metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Triphen­yl(pyrrolidine-1-carbodi­thio­ato-κS)tin(IV)

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
*Correspondence e-mail: m.siraj09@yahoo.com

(Received 7 August 2013; accepted 9 August 2013; online 17 August 2013)

In the title compound, [Sn(C6H5)3(C5H8NS2)], the SnIV atom adopts a distorted SnC3S tetra­hedral coordination geometry [spread of bond angles = 94.43 (7)–120.74 (7)°]. A short intra­molecular Sn⋯S contact [3.0270 (9) Å] occurs and two intra­molecular C—H⋯S inter­actions help to establish the conformation. Three of the methyl­ene groups of the pyrrolidine-1-carbodi­thio­ate ligand are disordered over two sets of sites of equal occupancy. In the crystal, very weak C—H⋯S inter­actions link the mol­ecules into a three-dimensional network, with both S atoms acting as acceptors.

Related literature

For background to the structures and applications of organotin compounds, see: Abbas et al. (2013[Abbas, S. M., Sirajuddin, M., Ali, S., Hussain, S. T., Shah, F. A. & Meetsma, A. (2013). J. Chem. Soc. Pak. 35, 859-867.]); Pellerito & Nagy (2002[Pellerito, L. & Nagy, L. (2002). Coord. Chem. Rev. 224, 111-150.]); Ronconi et al. (2005[Ronconi, L., Maccato, C., Barreca, D., Saini, R., Zancato, M. & Fregona, D. (2005). Polyhedron, 24, 521-531.]); Shahzadi et al. (2006[Shahzadi, S., Ali, S., Bhatti, M. H., Fettouhi, M. & Athar, M. (2006). J. Organomet. Chem. 691, 1797-1802.], 2008[Shahzadi, S., Ali, S. & Fettouhi, M. (2008). J. Chem. Crystallogr. 38, 273-278.]); Sirajuddin et al. (2012[Sirajuddin, M., Ali, S., Haider, A., Shah, N. A., Shah, A. & Khan, M. R. (2012). Polyhedron, 40, 19-31.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)3(C5H8NS2)]

  • Mr = 496.23

  • Monoclinic, P 21 /c

  • a = 12.3467 (4) Å

  • b = 10.3227 (3) Å

  • c = 17.0611 (6) Å

  • β = 90.864 (2)°

  • V = 2174.21 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.38 mm−1

  • T = 296 K

  • 0.32 × 0.26 × 0.24 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.667, Tmax = 0.734

  • 16466 measured reflections

  • 4265 independent reflections

  • 3567 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.062

  • S = 1.01

  • 4265 reflections

  • 253 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—C6 2.160 (2)
Sn1—C12 2.134 (2)
Sn1—C18 2.149 (2)
Sn1—S1 2.4710 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯S1 0.93 2.75 3.384 (3) 127
C23—H23⋯S2 0.93 2.77 3.424 (3) 129
C2—H2B⋯S2i 0.97 2.96 3.759 (3) 141
C5—H5B⋯S1ii 0.97 2.98 3.750 (3) 137
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2012[Sheldrick, G. M. (2012). SHELXL2012. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON.

Supporting information


Related literature top

For background to the structures and applications of organotin compounds, see: Abbas et al. (2013); Pellerito & Nagy (2002); Ronconi et al. (2005); Shahzadi et al. (2006, 2008); Sirajuddin et al. (2012).

Experimental top

Stoichiometric amount of sodium salt of pyrrolidine-1-carbodithioate was suspended in dry toluene and to it calculated amount of triphenyltin(IV) chloride, Ph3SnCl, (5 mmol of each, 1:1 ratio) was added. The mixture was stirred and refluxed for 3–4 h, and then it was cooled and filtered to remove NaCl. The filterate was rotary evaporated to get the product which was recystallized from chloroform solution to yield colourless prisms.

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2012); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The partial packing, which shows that molecules form dimers due to C—H···S bonds.
Triphenyl(pyrrolidine-1-carbodithioato-κS)tin(IV) top
Crystal data top
[Sn(C6H5)3(C5H8NS2)]Z = 4
Mr = 496.23F(000) = 1000
Monoclinic, P21/cDx = 1.516 Mg m3
a = 12.3467 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.3227 (3) ŵ = 1.38 mm1
c = 17.0611 (6) ÅT = 296 K
β = 90.864 (2)°Prism, colourless
V = 2174.21 (12) Å30.32 × 0.26 × 0.24 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3567 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1512
Tmin = 0.667, Tmax = 0.734k = 1212
16466 measured reflectionsl = 2021
4265 independent reflections
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0255P)2 + 1.8846P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
4265 reflectionsΔρmax = 0.39 e Å3
253 parametersΔρmin = 0.47 e Å3
Crystal data top
[Sn(C6H5)3(C5H8NS2)]V = 2174.21 (12) Å3
Mr = 496.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.3467 (4) ŵ = 1.38 mm1
b = 10.3227 (3) ÅT = 296 K
c = 17.0611 (6) Å0.32 × 0.26 × 0.24 mm
β = 90.864 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4265 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3567 reflections with I > 2σ(I)
Tmin = 0.667, Tmax = 0.734Rint = 0.020
16466 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0223 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 1.01Δρmax = 0.39 e Å3
4265 reflectionsΔρmin = 0.47 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.43914 (19)0.5449 (2)0.19935 (15)0.0395 (5)
C20.6278 (2)0.4746 (3)0.22777 (17)0.0523 (7)
H2A0.66370.51210.18300.063*
H2B0.61450.38350.21780.063*
C30.6941 (3)0.4935 (4)0.3019 (2)0.0806 (11)0.5
H3A0.68600.41940.33630.097*0.5
H3B0.77010.50260.28960.097*0.5
C40.6549 (5)0.6099 (7)0.3397 (4)0.0552 (17)0.5
H4A0.69130.68610.31980.066*0.5
H4B0.66650.60550.39600.066*0.5
C50.5338 (2)0.6133 (3)0.31911 (18)0.0670 (9)0.5
H5A0.49180.57030.35910.080*0.5
H5B0.50830.70170.31340.080*0.5
C3'0.6941 (3)0.4935 (4)0.3019 (2)0.0806 (11)0.5
H3'10.72410.41130.31920.097*0.5
H3'20.75360.55250.29230.097*0.5
C4'0.6248 (7)0.5461 (10)0.3617 (4)0.083 (3)0.5
H4'10.66460.60690.39450.100*0.5
H4'20.59700.47730.39450.100*0.5
C5'0.5338 (2)0.6133 (3)0.31911 (18)0.0670 (9)0.5
H5'10.46680.60640.34780.080*0.5
H5'20.55030.70410.31090.080*0.5
C60.2627 (2)0.3725 (2)0.03124 (14)0.0419 (5)
C70.3521 (2)0.2959 (3)0.04850 (16)0.0520 (6)
H70.41330.29950.01620.062*
C80.3512 (3)0.2147 (3)0.11275 (18)0.0650 (8)
H80.41190.16480.12340.078*
C90.2618 (3)0.2069 (3)0.16087 (18)0.0692 (9)
H90.26110.15040.20330.083*
C100.1735 (3)0.2826 (3)0.14625 (18)0.0677 (9)
H100.11310.27870.17940.081*
C110.1740 (2)0.3653 (3)0.08204 (16)0.0545 (7)
H110.11370.41690.07290.065*
C120.22278 (19)0.6899 (2)0.03333 (14)0.0402 (5)
C130.1372 (2)0.7587 (3)0.06383 (16)0.0508 (6)
H130.09220.71910.09990.061*
C140.1174 (2)0.8859 (3)0.04166 (17)0.0583 (7)
H140.05930.93050.06270.070*
C150.1829 (3)0.9458 (3)0.01099 (19)0.0636 (8)
H150.17071.03160.02500.076*
C160.2661 (3)0.8784 (3)0.0427 (2)0.0751 (10)
H160.31010.91820.07930.090*
C170.2860 (2)0.7515 (3)0.02123 (19)0.0641 (8)
H170.34300.70690.04390.077*
C180.12332 (19)0.4161 (2)0.13624 (14)0.0404 (5)
C190.0755 (2)0.3023 (3)0.11048 (17)0.0552 (7)
H190.10570.25660.06920.066*
C200.0173 (3)0.2559 (3)0.1459 (2)0.0666 (8)
H200.04850.17910.12820.080*
C210.0632 (2)0.3217 (3)0.20636 (18)0.0618 (8)
H210.12610.29080.22910.074*
C220.0157 (2)0.4337 (3)0.23320 (18)0.0579 (7)
H220.04590.47830.27490.069*
C230.0769 (2)0.4804 (3)0.19850 (17)0.0490 (6)
H230.10850.55620.21730.059*
N10.52626 (16)0.5437 (2)0.24462 (13)0.0433 (5)
S10.44472 (5)0.45725 (7)0.11166 (4)0.04934 (16)
S20.32513 (6)0.62405 (8)0.22271 (5)0.0592 (2)
Sn10.25469 (2)0.49609 (2)0.07066 (2)0.03669 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0373 (12)0.0355 (12)0.0456 (14)0.0018 (10)0.0042 (10)0.0014 (10)
C20.0416 (14)0.0586 (16)0.0563 (17)0.0107 (12)0.0099 (12)0.0057 (13)
C30.059 (2)0.105 (3)0.077 (2)0.0268 (19)0.0302 (18)0.022 (2)
C40.045 (4)0.067 (4)0.053 (4)0.002 (3)0.018 (3)0.010 (3)
C50.0516 (17)0.086 (2)0.0628 (19)0.0106 (16)0.0160 (14)0.0287 (17)
C3'0.059 (2)0.105 (3)0.077 (2)0.0268 (19)0.0302 (18)0.022 (2)
C4'0.065 (5)0.130 (8)0.053 (5)0.010 (5)0.023 (4)0.007 (5)
C5'0.0516 (17)0.086 (2)0.0628 (19)0.0106 (16)0.0160 (14)0.0287 (17)
C60.0453 (13)0.0420 (13)0.0383 (13)0.0054 (11)0.0002 (10)0.0002 (10)
C70.0550 (16)0.0483 (15)0.0527 (16)0.0029 (13)0.0052 (13)0.0009 (13)
C80.083 (2)0.0484 (16)0.0636 (19)0.0115 (15)0.0071 (17)0.0067 (14)
C90.107 (3)0.0500 (17)0.0508 (17)0.0113 (18)0.0021 (18)0.0096 (14)
C100.075 (2)0.074 (2)0.0537 (18)0.0202 (18)0.0182 (16)0.0070 (16)
C110.0488 (15)0.0648 (18)0.0496 (16)0.0037 (13)0.0036 (12)0.0038 (13)
C120.0369 (12)0.0403 (13)0.0433 (13)0.0008 (10)0.0051 (10)0.0001 (10)
C130.0476 (14)0.0576 (16)0.0471 (15)0.0093 (12)0.0033 (12)0.0084 (12)
C140.0624 (18)0.0587 (17)0.0534 (17)0.0233 (14)0.0073 (14)0.0023 (14)
C150.077 (2)0.0455 (15)0.068 (2)0.0063 (15)0.0095 (17)0.0103 (15)
C160.071 (2)0.061 (2)0.094 (3)0.0021 (17)0.0201 (19)0.0274 (18)
C170.0563 (17)0.0556 (17)0.081 (2)0.0090 (14)0.0231 (16)0.0119 (15)
C180.0362 (12)0.0435 (13)0.0413 (13)0.0033 (10)0.0030 (10)0.0049 (11)
C190.0589 (17)0.0559 (16)0.0507 (16)0.0126 (14)0.0020 (13)0.0050 (13)
C200.0636 (19)0.0608 (18)0.075 (2)0.0271 (16)0.0033 (16)0.0026 (16)
C210.0462 (15)0.073 (2)0.0663 (19)0.0117 (15)0.0057 (14)0.0158 (16)
C220.0481 (16)0.0658 (19)0.0601 (18)0.0026 (14)0.0113 (13)0.0057 (15)
C230.0455 (14)0.0476 (15)0.0540 (16)0.0032 (11)0.0033 (12)0.0001 (12)
N10.0353 (11)0.0441 (11)0.0502 (12)0.0024 (9)0.0086 (9)0.0053 (10)
S10.0406 (3)0.0563 (4)0.0507 (4)0.0078 (3)0.0098 (3)0.0116 (3)
S20.0398 (3)0.0698 (5)0.0678 (5)0.0120 (3)0.0098 (3)0.0196 (4)
Sn10.03201 (10)0.03739 (10)0.04059 (10)0.00054 (6)0.00174 (7)0.00022 (7)
Geometric parameters (Å, º) top
C1—N11.315 (3)C11—H110.9300
C1—S21.681 (2)C12—C171.379 (4)
C1—S11.750 (3)C12—C131.381 (3)
C2—N11.474 (3)C13—C141.387 (4)
C2—C31.509 (4)C13—H130.9300
C2—H2A0.9700C14—C151.365 (4)
C2—H2B0.9700C14—H140.9300
C3—C41.451 (7)C15—C161.360 (5)
C3—H3A0.9700C15—H150.9300
C3—H3B0.9700C16—C171.381 (4)
C4—C51.532 (7)C16—H160.9300
C4—H4A0.9700C17—H170.9300
C4—H4B0.9700C18—C231.384 (4)
C5—N11.462 (3)C18—C191.384 (4)
C5—H5A0.9700C19—C201.388 (4)
C5—H5B0.9700C19—H190.9300
C4'—H4'10.9700C20—C211.366 (4)
C4'—H4'20.9700C20—H200.9300
C6—C111.389 (4)C21—C221.372 (4)
C6—C71.393 (4)C21—H210.9300
C7—C81.380 (4)C22—C231.382 (4)
C7—H70.9300C22—H220.9300
C8—C91.368 (5)C23—H230.9300
C8—H80.9300Sn1—C62.160 (2)
C9—C101.367 (5)Sn1—C122.134 (2)
C9—H90.9300Sn1—C182.149 (2)
C10—C111.389 (4)Sn1—S12.4710 (7)
C10—H100.9300
N1—C1—S2123.1 (2)C17—C12—C13117.5 (2)
N1—C1—S1117.06 (18)C17—C12—Sn1121.97 (19)
S2—C1—S1119.85 (14)C13—C12—Sn1120.56 (19)
N1—C2—C3103.1 (2)C12—C13—C14121.1 (3)
N1—C2—H2A111.1C12—C13—H13119.4
C3—C2—H2A111.1C14—C13—H13119.4
N1—C2—H2B111.1C15—C14—C13120.3 (3)
C3—C2—H2B111.1C15—C14—H14119.9
H2A—C2—H2B109.1C13—C14—H14119.9
C4—C3—C2107.4 (4)C16—C15—C14119.3 (3)
C4—C3—H3A110.2C16—C15—H15120.4
C2—C3—H3A110.2C14—C15—H15120.4
C4—C3—H3B110.2C15—C16—C17120.8 (3)
C2—C3—H3B110.2C15—C16—H16119.6
H3A—C3—H3B108.5C17—C16—H16119.6
C3—C4—C5104.3 (4)C12—C17—C16121.0 (3)
C3—C4—H4A110.9C12—C17—H17119.5
C5—C4—H4A110.9C16—C17—H17119.5
C3—C4—H4B110.9C23—C18—C19118.1 (2)
C5—C4—H4B110.9C23—C18—Sn1122.71 (18)
H4A—C4—H4B108.9C19—C18—Sn1118.86 (19)
N1—C5—C4103.7 (3)C18—C19—C20120.4 (3)
N1—C5—H5A111.0C18—C19—H19119.8
C4—C5—H5A111.0C20—C19—H19119.8
N1—C5—H5B111.0C21—C20—C19120.8 (3)
C4—C5—H5B111.0C21—C20—H20119.6
H5A—C5—H5B109.0C19—C20—H20119.6
H4'1—C4'—H4'2108.7C20—C21—C22119.4 (3)
C11—C6—C7117.2 (2)C20—C21—H21120.3
C11—C6—Sn1119.27 (19)C22—C21—H21120.3
C7—C6—Sn1123.48 (19)C21—C22—C23120.2 (3)
C8—C7—C6121.1 (3)C21—C22—H22119.9
C8—C7—H7119.5C23—C22—H22119.9
C6—C7—H7119.5C18—C23—C22121.1 (3)
C9—C8—C7120.6 (3)C18—C23—H23119.4
C9—C8—H8119.7C22—C23—H23119.4
C7—C8—H8119.7C1—N1—C5123.2 (2)
C10—C9—C8119.7 (3)C1—N1—C2125.5 (2)
C10—C9—H9120.2C5—N1—C2111.4 (2)
C8—C9—H9120.2C1—S1—Sn196.24 (8)
C9—C10—C11120.1 (3)C12—Sn1—C18112.21 (9)
C9—C10—H10120.0C12—Sn1—C6108.90 (9)
C11—C10—H10120.0C18—Sn1—C6103.66 (9)
C6—C11—C10121.3 (3)C12—Sn1—S1114.00 (6)
C6—C11—H11119.4C18—Sn1—S1120.74 (7)
C10—C11—H11119.4C6—Sn1—S194.43 (7)
N1—C2—C3—C424.6 (5)C23—C18—C19—C200.9 (4)
C2—C3—C4—C532.6 (6)Sn1—C18—C19—C20172.5 (2)
C3—C4—C5—N127.4 (6)C18—C19—C20—C210.2 (5)
C11—C6—C7—C81.1 (4)C19—C20—C21—C221.2 (5)
Sn1—C6—C7—C8177.4 (2)C20—C21—C22—C231.0 (5)
C6—C7—C8—C90.5 (5)C19—C18—C23—C221.1 (4)
C7—C8—C9—C101.6 (5)Sn1—C18—C23—C22172.0 (2)
C8—C9—C10—C111.1 (5)C21—C22—C23—C180.2 (4)
C7—C6—C11—C101.6 (4)S2—C1—N1—C51.3 (4)
Sn1—C6—C11—C10176.9 (2)S1—C1—N1—C5179.4 (2)
C9—C10—C11—C60.5 (5)S2—C1—N1—C2179.1 (2)
C17—C12—C13—C141.4 (4)S1—C1—N1—C20.2 (4)
Sn1—C12—C13—C14178.2 (2)C4—C5—N1—C1167.1 (4)
C12—C13—C14—C150.2 (4)C4—C5—N1—C212.6 (4)
C13—C14—C15—C161.5 (5)C3—C2—N1—C1173.9 (3)
C14—C15—C16—C171.2 (6)C3—C2—N1—C56.5 (3)
C13—C12—C17—C161.8 (5)N1—C1—S1—Sn1176.18 (19)
Sn1—C12—C17—C16177.9 (3)S2—C1—S1—Sn13.10 (16)
C15—C16—C17—C120.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···S10.932.753.384 (3)127
C23—H23···S20.932.773.424 (3)129
C2—H2B···S2i0.972.963.759 (3)141
C5—H5B···S1ii0.972.983.750 (3)137
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
Selected bond lengths (Å) top
Sn1—C62.160 (2)Sn1—C182.149 (2)
Sn1—C122.134 (2)Sn1—S12.4710 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···S10.932.753.384 (3)127
C23—H23···S20.932.773.424 (3)129
C2—H2B···S2i0.972.963.759 (3)141
C5—H5B···S1ii0.972.983.750 (3)137
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Quaid-i-Azam University Islamabad Pakistan for providing the research facilites as well as University Research Fund (URF) for financial support.

References

First citationAbbas, S. M., Sirajuddin, M., Ali, S., Hussain, S. T., Shah, F. A. & Meetsma, A. (2013). J. Chem. Soc. Pak. 35, 859–867.
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationPellerito, L. & Nagy, L. (2002). Coord. Chem. Rev. 224, 111–150.  Web of Science CrossRef CAS
First citationRonconi, L., Maccato, C., Barreca, D., Saini, R., Zancato, M. & Fregona, D. (2005). Polyhedron, 24, 521–531.  Web of Science CrossRef CAS
First citationShahzadi, S., Ali, S., Bhatti, M. H., Fettouhi, M. & Athar, M. (2006). J. Organomet. Chem. 691, 1797–1802.  Web of Science CSD CrossRef CAS
First citationShahzadi, S., Ali, S. & Fettouhi, M. (2008). J. Chem. Crystallogr. 38, 273–278.  Web of Science CSD CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2012). SHELXL2012. University of Göttingen, Germany.
First citationSirajuddin, M., Ali, S., Haider, A., Shah, N. A., Shah, A. & Khan, M. R. (2012). Polyhedron, 40, 19–31.  Web of Science CSD CrossRef CAS
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds