

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,2:1',2'-Di-O-isopropylidenedifuranose-C12 higher carbon sugar

Qiurong Zhang, Guanggiang Zhou, Peng He, Xuebin Chen and Hongmin Liu*

New Drug Reseach & Development Center, Zhengzhou Univresity, Zhengzhou 450001, People's Republic of China Correspondence e-mail: zgr409@163.com

Received 24 June 2013; accepted 5 August 2013

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.003 Å; R factor = 0.037; wR factor = 0.099; data-to-parameter ratio = 13.0.

In the title compound, $C_{18}H_{28}O_8$, the five-membered ring with one O atom attached to the ethyl substituent has a twisted conformation about the C-O bond. The adjacent *cis*-fused ring with two O atoms also has a twisted conformation about one of the C-O bonds. The dihedral angle between these rings (all atoms) is 59.05 (12)°. The five-membered ring linked to the ethynyl subtituent is twisted about a C-C bond; the cis-fused adjacent ring is twisted about a C–O bond [dihedral angle between the rings (all atoms) = $71.78 (12)^{\circ}$]. Two intramolecular O-H···O hydrogen bonds occur. In the crystal, molecules are linked by $O-H \cdots O$ hydrogen bonds, generating [001] chains.

Related literature

For further synthetic details, see: Meyer & Jochims (1969). For background to higher-carbon sugars, see: Iwasa et al. (1978); Harada et al. (1981); Liu et al. (2006).

 $M_r = 372.40$

Experimental

Crystal data C18H28O8

Orthorhombic, P21212 a = 21.5802 (6) Å b = 15.3758 (4) Å c = 5.73626 (14) Å V = 1903.37 (8) Å²

Data collection

Agilent Xcalibur (Eos, Gemini) diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.796, T_{\max} = 0.815$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	H atoms treated by a mixture of
$wR(F^2) = 0.099$	independent and constrained
S = 1.05	refinement
3407 reflections	$\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^{-3}$
262 parameters	$\Delta \rho_{\rm min} = -0.14 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	Н∙∙∙А	$D \cdots A$	$D - H \cdots A$
$O3' - H3' \cdots O4'^{i}$	0.79 (3)	2.36 (3)	3.038 (2)	144 (2)
$O3' - H3' \cdots O2'$	0.79 (3)	2.22 (3)	2.685 (2)	119 (2)
$O3 - H3 \cdots O2$	0.82 (4)	2.11 (3)	2.647 (2)	122 (3)

Symmetry code: (i) x, y, z + 1.

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

We gratefully acknowledge the financial support of the National Natural Science Foundation of China (grant No. 81172937).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7100).

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.

- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
- Harada, S., Mizuta, E. & Kishi, T. (1981). Tetrahedron, 37, 1317-1327.
- Iwasa, T., Kusuka, T. & Suetomi, K. (1978). J. Antibiot. 31, 511-518.
- Liu, H.-M., Liu, F.-W., Song, X.-P. & Zhang, J.-Y. (2006). Tetrahedron, 17, 3230-3236.
- Meyer, R. & Jochims (1969). Chem. Ber. 102, 4199-4206.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

organic compounds

Z = 4

Cu $K\alpha$ radiation

 $0.28 \times 0.25 \times 0.25$ mm

7406 measured reflections

3407 independent reflections

3079 reflections with $I > 2\sigma(I)$

 $\mu = 0.86 \text{ mm}^{-1}$

T = 291 K

 $R_{\rm int}=0.026$

supporting information

Acta Cryst. (2013). E69, o1399 [doi:10.1107/S1600536813021776]

1,2:1',2'-Di-O-isopropylidenedifuranose-C12 higher carbon sugar

Qiurong Zhang, Guangqiang Zhou, Peng He, Xuebin Chen and Hongmin Liu

S1. Comment

The term higher carbon sugars is customarily employed with monosaccharides containing seven or more consecutive carbon atoms in the chain. Higher carbon sugars have been attracting the increasing attention of organic chemists in the past decades due to the fact that they can be used as non-metabolized analogues of di- and oligosaccharides and are components of some antibiotics (Iwasa *et al.*, 1978; Harada *et al.*, 1981) and also that they are carbohydrate precursors for higher carbon amino sugars (Liu *et al.*, 2006).

 $C_{18}H_{28}O_8$, the title compound (I), is a free C12 higher carbon sugar, whose structure consists of a fused system made up of two methylenedioxy ring and two tetrahydrofuran rings. Both of them, one methylenedioxy ring connects parallelly to tetrahydrofuran, give two fragments with V-shaped models. In the crystal, O—H…O hydrogen bonds (Table 1), link the molecules into [001] chains.

The crystal packing is shown in Figure 2.

S2. Experimental

The title compound (I) was synthesized from 5,6;5',6'-di-alkene-C12 higher carbon sugar as described previously (Meyer & Jochims, 1969), whose starting material was D-Glucose. A solution of 5,6;5',6'-di-alkene-C12 higher carbon sugar(400 mg, 1 mmol) in aq. CH₃OH(10 ml) was stirred at room temperature overnight

A suspension of 5,6;5',6'-di-alkene-C12 higher carbon sugar(400 mg, 1 mmol) and NaBH₄ (0.080 g, 2.08 mmol) in anhydrous MeOH (15 ml) was stirred at room temperature for 1 h. the solvent was evaporated and water (10 ml) was added to the residue, and the mixture was extracted with EtOAc. The combined organic layers were washed with water and dried with anhydrous Na₂SO₄. After filtration and evaporation of the solvent, the residue

was dissolved in methanol (20 ml) and 5% Pd/C [500 mg, suspended in methanol (5 ml)] was added. The mixture was degassed, and stirred under an atmosphere of hydrogen. After 4 h, the mixture was filtered and evaporated, Purification of the residue by column chromatography gave the title compound as white solid. Colourless prisms were grown by slow evaporation from CH₃OH solution at room temperature for two weeks. mp: 398 K; R_f = 0.40 (petroleum ether/EtOAc, 2:1); ¹H NMR (400 MHz, CDCl₃) σ : 5.98 (1*H*, d, *J* = 3.6 Hz), 5.78 (1*H*, s), 4.84 (1*H*, q, *J* = 6.9 Hz), 4.54 (1*H*, d, *J* = 3.6 Hz), 4.22 (1*H*, t), 3.74(1*H*, m), 2.89 (1*H*, s), 2.22 (1*H*, d, *J* = 3.2 Hz), 1.78 2H, m), 1.70 (3*H*, d), 1.68 (3*H*, s), 1.58 (3*H*, s), 1.48 (3*H*, s), 1.46 (3*H*, s), 1.03 (3*H*, d, *J* = 7.5 Hz); ¹³C NMR (100 MHz, CDCl₃) σ : 154.51, 117.02, 114.03, 106.48, 104.54, 98.57, 94.88, 83.93, 80.18, 79.70, 70.21, 28.03, 27.97, 27.82, 27.62, 21.85, 10.33, 10.23.

S3. Refinement

All H atoms were placed geometrically and treated as riding on their parent atoms with C—H are 0.96 Å (methylene) or 0.93 Å (aromatic), 0.82 Å (hydroxyl)and $U_{iso}(H) = 1.2U_{eq}(C)$. Attempts to confirm the absolute structure by refinement of the Flack parameter in the presence of 1412 sets of Friedel equivalents led to an inconclusive value of 0.3 (2). Therefore,

the absolute configuration was assigned to correspond with that of the known chiral centres in a precursor molecule, which remained unchanged during the synthesis of the title compound.

Figure 1

The molecular structure of (I) showing 30% probability displacement ellipsoids.

Figure 2

Packing diagram.

6-{5-Ethyl-6-hydroxy-2,2-dimethyltetrahydro-2*H*-furo[2,3-*d*][1,3]dioxol-6a-yl}-5-ethylidene-2,2-dimethyltetrahydro-2*H*-furo[2,3-*d*][1,3]dioxol-6-ol

 $D_{\rm x} = 1.300 {\rm Mg} {\rm m}^{-3}$

 $\theta = 2.9-66.9^{\circ}$

 $\mu = 0.86 \text{ mm}^{-1}$

Prism, colourless

 $0.28 \times 0.25 \times 0.25$ mm

7406 measured reflections 3407 independent reflections

 $\theta_{\text{max}} = 67.1^{\circ}, \ \theta_{\text{min}} = 3.5^{\circ}$

3079 reflections with $I > 2\sigma(I)$

T = 291 K

 $R_{\rm int} = 0.026$

 $h = -24 \rightarrow 25$

 $k = -18 \rightarrow 17$

 $l = -4 \rightarrow 6$

Cu *K* α radiation, $\lambda = 1.54184$ Å

Cell parameters from 3059 reflections

Crystal	data
---------	------

 $C_{18}H_{28}O_8$ $M_r = 372.40$ Orthorhombic, $P2_12_12$ a = 21.5802 (6) Å b = 15.3758 (4) Å c = 5.73626 (14) Å V = 1903.37 (8) Å³ Z = 4F(000) = 800

Data collection

Agilent Xcalibur (Eos, Gemini) diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 0 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.796, T_{\max} = 0.815$

Refinement

<i>Itejinentein</i>	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H atoms treated by a mixture of independent
$wR(F^2) = 0.099$	and constrained refinement
S = 1.05	$w = 1/[\sigma^2(F_o^2) + (0.0493P)^2 + 0.1435P]$
3407 reflections	where $P = (F_o^2 + 2F_c^2)/3$
262 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
0 restraints	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.14 \text{ e} \text{ Å}^{-3}$
direct methods	Extinction correction: SHELXL97 (Sheldrick,
Secondary atom site location: difference Fourier	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
map	Extinction coefficient: 0.0064 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	isotroi	oic or	eauivalen	t isotroi	oic dis	placement	parameters	$(Å^2$?)
1		0001000000				equinitient			procentent	p an annever b	1 1	/

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.67974 (7)	0.17289 (11)	0.8701 (3)	0.0581 (4)
01′	0.43970 (8)	0.11163 (12)	0.6552 (3)	0.0671 (5)

O2	0.63054 (6)	0.23737 (9)	0.5648 (2)	0.0418 (3)
O2′	0.48323 (7)	0.15439 (10)	0.9957 (3)	0.0589 (4)
03	0.66664 (9)	0.40182 (11)	0.5529 (3)	0.0587 (4)
O3′	0.53146 (7)	0.31495 (9)	1.0267 (2)	0.0484 (3)
04	0.69581 (7)	0.31202 (12)	1.0229 (3)	0.0659 (5)
O4′	0.48425 (7)	0.23484 (9)	0.4771 (2)	0.0520 (3)
C1	0.65181 (9)	0.24742 (14)	0.9636 (4)	0.0496 (5)
H1	0.6260	0.2325	1.0984	0.060*
C1′	0.49427 (10)	0.15364 (13)	0.5914 (4)	0.0506 (5)
H1′	0.5199	0.1155	0.4944	0.061*
C2	0.61210 (9)	0.28500 (12)	0.7651 (3)	0.0402(4)
C2'	0.52685(9)	0.17335 (13)	0.8211(3)	0.0436(4)
С <u>2</u> Н2′	0.5644	0.1382	0.8392	0.052*
C3	0.63097 (9)	0.1302 0.38264 (13)	0.0592 0.7514 (3)	0.032 0.0440 (4)
НЗА	0.5938	0.4192	0.7538	0.053*
C3'	0.5758	0.4192 0.27154 (13)	0.8134 (3)	0.0398(4)
C4	0.54220(0)	0.27154 (15)	0.0154(3) 0.0764(4)	0.0578(4)
U4	0.6396	0.39330 (13)	1 1025	0.0522 (5)
П 4 С4/	0.0380	0.4087 0.20248 (12)	1.1025	0.003°
C4	0.49988(9)	0.30348(13)	0.0223(3)	0.0430(4)
C5	0./1/13(12) 0.47(75(10))	0.4049(2) 0.28174(15)	0.9732 (5)	0.0689(7)
C5 ^r	0.47675(10)	0.381/4(13)	0.3919 (4)	0.0528(5)
C6	0.69055 (13)	0.55472 (19)	0.9364 (6)	0.0798 (8)
H6A	0.6581	0.5649	1.04/6	0.120*
H6B	0.6741	0.5591	0.7814	0.120*
H6C	0.7226	0.5973	0.9570	0.120*
C6′	0.43255 (12)	0.40709 (18)	0.4031 (5)	0.0679 (7)
H6'A	0.4021	0.4463	0.4648	0.102*
H6′B	0.4124	0.3560	0.3437	0.102*
H6′C	0.4548	0.4352	0.2794	0.102*
C7	0.68335 (10)	0.18190 (16)	0.6219 (4)	0.0544 (5)
C7′	0.42493 (10)	0.13080 (15)	0.8936 (4)	0.0561 (6)
C8	0.74382 (10)	0.2237 (2)	0.5493 (5)	0.0704 (7)
H8A	0.7776	0.1860	0.5890	0.106*
H8B	0.7486	0.2782	0.6288	0.106*
H8C	0.7436	0.2335	0.3840	0.106*
C8′	0.40403 (12)	0.04898 (16)	1.0145 (6)	0.0737 (8)
H8'A	0.4364	0.0063	1.0071	0.111*
H8′B	0.3676	0.0268	0.9390	0.111*
H8′C	0.3948	0.0617	1.1746	0.111*
C9	0.67296 (12)	0.09468 (15)	0.5109 (5)	0.0677 (7)
H9A	0.6340	0.0715	0.5621	0.101*
H9B	0.7057	0.0558	0.5552	0.101*
H9C	0.6725	0.1010	0.3444	0.101*
C9′	0.37906 (14)	0.2033 (2)	0.9154 (7)	0.0895 (10)
H9'A	0.3409	0.1868	0.8420	0.134*
H9′B	0.3952	0.2545	0.8408	0.134*
H9′C	0.3717	0.2153	1.0772	0.134*
H5′	0.4875 (10)	0.4262 (15)	0.710 (4)	0.053 (6)*
		- (-)		···· \~/

supporting information

H3′	0.5069 (12)	0.2890 (17)	1.101 (5)	0.058 (7)*
H3	0.6667 (15)	0.360 (2)	0.465 (7)	0.098 (11)*
H5A	0.7420 (12)	0.4587 (17)	1.114 (5)	0.062 (7)*
H5B	0.7476 (13)	0.4461 (19)	0.861 (6)	0.073 (9)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
O1	0.0578 (8)	0.0739 (10)	0.0424 (8)	0.0150 (7)	-0.0015 (7)	0.0186 (7)
O1′	0.0701 (10)	0.0719 (10)	0.0592 (10)	-0.0228 (8)	-0.0003 (8)	-0.0176 (9)
O2	0.0427 (6)	0.0527 (7)	0.0299 (6)	0.0081 (5)	-0.0010 (5)	0.0049 (6)
O2′	0.0650 (9)	0.0692 (9)	0.0425 (8)	-0.0251 (7)	0.0092 (7)	-0.0090 (7)
O3	0.0817 (11)	0.0624 (9)	0.0319 (8)	-0.0183 (8)	0.0031 (8)	0.0065 (7)
O3′	0.0597 (8)	0.0523 (7)	0.0330 (7)	-0.0070 (7)	0.0067 (7)	-0.0056 (6)
O4	0.0618 (9)	0.0881 (11)	0.0478 (9)	-0.0116 (8)	-0.0254 (8)	0.0167 (9)
O4′	0.0642 (8)	0.0547 (8)	0.0370 (7)	0.0048 (6)	-0.0076 (7)	-0.0093 (6)
C1	0.0485 (10)	0.0668 (12)	0.0334 (10)	-0.0007 (9)	-0.0060 (8)	0.0112 (9)
C1′	0.0598 (11)	0.0494 (10)	0.0426 (11)	-0.0011 (9)	0.0042 (10)	-0.0135 (8)
C2	0.0438 (9)	0.0489 (10)	0.0279 (8)	-0.0001 (8)	-0.0022 (8)	0.0044 (7)
C2′	0.0465 (10)	0.0446 (10)	0.0396 (10)	-0.0009 (8)	0.0041 (8)	-0.0010 (8)
C3	0.0470 (10)	0.0539 (10)	0.0311 (9)	-0.0067 (8)	-0.0039 (8)	0.0044 (9)
C3′	0.0451 (10)	0.0434 (9)	0.0310 (9)	-0.0013 (8)	0.0014 (7)	-0.0023 (8)
C4	0.0516 (11)	0.0718 (13)	0.0334 (10)	-0.0135 (10)	-0.0070 (9)	0.0048 (10)
C4′	0.0397 (9)	0.0521 (11)	0.0371 (9)	-0.0013 (8)	0.0010 (8)	-0.0058 (8)
C5	0.0569 (13)	0.1004 (19)	0.0494 (14)	-0.0283 (13)	-0.0095 (12)	-0.0036 (14)
C5′	0.0528 (11)	0.0533 (11)	0.0525 (12)	0.0079 (9)	-0.0060 (10)	-0.0030 (10)
C6	0.0788 (16)	0.0816 (18)	0.079 (2)	-0.0332 (14)	0.0106 (16)	-0.0152 (15)
C6′	0.0632 (13)	0.0748 (16)	0.0657 (16)	0.0218 (12)	-0.0114 (12)	0.0000 (13)
C7	0.0501 (11)	0.0722 (14)	0.0408 (11)	0.0182 (10)	0.0019 (9)	0.0149 (10)
C7′	0.0547 (11)	0.0557 (12)	0.0579 (13)	-0.0105 (10)	0.0084 (11)	-0.0128 (11)
C8	0.0471 (11)	0.1052 (19)	0.0590 (15)	0.0145 (12)	0.0032 (11)	0.0242 (15)
C8′	0.0734 (15)	0.0600 (13)	0.088 (2)	-0.0209 (11)	0.0128 (15)	-0.0109 (14)
C9	0.0784 (15)	0.0659 (14)	0.0587 (15)	0.0272 (12)	0.0125 (13)	0.0090 (12)
C9′	0.0757 (17)	0.0783 (18)	0.114 (3)	0.0070 (14)	0.0291 (19)	0.0034 (18)

Geometric parameters (Å, °)

01—C1	1.401 (3)	C4'—C5'	1.315 (3)	
O1—C7	1.433 (3)	C5—C6	1.510 (4)	
01′—C1′	1.392 (3)	C5—H5A	0.98 (3)	
O1′—C7′	1.434 (3)	C5—H5B	0.96 (3)	
O2—C2	1.420 (2)	C5′—C6′	1.495 (3)	
O2—C7	1.461 (2)	С5′—Н5′	0.99 (2)	
O2′—C2′	1.405 (2)	C6—H6A	0.9600	
O2′—C7′	1.435 (3)	C6—H6B	0.9600	
O3—C3	1.406 (2)	C6—H6C	0.9600	
O3—H3	0.82 (4)	С6'—Н6'А	0.9600	
O3'—C3'	1.413 (2)	С6'—Н6'В	0.9600	

O3'—H3'	0.79 (3)	С6'—Н6'С	0.9600
O4—C1	1.416 (3)	С7—С9	1.501 (4)
O4—C4	1.444 (3)	C7—C8	1.513 (3)
O4′—C4′	1.387 (2)	C7′—C9′	1.496 (4)
O4'—C1'	1.427 (3)	C7′—C8′	1.506 (4)
C1—C2	1.538 (3)	C8—H8A	0.9600
C1—H1	0.9800	C8—H8B	0.9600
C1'—C2'	1.524 (3)	C8—H8C	0.9600
C1'—H1'	0.9800	C8'—H8'A	0.9600
$C^2 - C^{3'}$	1 546 (3)	C8′—H8′B	0.9600
$C^2 - C^3$	1 557 (3)	C8' - H8'C	0.9600
C2' - C3'	1.537(3)	C9—H9A	0.9600
C2'_H2'	0.9800	C9—H9B	0.9600
$C_2 = C_4$	1 528 (3)	C9—H9C	0.9600
C3—H3A	0.9800	C9'H9'A	0.9600
C3' - C4'	1 509 (3)	C9′—H9′B	0.9600
C4-C5	1.508 (3)	C^{0} H 0	0.9600
$C_4 = H_4$	0.0800		0.9000
C4—114	0.9800		
C1 - 01 - C7	108 93 (17)	C6—C5—H5A	1144(16)
C1' - 01' - C7'	110.09(16)	C4-C5-H5B	1061(18)
$C^2 - C^7$	109 79 (14)	C6-C5-H5B	1161(19)
C2' - 02' - C7'	110 41 (16)	H_{5A} C_{5} H_{5B}	99 (2)
C3_O3_H3	109 (2)	C4' - C5' - C6'	1253(2)
C3' - 03' - H3'	109(2) 1099(19)	C4' - C5' - H5'	125.5(2)
C1 - O4 - C4	107.33(15)	C6' - C5' - H5'	117.7(14)
C4' - 04' - C1'	110.65 (15)	C5-C6-H6A	109.5
01-C1-04	112 17 (17)	C5-C6-H6B	109.5
01 - C1 - C2	105.30(17)	H_{6A} C6 H_{6B}	109.5
04 - C1 - C2	106 74 (16)	C5-C6-H6C	109.5
01 - C1 - H1	110.8	H6A - C6 - H6C	109.5
$O_{1} O_{1} H_{1}$	110.8	H6B C6 H6C	109.5
C2C1H1	110.8	$C5' - C6' - H6' \Delta$	109.5
$C_2 = C_1 = I_1$	113 50 (18)	C5' - C6' - H6'B	109.5
01'-01'-04'	104.77(17)	H6'A - C6' - H6'B	109.5
01 - 01 - 02	107.05(16)	C_5' C_6' $H_6'C$	109.5
0' - C' - C' - C'	110.4	H6'A - C6' - H6'C	109.5
$O_{1}^{\prime} = C_{1}^{\prime} = H_{1}^{\prime}$	110.4	H6'B C6' H6'C	109.5
$C_{1}^{2} = C_{1}^{2} = H_{1}^{2}$	110.4	110 B = 20 = 110 C	109.5 103.70(17)
$C_2 = C_1 = III$	10.4 104.42(15)	01 - 07 - 02	109.70(17)
02 - 02 - 01	104.42(15) 110.42(15)	01 - 07 - 09	109.1(2)
$C_{1} = C_{2} = C_{3}$	110.43(13) 111.12(15)	02 - 07 - 09	108.00(19)
C1 = C2 = C3	111.12(13) 112.52(15)	01 - 07 - 08	111.2(2)
$C_{1} = C_{2} = C_{3}$	112.32(13) 104.71(15)	02-07-08	111.20(10) 112.0(2)
$C_1 - C_2 - C_3$	104./1(13) 112.14(16)	$C_{7} = C_{7} = C_{8}$	113.0(2) 104.26(17)
$C_3 - C_2 - C_3$	113.14(10) $105.42(16)$	$01 - 07 - 02^{\circ}$	104.20(17)
02 - 02 - 01	103.43(10) 111.52(16)	$O_1 - C_7 - C_9$	112.3(3)
$02^{2} - 02^{2} - 03^{2}$	111.52 (10)	$02^{}07^{}09^{-}$	110.9 (2)
C1'-C2'-C3'	105.59 (16)	OT - C' - C	109.5 (2)

O2'—C2'—H2'	111.3	O2′—C7′—C8′	106.6 (2)
C1′—C2′—H2′	111.3	C9′—C7′—C8′	112.7 (2)
C3'—C2'—H2'	111.3	C7—C8—H8A	109.5
03—C3—C4	111.89 (16)	С7—С8—Н8В	109.5
03-C3-C2	112.73 (17)	H8A—C8—H8B	109.5
C4-C3-C2	102 58 (16)	C7—C8—H8C	109.5
03—C3—H3A	109.8	H8A - C8 - H8C	109.5
C4—C3—H3A	109.8	H8B-C8-H8C	109.5
C^2 — C^3 — H^3A	109.8	C7' - C8' - H8'A	109.5
03' - 03' - 04'	112 00 (15)	C7' - C8' - H8'B	109.5
03' - 03' - 02'	104 63 (15)	H8'A = C8' = H8'B	109.5
$C_{4'} = C_{3'} = C_{2}^{3'}$	114 66 (15)	C7' - C8' - H8'C	109.5
$C_{\tau} = C_{\tau} = C_{\tau}$	113 63 (16)	H_{2}^{\prime} C_{2}^{\prime} H_{2}^{\prime} C_{2}^{\prime}	109.5
$C_{4'} - C_{3'} - C_{2'}$	102 01 (15)	H8'B-C8'-H8'C	109.5
$C_{1}^{2} = C_{2}^{2} = C_{2}^{2}$	102.01(15)	C7 C9 H9A	109.5
$C_2 - C_3 - C_2$	100.20(13) 100.52(10)	C7 = C9 = H9R	109.5
04 C4 C3	109.52(19) 104.00(17)		109.5
$C_{4} - C_{4} - C_{3}$	104.99(17) 116.62(10)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_3 = C_4 = C_3$	10.02 (19)		109.5
C_{4}	100.5	H9A—C9—H9C	109.5
$C_3 = C_4 = H_4$	108.5	$\begin{array}{cccc} \mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}$	109.5
C_{3} C_{4} C_{4} C_{4}	100.3	C/ - C9 - H9 A	109.5
$C_{5} = C_{4} = C_{4}$	121.36(19) 128.60(10)	C / -C 9 - H9 B	109.5
$C_3 = C_4 = C_3$	128.09(19)	$H^{2}A - C^{2} - H^{2}B$	109.5
04 - 04 - 03	109.05 (10)	$C/-C_{H9}C$	109.5
C4 - C5 - C6	112.3(2)	$H9^{\prime}A - C9^{\prime} - H9^{\prime}C$	109.5
С4—С5—Н5А	108.0 (16)	Н9 В—С9 — Н9 С	109.5
C7 - 01 - C1 - 04	-90.8(2)	$C_{3} - C_{2} - C_{3'} - C_{2'}$	179 19 (16)
C7-01-C1-C2	249(2)	02' - 02' - 03' - 03'	243(2)
C4 - O4 - C1 - O1	145 01 (18)	C1' - C2' - C3' - O3'	138 29 (16)
C4-O4-C1-C2	30 2 (2)	02'-02'-03'-04'	-9647(18)
C7' - 01' - C1' - 04'	-95.8(2)	C1' - C2' - C3' - C4'	17 55 (19)
C7' - 01' - C1' - C2'	20.6 (2)	02'-02'-03'-02	141 33 (16)
C4' - O4' - C1' - O1'	107 62 (19)	C1' - C2' - C3' - C2	-10465(18)
C4' - O4' - C1' - C2'	-75(2)	C1 - O4 - C4 - C5	-16472(19)
C7-02-C2-C1	-69(2)	C1 - O4 - C4 - C3	-388(2)
C7-02-C2-C3'	-126.46(17)	03-C3-C4-04	-90.6(2)
C7-02-C2-C3	106.07 (18)	$C_2 - C_3 - C_4 - O_4$	30.5(2)
01-C1-C2-02	-10.73(19)	03-C3-C4-C5	30.8(3)
04-C1-C2-02	108 66 (18)	$C_{2}-C_{3}-C_{4}-C_{5}$	151.9(2)
01-C1-C2-C3'	108.34(18)	C1' - 04' - C4' - C5'	-1573(2)
04-C1-C2-C3'	-132.27(17)	C1' - 04' - C4' - C3'	199(2)
01 - C1 - C2 - C3	-129 19 (17)	03'-03'-04'-05'	320(3)
04-C1-C2-C3	-98(2)	$C_{2}-C_{3}'-C_{4}'-C_{5}'$	-87.0(3)
C7'-O2'-C2'-C1'	-4.3 (2)	C2'-C3'-C4'-C5'	153.9 (2)
C7'	109.84 (19)	O3'-C3'-C4'-O4'	-144.87 (16)
01'	-9.9 (2)	C2-C3'-C4'-O4'	96.09 (19)
O4'-C1'-C2'-O2'	110.96 (17)	C2'—C3'—C4'—O4'	-23.00 (19)

O1'-C1'-C2'-C3'	-128.03 (17)	O4—C4—C5—C6	-177.3 (2)
O4'-C1'-C2'-C3'	-7.2 (2)	C3—C4—C5—C6	63.7 (3)
O2—C2—C3—O3	-4.8 (2)	O4'—C4'—C5'—C6'	-0.5 (4)
C1—C2—C3—O3	107.97 (18)	C3'—C4'—C5'—C6'	-177.0 (2)
C3′—C2—C3—O3	-130.87 (17)	C1—O1—C7—O2	-28.9 (2)
O2—C2—C3—C4	-125.35 (16)	C1—O1—C7—C9	-143.91 (18)
C1—C2—C3—C4	-12.5 (2)	C1—O1—C7—C8	90.7 (2)
C3'—C2—C3—C4	108.61 (18)	C2—O2—C7—O1	21.6 (2)
O2—C2—C3′—O3′	174.56 (14)	C2—O2—C7—C9	137.29 (18)
C1—C2—C3′—O3′	59.2 (2)	C2—O2—C7—C8	-98.0 (2)
C3—C2—C3′—O3′	-58.30 (19)	C1'	-23.2 (3)
O2—C2—C3′—C4′	-62.3 (2)	C1'	97.0 (2)
C1—C2—C3′—C4′	-177.75 (17)	C1'	-137.0 (2)
C3—C2—C3′—C4′	64.8 (2)	C2'—O2'—C7'—O1'	16.3 (2)
O2—C2—C3′—C2′	52.04 (19)	C2'—O2'—C7'—C9'	-104.8 (2)
C1—C2—C3′—C2′	-63.4 (2)	C2'—O2'—C7'—C8'	132.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	D—H··· A
O3'—H3'····O4'i	0.79 (3)	2.36 (3)	3.038 (2)	144 (2)
O3'—H3'····O2'	0.79 (3)	2.22 (3)	2.685 (2)	119 (2)
O3—H3…O2	0.82 (4)	2.11 (3)	2.647 (2)	122 (3)

Symmetry code: (i) x, y, z+1.