organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-{[([1,1′-Biphen­yl]-3-ylmeth­yl)iminium­yl]meth­yl}-6,8-di­chloro-2H-chromen-4-olate

aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

(Received 31 July 2013; accepted 14 August 2013; online 17 August 2013)

In the crystal of the title compound, C23H17Cl2NO2, the H atom of the –OH group is transferred to the N atom of the imine, forming a zwitterion. This results in a six-membered intra­molecular O⋯H—N hydrogen-bonded ring, rather than that formed with an O—H⋯N hydrogen bond. The dihedral angle between the rings of the biphenyl unit is 13.88 (10)°. In the crystal, mol­ecules are linked by N—H⋯O and C—H⋯O inter­actions.

Related literature

For the biological propertries of similar structures, see: Khan et al. (2009[Khan, K. M., Ambreen, N., Hussain, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 2983-2988.]); Tu et al. (2013[Tu, Q. D., Li, D., Sun, Y., Han, X. Y., Yi, F., Sha, Y., Ren, Y. L., Ding, M. W., Feng, L. L. & Wan, J. (2013). Bioorg. Med. Chem. 21, 2826-2831.]). For related structures, see: Benaouida et al. (2013[Benaouida, M. A., Chetioui, S. & Bouaoud, S. E. (2013). Acta Cryst. E69, o867-o868.]); Małecka & Budzisz (2006[Małecka, M. & Budzisz, E. (2006). Acta Cryst. E62, o5058-o5060.]); Ishikawa & Motohashi (2013a[Ishikawa, Y. & Motohashi, Y. (2013a). Acta Cryst. E69, o1225.],b[Ishikawa, Y. & Motohashi, Y. (2013b). Acta Cryst. E69, o1226.]).

[Scheme 1]

Experimental

Crystal data
  • C23H17Cl2NO2

  • Mr = 410.30

  • Monoclinic, P 21 /c

  • a = 17.996 (8) Å

  • b = 9.127 (6) Å

  • c = 11.649 (7) Å

  • β = 102.00 (4)°

  • V = 1871.5 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 100 K

  • 0.40 × 0.25 × 0.25 mm

Data collection
  • Rigaku AFC-7R diffractometer

  • 5086 measured reflections

  • 4254 independent reflections

  • 3499 reflections with F2 > 2σ(F2)

  • Rint = 0.090

  • 3 standard reflections every 150 reflections intensity decay: −0.7%

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.115

  • S = 1.01

  • 4254 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯O4 0.88 2.20 2.811 (3) 126
N5—H5⋯O4i 0.88 2.38 3.081 (3) 137
C25—H25A⋯O4ii 0.99 2.59 3.546 (4) 164
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: WinAFC (Rigaku, 1999[Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.]); cell refinement: WinAFC; data reduction: WinAFC; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Schiff bases of 3-formyl chromones have attracted much attention due to their biological functions such as enzyme inhibition (Khan et al. 2009; Tu et al. 2013). Here we report the crystal structure of the title compound, which was obtained from the condensation reaction of 6,8-dichloro-3-formylchromone with 3-phenylbenzylamine and successive reduction with 2-picoline borane. The structure shows that the H atom of the –OH group is transferred to the N5 atom of the imine, thus forming a zwitterion. As a result, an intramolecular O···H–N [O···N = 2.811 (3) Å], rather than O–H···N, hydrogen bond is formed. The bond distances O4–C8 [1.243 (3) Å], C8–C17 [1.426 (3) Å], C17–C27 [1.383 (3) Å] and C27–N5 [1.324 (3) Å] and torsion angles O4–C8–C17–C27 [–3.7 (3)°] and C8–C17–C27–N5 [1.2 (4)°] in the six-membered ring indicate charge delocalization among the atoms. This effect might be responsible for the preferential reduction of the α,β-unsaturated carbonyl of the synthetic intermediate, rather than reduction of the imine. The dihedral angle between the phenyl rings of the biphenyl group is 13.88 (10) °.

In the crystal, inversion dimers linked by pairs of N—H···O hydrogen bonds occur and the packing is consolidated by C—H···O interactions.

Related literature top

For the biological propertries of similar structures, see: Khan et al. (2009); Tu et al. (2013). For related structures, see: Benaouida et al. (2013); Małecka & Budzisz (2006); Ishikawa & Motohashi (2013a,b).

Experimental top

3-Phenylbenzylamine (5.46 mmol), 6,8-dichloro-3-formylchromone (5.0 mmol) and 10 mg of p-toluenesulfonic acid were dissolved in 80 ml of benzene, and refluxed with Dean-Stark apparatus for 30 min. After cooling, the mixture was evaporated. To this residue, MeOH-AcOH (10:1, 60 ml) and 2-picoline borane (5 mmol) were added, and stirred overnight at room temperature. After the mixture was extracted with methylene chloride, the extract was washed with brine, dried over anhydrous Mg2SO4 and purified by column chromatography on silica gel (n-hexane: ethyl acetate = 6: 1). The eluted fractions were concentrated and filtered off. Layering n-hexane on the filtrate gave crystals (yield 23%), which were then recrystallized from ethyl acetate solution as yellow blocks.

Refinement top

The carbon-bound hydrogen atoms were placed in geometrical positions [C–H 0.95 to 0.99 Å, Uiso(H) = 1.2Ueq(C)], and refined using a riding model. The hydrogen atom of the OH group was found to be located near N5 of the imine in a difference Fourier map, and refined with distance restraint [N–H 0.88 Å, Uiso(H) = 1.2Ueq(N)].

Computing details top

Data collection: WinAFC (Rigaku, 1999); cell refinement: WinAFC (Rigaku, 1999); data reduction: WinAFC (Rigaku, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
(E)-3-{[([1,1'-Biphenyl]-3-ylmethyl)iminiumyl]methyl}-6,8-dichloro-2H-chromen-4-olate top
Crystal data top
C23H17Cl2NO2F(000) = 848.00
Mr = 410.30Dx = 1.456 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 17.996 (8) Åθ = 15.7–17.5°
b = 9.127 (6) ŵ = 0.37 mm1
c = 11.649 (7) ÅT = 100 K
β = 102.00 (4)°Block, yellow
V = 1871.5 (19) Å30.40 × 0.25 × 0.25 mm
Z = 4
Data collection top
Rigaku AFC-7R
diffractometer
θmax = 27.5°
ω–2θ scansh = 1323
5086 measured reflectionsk = 011
4254 independent reflectionsl = 1514
3499 reflections with F2 > 2σ(F2)3 standard reflections every 150 reflections
Rint = 0.090 intensity decay: 0.7%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0505P)2 + 2.0486P]
where P = (Fo2 + 2Fc2)/3
4254 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.69 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C23H17Cl2NO2V = 1871.5 (19) Å3
Mr = 410.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.996 (8) ŵ = 0.37 mm1
b = 9.127 (6) ÅT = 100 K
c = 11.649 (7) Å0.40 × 0.25 × 0.25 mm
β = 102.00 (4)°
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.090
5086 measured reflections3 standard reflections every 150 reflections
4254 independent reflections intensity decay: 0.7%
3499 reflections with F2 > 2σ(F2)
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.01Δρmax = 0.58 e Å3
4254 reflectionsΔρmin = 0.69 e Å3
253 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.80025 (2)0.62806 (6)0.19342 (4)0.02502 (13)
Cl20.86878 (3)1.10381 (7)0.46874 (5)0.03284 (15)
O30.64501 (7)0.69744 (16)0.20224 (12)0.0213 (3)
O40.57129 (8)0.98666 (17)0.42256 (13)0.0251 (3)
N50.42765 (9)0.8598 (2)0.34156 (15)0.0228 (4)
C60.32275 (10)0.7096 (3)0.39377 (16)0.0189 (4)
C70.82564 (10)0.8699 (3)0.32979 (16)0.0193 (4)
C80.59004 (10)0.9131 (3)0.34336 (17)0.0203 (4)
C90.67152 (10)0.9075 (2)0.33128 (16)0.0181 (4)
C100.69432 (10)0.7945 (2)0.26495 (15)0.0174 (4)
C110.77212 (10)0.7748 (2)0.26781 (15)0.0177 (4)
C120.13573 (10)0.5180 (3)0.40462 (15)0.0188 (4)
C130.24573 (10)0.6722 (3)0.37163 (16)0.0192 (4)
C140.34775 (11)0.5149 (3)0.53488 (17)0.0244 (4)
C150.08092 (10)0.6104 (3)0.33894 (17)0.0216 (4)
C160.01848 (11)0.4374 (3)0.35077 (18)0.0271 (5)
C170.53989 (10)0.8232 (3)0.26182 (17)0.0206 (4)
C180.11133 (11)0.3843 (3)0.44211 (17)0.0240 (4)
C190.21812 (10)0.5583 (2)0.43059 (15)0.0174 (4)
C200.72538 (10)1.0033 (3)0.39433 (16)0.0199 (4)
C210.27091 (11)0.4809 (3)0.51376 (17)0.0234 (4)
C220.37403 (10)0.6290 (3)0.47505 (16)0.0211 (4)
C230.80161 (10)0.9837 (3)0.39174 (16)0.0209 (4)
C240.03495 (12)0.3446 (3)0.41568 (18)0.0278 (5)
C250.56977 (10)0.7595 (3)0.16214 (17)0.0214 (4)
C260.00452 (11)0.5703 (3)0.31196 (18)0.0254 (4)
C270.46441 (10)0.8011 (3)0.26553 (17)0.0213 (4)
C280.34598 (10)0.8407 (3)0.32960 (19)0.0245 (4)
H50.45310.91150.40060.0273*
H70.87810.85730.32980.0231*
H130.21110.72630.31450.0231*
H140.38270.45970.59080.0293*
H150.09600.70190.31230.0259*
H160.07060.41040.33290.0326*
H180.14750.31940.48640.0288*
H200.71011.08100.43850.0239*
H210.25390.40360.55650.0280*
H220.42670.65170.48970.0253*
H240.01950.25340.44230.0334*
H25A0.53470.68210.12360.0256*
H25B0.57200.83690.10340.0256*
H260.03190.63420.26680.0305*
H270.43620.73760.20790.0255*
H28A0.32260.83120.24520.0294*
H28B0.32500.93020.35890.0294*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0160 (2)0.0271 (3)0.0341 (3)0.00033 (17)0.01027 (17)0.00751 (19)
Cl20.0235 (3)0.0419 (4)0.0342 (3)0.0135 (2)0.00837 (19)0.0155 (3)
O30.0121 (6)0.0221 (7)0.0293 (7)0.0002 (5)0.0033 (5)0.0028 (6)
O40.0202 (7)0.0294 (8)0.0273 (7)0.0023 (6)0.0089 (6)0.0024 (6)
N50.0145 (7)0.0272 (9)0.0273 (8)0.0018 (7)0.0056 (6)0.0010 (7)
C60.0147 (8)0.0237 (10)0.0196 (8)0.0003 (7)0.0067 (7)0.0000 (7)
C70.0139 (8)0.0257 (10)0.0186 (8)0.0009 (7)0.0043 (7)0.0031 (7)
C80.0158 (8)0.0216 (9)0.0253 (9)0.0025 (7)0.0084 (7)0.0053 (8)
C90.0153 (8)0.0213 (9)0.0188 (8)0.0012 (7)0.0058 (7)0.0042 (7)
C100.0132 (8)0.0208 (9)0.0184 (8)0.0003 (7)0.0036 (6)0.0038 (7)
C110.0146 (8)0.0213 (9)0.0186 (8)0.0025 (7)0.0069 (7)0.0016 (7)
C120.0170 (8)0.0246 (10)0.0160 (8)0.0036 (7)0.0061 (7)0.0036 (7)
C130.0156 (8)0.0226 (10)0.0204 (9)0.0011 (7)0.0058 (7)0.0017 (7)
C140.0211 (9)0.0314 (11)0.0195 (9)0.0023 (8)0.0015 (7)0.0035 (8)
C150.0191 (9)0.0237 (10)0.0230 (9)0.0020 (8)0.0066 (7)0.0003 (8)
C160.0188 (9)0.0342 (12)0.0302 (10)0.0083 (8)0.0090 (8)0.0097 (9)
C170.0149 (8)0.0227 (10)0.0247 (9)0.0019 (7)0.0050 (7)0.0045 (8)
C180.0230 (9)0.0276 (11)0.0222 (9)0.0031 (8)0.0066 (7)0.0004 (8)
C190.0158 (8)0.0219 (9)0.0156 (8)0.0009 (7)0.0058 (7)0.0021 (7)
C200.0202 (9)0.0229 (9)0.0178 (8)0.0001 (8)0.0068 (7)0.0002 (7)
C210.0231 (9)0.0276 (11)0.0202 (9)0.0036 (8)0.0061 (7)0.0043 (8)
C220.0148 (8)0.0273 (10)0.0210 (9)0.0014 (8)0.0035 (7)0.0029 (8)
C230.0188 (9)0.0260 (10)0.0180 (8)0.0064 (8)0.0041 (7)0.0000 (7)
C240.0279 (11)0.0287 (11)0.0296 (10)0.0113 (9)0.0122 (8)0.0035 (9)
C250.0126 (8)0.0242 (10)0.0264 (9)0.0002 (7)0.0019 (7)0.0004 (8)
C260.0172 (9)0.0317 (11)0.0276 (10)0.0009 (8)0.0050 (8)0.0027 (9)
C270.0171 (9)0.0222 (10)0.0243 (9)0.0014 (7)0.0037 (7)0.0048 (8)
C280.0128 (8)0.0277 (11)0.0338 (11)0.0017 (8)0.0069 (7)0.0087 (9)
Geometric parameters (Å, º) top
Cl1—C111.727 (3)C16—C241.383 (3)
Cl2—C231.737 (2)C16—C261.387 (4)
O3—C101.355 (3)C17—C251.495 (3)
O3—C251.452 (3)C17—C271.383 (3)
O4—C81.243 (3)C18—C241.393 (3)
N5—C271.324 (3)C19—C211.399 (3)
N5—C281.458 (3)C20—C231.390 (3)
C6—C131.398 (3)N5—H50.880
C6—C221.388 (3)C7—H70.950
C6—C281.515 (3)C13—H130.950
C7—C111.383 (3)C14—H140.950
C7—C231.384 (3)C15—H150.950
C8—C91.503 (3)C16—H160.950
C8—C171.426 (3)C18—H180.950
C9—C101.400 (3)C20—H200.950
C9—C201.395 (3)C21—H210.950
C10—C111.405 (3)C22—H220.950
C12—C151.398 (3)C24—H240.950
C12—C181.397 (3)C25—H25A0.990
C12—C191.496 (3)C25—H25B0.990
C13—C191.393 (3)C26—H260.950
C14—C211.388 (3)C27—H270.950
C14—C221.390 (3)C28—H28A0.990
C15—C261.394 (3)C28—H28B0.990
C10—O3—C25112.38 (16)C15—C26—C16120.20 (19)
C27—N5—C28121.46 (17)N5—C27—C17126.35 (18)
C13—C6—C22119.33 (19)N5—C28—C6115.05 (16)
C13—C6—C28117.78 (16)C27—N5—H5119.284
C22—C6—C28122.86 (17)C28—N5—H5119.257
C11—C7—C23118.94 (18)C11—C7—H7120.532
O4—C8—C9120.57 (17)C23—C7—H7120.528
O4—C8—C17124.98 (18)C6—C13—H13118.915
C9—C8—C17114.38 (18)C19—C13—H13118.918
C8—C9—C10118.70 (17)C21—C14—H14119.697
C8—C9—C20120.93 (18)C22—C14—H14119.698
C10—C9—C20120.04 (18)C12—C15—H15119.481
O3—C10—C9123.01 (17)C26—C15—H15119.484
O3—C10—C11117.81 (17)C24—C16—H16120.227
C9—C10—C11119.09 (16)C26—C16—H16120.219
Cl1—C11—C7120.24 (15)C12—C18—H18119.399
Cl1—C11—C10118.81 (14)C24—C18—H18119.395
C7—C11—C10120.95 (18)C9—C20—H20120.358
C15—C12—C18117.77 (17)C23—C20—H20120.373
C15—C12—C19121.26 (18)C14—C21—H21119.425
C18—C12—C19120.95 (17)C19—C21—H21119.422
C6—C13—C19122.17 (17)C6—C22—H22120.266
C21—C14—C22120.61 (18)C14—C22—H22120.267
C12—C15—C26121.0 (2)C16—C24—H24119.886
C24—C16—C26119.55 (19)C18—C24—H24119.877
C8—C17—C25117.46 (17)O3—C25—H25A109.370
C8—C17—C27123.6 (2)O3—C25—H25B109.364
C25—C17—C27118.80 (17)C17—C25—H25A109.360
C12—C18—C24121.21 (19)C17—C25—H25B109.359
C12—C19—C13121.59 (16)H25A—C25—H25B107.995
C12—C19—C21121.14 (18)C15—C26—H26119.894
C13—C19—C21117.25 (17)C16—C26—H26119.907
C9—C20—C23119.27 (19)N5—C27—H27116.830
C14—C21—C19121.2 (2)C17—C27—H27116.823
C6—C22—C14119.47 (18)N5—C28—H28A108.504
Cl2—C23—C7118.91 (15)N5—C28—H28B108.510
Cl2—C23—C20119.46 (16)C6—C28—H28A108.504
C7—C23—C20121.62 (18)C6—C28—H28B108.506
C16—C24—C18120.2 (3)H28A—C28—H28B107.520
O3—C25—C17111.33 (15)
C10—O3—C25—C1753.6 (2)C15—C12—C18—H18179.6
C10—O3—C25—H25A174.6C18—C12—C15—C260.1 (3)
C10—O3—C25—H25B67.3C18—C12—C15—H15179.9
C25—O3—C10—C929.1 (3)C15—C12—C19—C1313.5 (3)
C25—O3—C10—C11154.42 (15)C15—C12—C19—C21167.82 (17)
C27—N5—C28—C691.3 (3)C19—C12—C15—C26178.03 (16)
C27—N5—C28—H28A30.5C19—C12—C15—H152.0
C27—N5—C28—H28B147.0C18—C12—C19—C13164.43 (17)
C28—N5—C27—C17173.51 (17)C18—C12—C19—C2114.3 (3)
C28—N5—C27—H276.5C19—C12—C18—C24178.38 (16)
H5—N5—C27—C176.5C19—C12—C18—H181.6
H5—N5—C27—H27173.5C6—C13—C19—C12179.00 (16)
H5—N5—C28—C688.7C6—C13—C19—C210.3 (3)
H5—N5—C28—H28A149.5H13—C13—C19—C121.0
H5—N5—C28—H28B33.0H13—C13—C19—C21179.7
C13—C6—C22—C141.5 (3)C21—C14—C22—C60.2 (3)
C13—C6—C22—H22178.6C21—C14—C22—H22179.8
C22—C6—C13—C191.5 (3)C22—C14—C21—C191.1 (3)
C22—C6—C13—H13178.5C22—C14—C21—H21178.9
C13—C6—C28—N5170.51 (17)H14—C14—C21—C19178.9
C13—C6—C28—H28A48.8H14—C14—C21—H211.1
C13—C6—C28—H28B67.8H14—C14—C22—C6179.8
C28—C6—C13—C19176.64 (17)H14—C14—C22—H220.2
C28—C6—C13—H133.4C12—C15—C26—C160.4 (3)
C22—C6—C28—N511.4 (3)C12—C15—C26—H26179.6
C22—C6—C28—H28A133.1H15—C15—C26—C16179.6
C22—C6—C28—H28B110.3H15—C15—C26—H260.4
C28—C6—C22—C14176.60 (17)C24—C16—C26—C150.4 (4)
C28—C6—C22—H223.4C24—C16—C26—H26179.5
C11—C7—C23—Cl2179.57 (15)C26—C16—C24—C180.1 (4)
C11—C7—C23—C200.9 (3)C26—C16—C24—H24179.9
C23—C7—C11—Cl1177.89 (15)H16—C16—C24—C18179.9
C23—C7—C11—C101.5 (3)H16—C16—C24—H240.1
H7—C7—C11—Cl12.1H16—C16—C26—C15179.6
H7—C7—C11—C10178.5H16—C16—C26—H260.5
H7—C7—C23—Cl20.4C8—C17—C25—O345.8 (3)
H7—C7—C23—C20179.1C8—C17—C25—H25A166.8
O4—C8—C9—C10162.18 (17)C8—C17—C25—H25B75.2
O4—C8—C9—C2011.3 (3)C8—C17—C27—N51.2 (4)
O4—C8—C17—C25171.54 (17)C8—C17—C27—H27178.8
O4—C8—C17—C273.7 (3)C25—C17—C27—N5173.96 (17)
C9—C8—C17—C2511.6 (3)C25—C17—C27—H276.0
C9—C8—C17—C27173.26 (16)C27—C17—C25—O3138.79 (17)
C17—C8—C9—C1014.9 (3)C27—C17—C25—H25A17.8
C17—C8—C9—C20171.67 (16)C27—C17—C25—H25B100.2
C8—C9—C10—O36.2 (3)C12—C18—C24—C160.3 (3)
C8—C9—C10—C11170.28 (15)C12—C18—C24—H24179.7
C8—C9—C20—C23172.43 (15)H18—C18—C24—C16179.7
C8—C9—C20—H207.6H18—C18—C24—H240.3
C10—C9—C20—C230.9 (3)C12—C19—C21—C14177.69 (16)
C10—C9—C20—H20179.1C12—C19—C21—H212.3
C20—C9—C10—O3179.67 (16)C13—C19—C21—C141.1 (3)
C20—C9—C10—C113.2 (3)C13—C19—C21—H21178.9
O3—C10—C11—Cl10.8 (3)C9—C20—C23—Cl2179.29 (15)
O3—C10—C11—C7179.83 (14)C9—C20—C23—C71.2 (3)
C9—C10—C11—Cl1175.86 (14)H20—C20—C23—Cl20.7
C9—C10—C11—C73.5 (3)H20—C20—C23—C7178.8
C15—C12—C18—C240.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O40.882.202.811 (3)126
N5—H5···O4i0.882.383.081 (3)137
C25—H25A···O4ii0.992.593.546 (4)164
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O40.882.202.811 (3)126
N5—H5···O4i0.882.383.081 (3)137
C25—H25A···O4ii0.992.593.546 (4)164
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

We acknowledge the University of Shizuoka for supporting this study.

References

First citationBenaouida, M. A., Chetioui, S. & Bouaoud, S. E. (2013). Acta Cryst. E69, o867–o868.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationIshikawa, Y. & Motohashi, Y. (2013a). Acta Cryst. E69, o1225.  CSD CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. & Motohashi, Y. (2013b). Acta Cryst. E69, o1226.  CSD CrossRef IUCr Journals Google Scholar
First citationKhan, K. M., Ambreen, N., Hussain, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 2983–2988.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMałecka, M. & Budzisz, E. (2006). Acta Cryst. E62, o5058–o5060.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTu, Q. D., Li, D., Sun, Y., Han, X. Y., Yi, F., Sha, Y., Ren, Y. L., Ding, M. W., Feng, L. L. & Wan, J. (2013). Bioorg. Med. Chem. 21, 2826–2831.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds