B0.9800
N1—C61.352 (3)C10—H10C0.9800
N1—C21.358 (3)C11—H11A0.9800
N1—H10.905 (16)C11—H11B0.9800
N6—C61.330 (3)C11—H11C0.9800
N6—H6A0.899 (17)C12—H12A0.9800
N6—H6B0.913 (16)C12—H12B0.9800
N7—C81.373 (3)C12—H12C0.9800
N7—C21.396 (3)O13A—C131.268 (3)
N7—H70.859 (17)O13B—C131.253 (3)
C2—C31.373 (3)C13—C141.507 (3)
C3—C41.398 (3)C14—C191.389 (3)
C3—H30.9500C14—C151.390 (3)
C4—C51.361 (3)C15—C161.384 (3)
C4—H40.9500C15—H150.9500
C5—C61.400 (3)C16—C171.379 (4)
C5—H50.9500C16—H160.9500
C8—C91.538 (3)C17—C181.388 (4)
C9—C121.529 (3)C17—H170.9500
C9—C101.531 (3)C18—C191.389 (3)
C9—C111.536 (3)C18—H180.9500
C10—H10A0.9800C19—H190.9500
C6—N1—C2122.7 (2)C9—C10—H10C109.5
C6—N1—H1121.5 (16)H10A—C10—H10C109.5
C2—N1—H1115.6 (16)H10B—C10—H10C109.5
C6—N6—H6A123.2 (17)C9—C11—H11A109.5
C6—N6—H6B119.4 (17)C9—C11—H11B109.5
H6A—N6—H6B116 (2)H11A—C11—H11B109.5
C8—N7—C2128.1 (2)C9—C11—H11C109.5
C8—N7—H7117.2 (17)H11A—C11—H11C109.5
C2—N7—H7114.7 (17)H11B—C11—H11C109.5
N1—C2—C3120.7 (2)C9—C12—H12A109.5
N1—C2—N7112.5 (2)C9—C12—H12B109.5
C3—C2—N7126.9 (2)H12A—C12—H12B109.5
C2—C3—C4117.0 (2)C9—C12—H12C109.5
C2—C3—H3121.5H12A—C12—H12C109.5
C4—C3—H3121.5H12B—C12—H12C109.5
C5—C4—C3122.3 (2)O13B—C13—O13A124.6 (2)
C5—C4—H4118.9O13B—C13—C14118.9 (2)
C3—C4—H4118.9O13A—C13—C14116.5 (2)
C4—C5—C6119.1 (2)C19—C14—C15119.4 (2)
C4—C5—H5120.4C19—C14—C13120.5 (2)
C6—C5—H5120.4C15—C14—C13120.0 (2)
N6—C6—N1117.5 (2)C16—C15—C14120.4 (2)
N6—C6—C5124.3 (2)C16—C15—H15119.8
N1—C6—C5118.2 (2)C14—C15—H15119.8
O8—C8—N7122.5 (2)C17—C16—C15120.0 (2)
O8—C8—C9122.4 (2)C17—C16—H16120.0
N7—C8—C9115.0 (2)C15—C16—H16120.0
C12—C9—C10110.1 (2)C16—C17—C18120.1 (2)
C12—C9—C11109.3 (2)C16—C17—H17119.9
C10—C9—C11109.5 (2)C18—C17—H17119.9
C12—C9—C8113.8 (2)C17—C18—C19120.0 (2)
C10—C9—C8105.9 (2)C17—C18—H18120.0
C11—C9—C8108.1 (2)C19—C18—H18120.0
C9—C10—H10A109.5C14—C19—C18120.0 (2)
C9—C10—H10B109.5C14—C19—H19120.0
H10A—C10—H10B109.5C18—C19—H19120.0
C6—N1—C2—C31.4 (4)O8—C8—C9—C1079.0 (3)
C6—N1—C2—N7178.4 (2)N7—C8—C9—C1098.3 (3)
C8—N7—C2—N1178.5 (2)O8—C8—C9—C1138.3 (3)
C8—N7—C2—C31.8 (4)N7—C8—C9—C11144.3 (2)
N1—C2—C3—C40.7 (4)O13B—C13—C14—C1912.4 (4)
N7—C2—C3—C4179.1 (2)O13A—C13—C14—C19167.2 (2)
C2—C3—C4—C50.6 (4)O13B—C13—C14—C15165.7 (2)
C3—C4—C5—C61.1 (4)O13A—C13—C14—C1514.7 (3)
C2—N1—C6—N6178.5 (2)C19—C14—C15—C160.1 (4)
C2—N1—C6—C50.8 (4)C13—C14—C15—C16178.2 (2)
C4—C5—C6—N6179.6 (3)C14—C15—C16—C170.1 (4)
C4—C5—C6—N10.4 (4)C15—C16—C17—C180.4 (4)
C2—N7—C8—O81.0 (4)C16—C17—C18—C191.1 (4)
C2—N7—C8—C9176.4 (2)C15—C14—C19—C180.8 (4)
O8—C8—C9—C12159.9 (2)C13—C14—C19—C18178.9 (2)
N7—C8—C9—C1222.8 (3)C17—C18—C19—C141.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O13Ai0.91 (2)1.67 (2)2.571 (2)170 (2)
N6—H6A···O13Bi0.90 (2)2.05 (2)2.934 (3)167 (2)
N6—H6B···O13Bii0.91 (2)2.05 (2)2.869 (3)149 (2)
N7—H7···O13Ai0.86 (2)2.24 (2)2.984 (3)146 (2)
C4—H4···O8iii0.952.493.433 (3)172
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O13Ai0.905 (16)1.674 (17)2.571 (2)170 (2)
N6—H6A···O13Bi0.899 (17)2.053 (18)2.934 (3)167 (2)
N6—H6B···O13Bii0.913 (16)2.05 (2)2.869 (3)149 (2)
N7—H7···O13Ai0.859 (17)2.24 (2)2.984 (3)146 (2)
C4—H4···O8iii0.952.493.433 (3)172
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y, z+1.
 

Acknowledgements

Financial support from the National Science Centre in Kraków (grant No. NCN204 356840) is gratefully acknowledged. Academy Professor Kari Rissanen (Academy of Finland grant Nos. 122350, 140718, 265328 and 263256) and the University of Jyväsk­ylä (postdoc grant to AV) are also gratefully acknowledged for financial support.

References

First citationAakeröy, C. B., Hussain, I. & Desper, J. (2006). Cryst. Growth Des. 6, 474–480.
First citationAakeröy, C. B., Rajbanshi, A., Li, Z. J. & Desper, J. (2010). CrystEngComm, 12, 4231–4239.
First citationBruker (2008). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals
First citationLemmerer, A. (2012). CrystEngComm, 14, 2465–2478.  Web of Science CSD CrossRef CAS
First citationOśmiałowski, B., Kolehmainen, E., Dobosz, R., Gawinecki, R., Kauppinen, R., Valkonen, A., Koivukorpi, J. & Rissanen, K. (2010b). J. Phys. Chem. A, 114, 10421–10426.  Web of Science PubMed
First citationOśmiałowski, B., Kolehmainen, E., Gawinecki, R., Dobosz, R. & Kaupinen, R. (2010a). J. Phys. Chem. A, 114, 12881–12887.  Web of Science PubMed
First citationOśmiałowski, B., Kolehmainen, E., Ikonen, S., Valkonen, A., Kwiatkowski, A., Grela, I. & Haapaniemi, E. (2012a). J. Org. Chem. 77, 9609–9619.  Web of Science PubMed
First citationOśmiałowski, B., Kolehmainen, E. & Kowalska, M. (2012b). J. Org. Chem. 77, 1653–1662.  Web of Science PubMed
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationVishweshwar, P., McMahon, J. A., Bis, J. A. & Zaworotko, M. J. (2006). J. Pharm. Sci. 95, 499–516.  Web of Science CrossRef PubMed CAS
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1483-o1484
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds