## organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# (4*E*)-4-[(2-Hydroxyanilino)methylidene]-1-phenylpyrazolidine-3,5-dione dimethyl sulfoxide hemisolvate

## Mehmet Akkurt,<sup>a</sup> Shaaban K. Mohamed,<sup>b,c</sup> Mahmoud A. A. Elremaily,<sup>d,e</sup> Eman. A. Ahmed<sup>f</sup> and Mustafa R. Albayati<sup>g</sup>\*

<sup>a</sup>Department of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, <sup>b</sup>Chemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, <sup>c</sup>Chemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, <sup>d</sup>Department of Organic Chemistry, Faculty of Science, Institute of Biotechnology, Granada University, Granada E-18071, Spain, <sup>e</sup>Department of Chemistry, Sohag University, 82524 Sohag, Egypt, <sup>f</sup>Department of Chemistry, University of Leicester, Leicester, England, and <sup>g</sup>Kirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq Correspondence e-mail: shaabankamel@yahoo.com

Received 6 August 2013; accepted 7 August 2013

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.044; wR factor = 0.112; data-to-parameter ratio = 16.3.

The asymmetric unit of the title compound,  $C_{16}H_{13}N_3O_{3}$ -0.5C<sub>2</sub>H<sub>6</sub>OS, is composed of two independent pyrazolidine-3,5dione molecules and one dimethyl sulfoxide solvent molecule. In each pyrazolidine-3,5-dione molecule, an intramolecular N-H···O hydrogen bond forms an S(5)S(6) motif. In the crystal, pairs of each independent pyrazolidine-3,5-dione molecule are linked by N-H···O hydrogen bonds, forming dimers with  $R_2^2(8)$  motifs. These dimers are connected with the other molecules through the solvent molecules *via* O-H···O hydrogen bonds, forming ribbons along the *b*-axis direction. C-H··· $\pi$  interactions connect the ribbons. C-H···O interactions also occur.

### **Related literature**

For the significant role of pyrazolidinediones in the synthesis of various heterocyclic compounds, see: Elnagdy & Ohta (1973); Abdel-Rahman *et al.* (2004); Khodairy (2007). For the diverse biological activities of pyrazolidinedione-containing compounds, see: D'Alo *et al.* (1978); Tawab *et al.* (1960). For graph-set motifs, see: Bernstein *et al.* (1995).



 $\gamma = 92.653 (1)^{\circ}$ V = 1588.96 (10) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.47 \times 0.14 \times 0.06 \ \mathrm{mm}$ 

25749 measured reflections

7370 independent reflections

5874 reflections with  $I > 2\sigma(I)$ 

H-atom parameters constrained

 $\mu = 0.16 \text{ mm}^{-3}$ 

T = 100 K

 $R_{\rm int} = 0.043$ 

6 restraints

 $\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^2$ 

 $\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$ 

Z = 4

## Experimental

#### Crystal data

 $\begin{array}{l} C_{16}H_{13}N_{3}O_{3}\cdot0.5C_{2}H_{6}OS\\ M_{r}=334.37\\ \text{Triclinic, }P\overline{1}\\ a=5.7740\ (2)\ \text{\AA}\\ b=14.9402\ (6)\ \text{\AA}\\ c=19.2441\ (7)\ \text{\AA}\\ \alpha=106.060\ (1)^{\circ}\\ \beta=93.459\ (1)^{\circ} \end{array}$ 

#### Data collection

```
Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
T<sub>min</sub> = 0.973, T<sub>max</sub> = 0.990
```

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$  $wR(F^2) = 0.112$ S = 1.027370 reflections 453 parameters

#### Table 1

Hydrogen-bond geometry (Å, °).

Cg3 and Cg6 are the centroids of the C11–C16 and C27–C32 phenyl rings, respectively.

| $D - H \cdots A$            | D-H             | $H \cdot \cdot \cdot A$ | $D \cdots A$       | $D - \mathbf{H} \cdots A$ |
|-----------------------------|-----------------|-------------------------|--------------------|---------------------------|
| N1-H1···O3                  | 0.86 (2)        | 2.15 (2)                | 2.8265 (17)        | 135 (2)                   |
| $O1-H1A\cdots O5$           | 0.85(2)         | 1.80(2)                 | 2.6479 (17)        | 174 (2)                   |
| $N3-H3A\cdots O2^{i}$       | 0.88(2)         | 1.90(2)                 | 2.7740 (17)        | 174 (2)                   |
| $N4-H4A\cdots O6$           | 0.88(2)         | 2.11 (2)                | 2.8050 (18)        | 136 (2)                   |
| $O4 - H4B \cdots O7^{ii}$   | 0.85 (2)        | 1.76 (2)                | 2.6061 (18)        | 172 (2)                   |
| N6−H6···O6 <sup>iii</sup>   | 0.88(2)         | 1.92 (2)                | 2.7831 (19)        | 169 (2)                   |
| $C34 - H34B \cdots O3^{iv}$ | 0.98            | 2.43                    | 3.403 (3)          | 175                       |
| $C29-H29\cdots Cg3^{v}$     | 0.95            | 2.64                    | 3.548 (2)          | 160                       |
| $C33-H33C\cdots Cg6^{vi}$   | 0.98            | 2.74                    | 3.690 (2)          | 163                       |
| Symmetry codes:             | (i) $x + 1$ , y | , z: (ii)               | -x + 1, -v + 1, -v | -z + 1; (iii)             |

Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y + 1, -z + 1; (iii) -x + 2, -y + 1, -z + 1; (iv) x - 1, y + 1, z; (v) x + 1, y + 1, z; (vi) x - 1, y, z.

Data collection: *APEX2* (Bruker, 2013); cell refinement: *SAINT* (Bruker, 2013); data reduction: *SAINT*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2009).

Manchester Metropolitan University, Erciyes University and Granada University are gratefully acknowledged for supporting this study. The authors also thank José Romero Garzoń, Centro de Instrumentación Científica, Universidad de Granada, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5338).

#### References

Abdel-Rahman, M. A., Khodairy, A. A.-B. A. G., Ghattas, A.-B. A. G. & Younes, S. (2004). J. Chin. Chem. Soc. 51, 103–114.

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- D'Alo, G., Conti, G., Gadel, S. & Dalla Vedova, R. (1978). Farm. Ed. Sci. 33, 106–116.
- Elnagdy, M. H. & Ohta, M. (1973). Bull. Chem. Soc. Jpn, 46, 1830-1833.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Khodairy, M. A. (2007). J. Chin. Chem. Soc. 54, 93-102.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tawab, S. A., Moustafa, A. & Kira, M. (1960). Nature, 186, 165-166.

# supporting information

Acta Cryst. (2013). E69, o1408-o1409 [doi:10.1107/S1600536813022034]

# (4*E*)-4-[(2-Hydroxyanilino)methylidene]-1-phenylpyrazolidine-3,5-dione dimethyl sulfoxide hemisolvate

## Mehmet Akkurt, Shaaban K. Mohamed, Mahmoud A. A. Elremaily, Eman. A. Ahmed and Mustafa R. Albayati

## S1. Comment

Pyrazolidinedione compounds have been used as a core precursor to prepare a diversity of heterocyclic systems owning to the acidic methylene function (Khodairy, 2007; Abdel-Rahman *et al.*, 2004); Elnagdy & Ohta, 1973). Moreover, pyrazolidinones have exhibited a wide spectrum of biological activities such as antipyretic (Tawab *et al.*, 1960) and antiinflammatory drugs (D'Alo *et al.*, 1978). In this concept, we herein report the synthesis and crystal structure of the title compound.

As shown in Fig. 1, the asymmetric unit of the title compound (I) contains two crystallographically independent molecules (A with O1 and B with O4) of (4E)-4-{[(2-hydroxyphenyl)amino]methylidene}-1-phenylpyrazolidine-3,5-dione and one molecule of dimethyl sulfoxide solvate. In molecule A, the benzene and phenyl rings are oriented at dihedral angles of 15.87 (8) and 9.97 (8) ° with respect to the pyrazolidine ring. In molecule B, the corresponding angles are 6.55 (9) and 9.80 (9) °, respectively.

Intramolecular N—H···O hydrogen bonds form S(5)S(6) motifs (Bernstein *et al.*, 1995). Pairs of molecules are linked by N—H···O forming a dimer with  $R^2_2(8)$  motifs (Table 1, Fig. 2). These dimers are also connected with the other molecules through the DMSO solvate molecules *via* O—H···O hydrogen generating bonds ribbons along b a-xis. Furthermore C—H··· $\pi$  interactions are observed between the ribbons (Table 1).

## S2. Experimental

A mixture of (4*Z*)-4-[(dimethylamino)methylidene]-1-phenylpyrazolidine-3,5-dione (231 mg, 1 mmol) and 2-aminophenol (109 mg, 1 mmol) in 50 ml acetic acid was refluxed for 2 h. The resulting solid on hot was filtered off, dried under vacuum, washed with ethanol and recrystallized from dimethyl sufoxide to afford the title compound in good quality crystals (*M*.p.: 541 - 542 K) sufficient for X-ray diffraction.

## **S3. Refinement**

The C-bound H atoms were placed in geometrically idealized positions [C-H = 0.95 Å for aromatic H and C-H = 0.98 Å for methyl H] and were refined using a riding model with  $U_{iso}(H) = 1.2U_{eq}(C_{aromatic})$  and  $1.5U_{eq}(C_{methyl})$ . Hydroxyl and amine H atoms are found from difference Fourier maps and refined with constraints of N-H = 0.88 (2) and O-H = 0.84 (2) Å,  $U_{iso}(H) = 1.2U_{eq}(N)$  for amine H atoms and  $U_{iso}(H) = 1.5U_{eq}(O)$  for hydroxyl H atoms.



## Figure 1

The molecular structure of the title compound showing the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.



## Figure 2

View of the N—H…O dimers and O—H…O and N—H…O hydrogen bonding (dashed lines) down the *b* axis of the title compound.

### (4E)-4-[(2-Hydroxyanilino)methylidene]-1-phenylpyrazolidine-3,5-dione dimethyl sulfoxide hemisolvate

Z = 4

F(000) = 700

 $\theta = 2.8 - 27.6^{\circ}$ 

 $\mu = 0.16 \text{ mm}^{-1}$ 

Prism, colourless

 $0.47 \times 0.14 \times 0.06 \text{ mm}$ 

T = 100 K

 $D_{\rm x} = 1.398 {\rm Mg m^{-3}}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 9951 reflections

#### Crystal data

 $C_{16}H_{13}N_3O_3 \cdot 0.5C_2H_6OS$   $M_r = 334.37$ Triclinic, *P*1 Hall symbol: -P 1 a = 5.7740 (2) Å b = 14.9402 (6) Å c = 19.2441 (7) Å  $a = 106.060 (1)^{\circ}$   $\beta = 93.459 (1)^{\circ}$   $\gamma = 92.653 (1)^{\circ}$  $V = 1588.96 (10) \text{ Å}^{3}$ 

#### Data collection

| Bruker APEXII CCD                      | 25749 measured reflections                                          |
|----------------------------------------|---------------------------------------------------------------------|
| diffractometer                         | 7370 independent reflections                                        |
| Radiation source: sealed tube          | 5874 reflections with $I > 2\sigma(I)$                              |
| Graphite monochromator                 | $R_{\rm int} = 0.043$                                               |
| $\varphi$ and $\omega$ scans           | $\theta_{\rm max} = 27.6^{\circ}, \ \theta_{\rm min} = 2.3^{\circ}$ |
| Absorption correction: multi-scan      | $h = -7 \rightarrow 6$                                              |
| (SADABS; Bruker, 2012)                 | $k = -19 \rightarrow 19$                                            |
| $T_{\min} = 0.973, \ T_{\max} = 0.990$ | $l = -24 \rightarrow 25$                                            |
|                                        |                                                                     |

#### Refinement

| Refinement on $F^2$             | 6 restraints                                              |
|---------------------------------|-----------------------------------------------------------|
| Least-squares matrix: full      | H-atom parameters constrained                             |
| $R[F^2 > 2\sigma(F^2)] = 0.044$ | $W = 1/[\Sigma^2(FO^2) + (0.0457P)^2 + 1.0131P]$          |
| $wR(F^2) = 0.112$               | WHERE $P = (FO^2 + 2FC^2)/3$                              |
| S = 1.02                        | $(\Delta/\sigma)_{\rm max} = 0.001$                       |
| 7370 reflections                | $\Delta \rho_{\rm max} = 0.40 \text{ e } \text{\AA}^{-3}$ |
| 453 parameters                  | $\Delta \rho_{\min} = -0.51 \text{ e} \text{ Å}^{-3}$     |
|                                 |                                                           |

#### Special details

**Geometry**. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

**Refinement**. Refinement on  $F^2$  for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The observed criterion of  $F^2 > \sigma(F^2)$  is used only for calculating *-R*-factor-obs *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|    | x            | У            | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|----|--------------|--------------|-------------|-----------------------------|--|
| 01 | 1.0470 (2)   | 0.31031 (8)  | 0.80151 (7) | 0.0235 (3)                  |  |
| O2 | 0.65665 (19) | -0.04836 (8) | 0.93836 (7) | 0.0239 (4)                  |  |
| O3 | 1.2614 (2)   | 0.09699 (8)  | 0.84559 (7) | 0.0249 (4)                  |  |
| N1 | 0.8575 (2)   | 0.19791 (9)  | 0.86858 (7) | 0.0176 (4)                  |  |
| N2 | 1.0350 (2)   | -0.07965 (9) | 0.91086 (7) | 0.0165 (4)                  |  |
| N3 | 1.2123 (2)   | -0.04078 (9) | 0.87775 (8) | 0.0187 (4)                  |  |

| C1  | 0.8647 (3)             | 0.34333 (11)               | 0.83966 (8)                | 0.0182 (4) |
|-----|------------------------|----------------------------|----------------------------|------------|
| C2  | 0.7821 (3)             | 0.43089 (11)               | 0.84613 (9)                | 0.0236 (5) |
| C3  | 0.5912 (3)             | 0.45743 (11)               | 0.88502 (10)               | 0.0258 (5) |
| C4  | 0.4791 (3)             | 0.39733 (11)               | 0.91716 (9)                | 0.0236 (5) |
| C5  | 0.5609 (3)             | 0.30982 (11)               | 0.91163 (9)                | 0.0203 (4) |
| C6  | 0.7542 (3)             | 0.28328 (10)               | 0.87382 (8)                | 0.0166 (4) |
| C7  | 0.7803 (3)             | 0.12843 (10)               | 0.89313 (8)                | 0.0174 (4) |
| C8  | 0.9069 (3)             | 0.05182 (10)               | 0.89051 (8)                | 0.0162 (4) |
| C9  | 0.8422(3)              | -0.02722(10)               | 0.09031(0)<br>0.91639(8)   | 0.0102(1)  |
| C10 | 1 1384 (3)             | 0.02722(10)                | 0.86849(9)                 | 0.0102(1)  |
| C11 | 1.1567(3)<br>1.0542(3) | -0.17105(10)               | 0.00049(9)                 | 0.0170(4)  |
| C12 | 0.8860(3)              | -0.21227(11)               | 0.91722(8)                 | 0.0134(4)  |
| C12 | 0.0009(3)              | -0.21227(11)               | 0.95024(8)                 | 0.0134(4)  |
| C13 | 0.9101(3)              | -0.30103(11)               | 0.93738(9)                 | 0.0217(3)  |
| C14 | 1.1075(3)              | -0.34943(11)               | 0.95344(9)                 | 0.0228(3)  |
|     | 1.2/15(3)              | -0.3081/(11)               | 0.90057(10)                | 0.0238 (5) |
| C16 | 1.2464 (3)             | -0.219/1 (11)              | 0.89186 (9)                | 0.0200 (5) |
| 04  | 0.3509 (2)             | 0.22169 (9)                | 0.47285 (7)                | 0.0331 (4) |
| 05  | 1.2172 (2)             | 0.43434 (8)                | 0.73963 (6)                | 0.0242 (4) |
| 06  | 0.8410 (2)             | 0.39366 (8)                | 0.50665 (6)                | 0.0230 (3) |
| N4  | 0.6176 (2)             | 0.29482 (9)                | 0.59083 (7)                | 0.0197 (4) |
| N5  | 1.2770 (2)             | 0.49105 (9)                | 0.64119 (7)                | 0.0179 (4) |
| N6  | 1.1791 (2)             | 0.47253 (10)               | 0.56906 (7)                | 0.0195 (4) |
| C17 | 0.2873 (3)             | 0.19598 (12)               | 0.53154 (9)                | 0.0244 (5) |
| C18 | 0.0972 (3)             | 0.13555 (13)               | 0.53120 (10)               | 0.0299 (5) |
| C19 | 0.0470 (3)             | 0.11388 (13)               | 0.59430 (11)               | 0.0321 (6) |
| C20 | 0.1841 (3)             | 0.15263 (13)               | 0.65813 (10)               | 0.0305 (6) |
| C21 | 0.3754 (3)             | 0.21364 (12)               | 0.65940 (9)                | 0.0248 (5) |
| C22 | 0.4276 (3)             | 0.23438 (11)               | 0.59601 (9)                | 0.0206 (5) |
| C23 | 0.7898 (3)             | 0.33169 (11)               | 0.64012 (9)                | 0.0188 (4) |
| C24 | 0.9671 (3)             | 0.38897 (11)               | 0.62757 (8)                | 0.0181 (4) |
| C25 | 1.1586 (3)             | 0.43738 (10)               | 0.67724 (8)                | 0.0182 (4) |
| C26 | 0.9804(3)              | 0 41578 (11)               | 0 56190 (8)                | 0.0186(4)  |
| C27 | 14860(3)               | 0 54793 (10)               | 0.66204 (8)                | 0.0176 (4) |
| C28 | 1.5761 (3)             | 0.57334(12)                | 0.73415(9)                 | 0.0228(5)  |
| C20 | 1.5701(3)<br>1 7817(3) | 0.57554(12)<br>0.62903(12) | 0.75405(10)                | 0.0220(5)  |
| C30 | 1.7017(3)              | 0.02903(12)<br>0.66043(12) | 0.70405(10)<br>0.70351(10) | 0.0270(5)  |
| C31 | 1.8980(3)              | 0.00045(12)                | 0.70331(10)<br>0.63225(0)  | 0.0230(5)  |
| C31 | 1.6008(3)              | 0.03000(12)                | 0.03223(9)                 | 0.0232(5)  |
| C32 | 1.0008(3)              | 0.38009(11)                | 0.01100(9)<br>0.71557(2)   | 0.0200(3)  |
| 51  | 0.71939(8)             | 0.90279(3)                 | 0.71337(2)                 | 0.0303(2)  |
| 07  | 0.8621 (2)             | 0.87145 (9)                | 0.65113(7)                 | 0.0334 (4) |
| C33 | 0.4512 (4)             | 0.83276 (15)               | 0.69636 (13)               | 0.0416 (/) |
| C34 | 0.6075 (4)             | 1.00954 (15)               | 0.70907 (12)               | 0.0418 (7) |
| HI  | 0.990 (3)              | 0.1921 (13)                | 0.8499 (10)                | 0.0210*    |
| HIA | 1.108 (4)              | 0.3515 (13)                | 0.7841 (11)                | 0.0350*    |
| H2  | 0.85680                | 0.47250                    | 0.82380                    | 0.0280*    |
| H3  | 0.53640                | 0.51760                    | 0.88970                    | 0.0310*    |
| H3A | 1.352 (3)              | -0.0388 (13)               | 0.8987 (10)                | 0.0220*    |
| H4  | 0.34620                | 0.41580                    | 0.94300                    | 0.0280*    |

| Н5   | 0.48430   | 0.26840     | 0.93370     | 0.0240* |
|------|-----------|-------------|-------------|---------|
| H7   | 0.63340   | 0.13150     | 0.91310     | 0.0210* |
| H12  | 0.75470   | -0.17990    | 0.96750     | 0.0220* |
| H13  | 0.80170   | -0.32920    | 0.97980     | 0.0260* |
| H14  | 1.12570   | -0.40990    | 0.93930     | 0.0270* |
| H15  | 1.40370   | -0.34080    | 0.88370     | 0.0290* |
| H16  | 1.35980   | -0.19250    | 0.86870     | 0.0240* |
| H4A  | 0.627 (3) | 0.3061 (13) | 0.5487 (9)  | 0.0240* |
| H4B  | 0.269 (4) | 0.1914 (16) | 0.4344 (10) | 0.0500* |
| H6   | 1.177 (3) | 0.5205 (11) | 0.5509 (10) | 0.0230* |
| H18  | 0.00160   | 0.10910     | 0.48770     | 0.0360* |
| H19  | -0.08260  | 0.07210     | 0.59380     | 0.0390* |
| H20  | 0.14760   | 0.13760     | 0.70120     | 0.0370* |
| H21  | 0.46890   | 0.24070     | 0.70320     | 0.0300* |
| H23  | 0.79180   | 0.31840     | 0.68570     | 0.0230* |
| H28  | 1.49740   | 0.55270     | 0.76940     | 0.0270* |
| H29  | 1.84370   | 0.64590     | 0.80310     | 0.0320* |
| H30  | 2.03920   | 0.69820     | 0.71760     | 0.0300* |
| H31  | 1.88370   | 0.65790     | 0.59740     | 0.0280* |
| H32  | 1.53910   | 0.56380     | 0.56190     | 0.0250* |
| H33A | 0.38080   | 0.83310     | 0.64880     | 0.0620* |
| H33B | 0.34500   | 0.85820     | 0.73370     | 0.0620* |
| H33C | 0.48070   | 0.76860     | 0.69600     | 0.0620* |
| H34A | 0.73610   | 1.05680     | 0.71500     | 0.0630* |
| H34B | 0.50090   | 1.03090     | 0.74710     | 0.0630* |
| H34C | 0.52370   | 0.99960     | 0.66140     | 0.0630* |
|      |           |             |             |         |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$    | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$    | $U^{23}$   |
|-----|-------------|------------|------------|-------------|-------------|------------|
| 01  | 0.0266 (6)  | 0.0209 (6) | 0.0281 (6) | 0.0018 (5)  | 0.0080 (5)  | 0.0139 (5) |
| O2  | 0.0160 (6)  | 0.0201 (6) | 0.0412 (7) | 0.0035 (4)  | 0.0091 (5)  | 0.0161 (5) |
| O3  | 0.0213 (6)  | 0.0220 (6) | 0.0378 (7) | 0.0022 (5)  | 0.0096 (5)  | 0.0174 (5) |
| N1  | 0.0173 (7)  | 0.0149 (6) | 0.0222 (7) | 0.0021 (5)  | 0.0031 (5)  | 0.0075 (5) |
| N2  | 0.0139 (6)  | 0.0140 (6) | 0.0243 (7) | 0.0008 (5)  | 0.0050 (5)  | 0.0090 (5) |
| N3  | 0.0135 (6)  | 0.0177 (6) | 0.0290 (7) | 0.0021 (5)  | 0.0062 (6)  | 0.0124 (6) |
| C1  | 0.0208 (8)  | 0.0168 (7) | 0.0170 (8) | -0.0007 (6) | -0.0019 (6) | 0.0059 (6) |
| C2  | 0.0320 (9)  | 0.0171 (8) | 0.0248 (9) | 0.0001 (7)  | 0.0017 (7)  | 0.0115 (6) |
| C3  | 0.0376 (10) | 0.0145 (8) | 0.0274 (9) | 0.0065 (7)  | 0.0013 (7)  | 0.0088 (6) |
| C4  | 0.0277 (9)  | 0.0195 (8) | 0.0246 (9) | 0.0073 (7)  | 0.0046 (7)  | 0.0065 (6) |
| C5  | 0.0233 (8)  | 0.0163 (7) | 0.0236 (8) | 0.0017 (6)  | 0.0031 (7)  | 0.0091 (6) |
| C6  | 0.0198 (8)  | 0.0121 (7) | 0.0175 (8) | 0.0003 (6)  | -0.0029 (6) | 0.0047 (6) |
| C7  | 0.0159 (7)  | 0.0147 (7) | 0.0217 (8) | 0.0001 (6)  | 0.0003 (6)  | 0.0058 (6) |
| C8  | 0.0158 (7)  | 0.0141 (7) | 0.0190 (8) | -0.0011 (6) | 0.0010 (6)  | 0.0056 (6) |
| С9  | 0.0152 (7)  | 0.0141 (7) | 0.0200 (8) | 0.0015 (6)  | 0.0014 (6)  | 0.0057 (6) |
| C10 | 0.0185 (8)  | 0.0148 (7) | 0.0209 (8) | 0.0015 (6)  | 0.0028 (6)  | 0.0061 (6) |
| C11 | 0.0168 (7)  | 0.0119 (7) | 0.0176 (7) | -0.0001 (6) | -0.0024 (6) | 0.0052 (5) |
| C12 | 0.0179 (8)  | 0.0183 (7) | 0.0202 (8) | 0.0018 (6)  | 0.0026 (6)  | 0.0073 (6) |
|     |             | . ,        | . ,        |             | . ,         | . ,        |

| C13 | 0.0241 (8)  | 0.0197 (8)  | 0.0235 (8)  | -0.0024 (6) | 0.0008 (7)  | 0.0108 (6)  |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|
| C14 | 0.0262 (9)  | 0.0157 (7)  | 0.0283 (9)  | 0.0010 (6)  | -0.0041 (7) | 0.0103 (6)  |
| C15 | 0.0194 (8)  | 0.0169 (8)  | 0.0350 (10) | 0.0046 (6)  | 0.0004 (7)  | 0.0071 (7)  |
| C16 | 0.0161 (8)  | 0.0167 (7)  | 0.0288 (9)  | 0.0007 (6)  | 0.0016 (6)  | 0.0089 (6)  |
| O4  | 0.0378 (8)  | 0.0395 (8)  | 0.0194 (6)  | -0.0165 (6) | -0.0023 (6) | 0.0081 (5)  |
| 05  | 0.0292 (7)  | 0.0270 (6)  | 0.0188 (6)  | -0.0069 (5) | -0.0028 (5) | 0.0126 (5)  |
| O6  | 0.0244 (6)  | 0.0276 (6)  | 0.0176 (6)  | -0.0066 (5) | -0.0017 (5) | 0.0095 (5)  |
| N4  | 0.0226 (7)  | 0.0205 (7)  | 0.0174 (7)  | -0.0027 (5) | 0.0025 (6)  | 0.0079 (5)  |
| N5  | 0.0202 (7)  | 0.0210 (7)  | 0.0137 (6)  | -0.0012 (5) | 0.0004 (5)  | 0.0077 (5)  |
| N6  | 0.0222 (7)  | 0.0236 (7)  | 0.0137 (6)  | -0.0039 (6) | -0.0011 (5) | 0.0085 (5)  |
| C17 | 0.0282 (9)  | 0.0221 (8)  | 0.0219 (8)  | -0.0017 (7) | 0.0047 (7)  | 0.0043 (6)  |
| C18 | 0.0293 (10) | 0.0280 (9)  | 0.0275 (9)  | -0.0079 (7) | 0.0025 (7)  | 0.0012 (7)  |
| C19 | 0.0299 (10) | 0.0266 (9)  | 0.0373 (11) | -0.0098 (7) | 0.0108 (8)  | 0.0048 (8)  |
| C20 | 0.0343 (10) | 0.0294 (9)  | 0.0302 (10) | -0.0033 (8) | 0.0123 (8)  | 0.0114 (7)  |
| C21 | 0.0262 (9)  | 0.0252 (9)  | 0.0237 (9)  | -0.0004 (7) | 0.0039 (7)  | 0.0079 (7)  |
| C22 | 0.0204 (8)  | 0.0171 (8)  | 0.0249 (8)  | -0.0006 (6) | 0.0050 (7)  | 0.0063 (6)  |
| C23 | 0.0233 (8)  | 0.0171 (7)  | 0.0178 (8)  | 0.0023 (6)  | 0.0036 (6)  | 0.0073 (6)  |
| C24 | 0.0213 (8)  | 0.0171 (7)  | 0.0164 (8)  | 0.0013 (6)  | 0.0022 (6)  | 0.0056 (6)  |
| C25 | 0.0214 (8)  | 0.0161 (7)  | 0.0185 (8)  | 0.0006 (6)  | 0.0035 (6)  | 0.0070 (6)  |
| C26 | 0.0197 (8)  | 0.0182 (7)  | 0.0185 (8)  | 0.0004 (6)  | 0.0027 (6)  | 0.0061 (6)  |
| C27 | 0.0180 (8)  | 0.0162 (7)  | 0.0191 (8)  | 0.0018 (6)  | 0.0024 (6)  | 0.0057 (6)  |
| C28 | 0.0271 (9)  | 0.0242 (8)  | 0.0187 (8)  | -0.0026 (7) | 0.0022 (7)  | 0.0092 (6)  |
| C29 | 0.0297 (10) | 0.0286 (9)  | 0.0223 (9)  | -0.0059 (7) | -0.0057 (7) | 0.0095 (7)  |
| C30 | 0.0206 (8)  | 0.0245 (8)  | 0.0299 (9)  | -0.0047 (7) | -0.0009 (7) | 0.0092 (7)  |
| C31 | 0.0232 (8)  | 0.0244 (8)  | 0.0240 (9)  | -0.0003 (7) | 0.0069 (7)  | 0.0093 (7)  |
| C32 | 0.0224 (8)  | 0.0224 (8)  | 0.0173 (8)  | 0.0000 (6)  | 0.0029 (6)  | 0.0061 (6)  |
| S1  | 0.0324 (3)  | 0.0342 (3)  | 0.0215 (2)  | 0.0017 (2)  | 0.0025 (2)  | 0.0020 (2)  |
| O7  | 0.0256 (7)  | 0.0396 (8)  | 0.0272 (7)  | -0.0041 (6) | 0.0038 (5)  | -0.0030 (6) |
| C33 | 0.0305 (11) | 0.0439 (12) | 0.0501 (13) | 0.0012 (9)  | 0.0145 (10) | 0.0106 (10) |
| C34 | 0.0533 (14) | 0.0372 (11) | 0.0369 (11) | 0.0086 (10) | 0.0160 (10) | 0.0102 (9)  |
|     |             |             |             |             |             |             |

Geometric parameters (Å, °)

| <u>81—C34</u> | 1.782 (2)   | C2—H2   | 0.9500    |
|---------------|-------------|---------|-----------|
| S1—07         | 1.5072 (13) | С3—Н3   | 0.9500    |
| S1—C33        | 1.789 (2)   | C4—H4   | 0.9500    |
| 01—C1         | 1.353 (2)   | С5—Н5   | 0.9500    |
| О2—С9         | 1.234 (2)   | С7—Н7   | 0.9500    |
| O3—C10        | 1.242 (2)   | C12—H12 | 0.9500    |
| O1—H1A        | 0.85 (2)    | C13—H13 | 0.9500    |
| O4—C17        | 1.355 (2)   | C14—H14 | 0.9500    |
| O5—C25        | 1.2412 (19) | C15—H15 | 0.9500    |
| O6—C26        | 1.2511 (19) | C16—H16 | 0.9500    |
| O4—H4B        | 0.85 (2)    | C17—C22 | 1.402 (2) |
| N1—C7         | 1.324 (2)   | C17—C18 | 1.387 (3) |
| N1—C6         | 1.414 (2)   | C18—C19 | 1.384 (3) |
| N2—C11        | 1.413 (2)   | C19—C20 | 1.385 (3) |
| N2—N3         | 1.4212 (18) | C20—C21 | 1.394 (3) |
|               |             |         |           |

| N2—C9            | 1.383 (2)              | C21—C22                             | 1.386 (2)   |
|------------------|------------------------|-------------------------------------|-------------|
| N3—C10           | 1.388 (2)              | C23—C24                             | 1.379 (2)   |
| N1—H1            | 0.863 (18)             | C24—C25                             | 1.441 (2)   |
| N3—H3A           | 0.875 (18)             | C24—C26                             | 1.433 (2)   |
| N4—C23           | 1.318 (2)              | C27—C32                             | 1.395 (2)   |
| N4—C22           | 1.414 (2)              | C27—C28                             | 1.394 (2)   |
| N5-C27           | 1.413 (2)              | C28—C29                             | 1.388 (3)   |
| N5—N6            | 1.4146 (18)            | C29—C30                             | 1.385 (3)   |
| N5-C25           | 1.381 (2)              | C30—C31                             | 1.384 (2)   |
| N6—C26           | 1.371 (2)              | C31—C32                             | 1.389 (2)   |
| N4—H4A           | 0.877(17)              | C18—H18                             | 0.9500      |
| N6—H6            | 0.877(17)<br>0.880(17) | C19—H19                             | 0.9500      |
| C1 - C6          | 1403(2)                | C20—H20                             | 0.9500      |
| C1 - C2          | 1 389 (2)              | C21—H21                             | 0.9500      |
| $C^2 - C^3$      | 1.305(2)<br>1 381(2)   | C23_H23                             | 0.9500      |
| $C_2 - C_3$      | 1.381(2)<br>1.382(2)   | C28—H28                             | 0.9500      |
| $C_{4}$          | 1.382(2)               | $C_{20} H_{20}$                     | 0.9500      |
| $C_{4}$          | 1.309(2)<br>1.292(2)   | $C_{29}$ $H_{20}$                   | 0.9500      |
| $C_{2} = C_{0}$  | 1.303(2)<br>1.277(2)   | $C_{30}$ $H_{30}$ $C_{21}$ $H_{21}$ | 0.9500      |
| $C^{2}$          | 1.377(2)               | С31—П31                             | 0.9300      |
| $C_{8}$ $C_{10}$ | 1.428(2)<br>1.445(2)   | С32—Н32                             | 0.9500      |
| $C_{0}$          | 1.445 (2)              | Сээ—нээА                            | 0.9800      |
|                  | 1.394 (2)              | C33—H33B                            | 0.9800      |
|                  | 1.397 (2)              | C33—H33C                            | 0.9800      |
| C12—C13          | 1.389 (2)              | C34—H34A                            | 0.9800      |
| C13—C14          | 1.381 (2)              | C34—H34B                            | 0.9800      |
| C14—C15          | 1.383 (2)              | C34—H34C                            | 0.9800      |
| C15—C16          | 1.390 (2)              |                                     |             |
| O7—S1—C33        | 107.82 (9)             | C15—C14—H14                         | 121.00      |
| O7—S1—C34        | 105.34 (9)             | C14—C15—H15                         | 119.00      |
| C33—S1—C34       | 97.86 (11)             | C16—C15—H15                         | 119.00      |
| C1               | 110.7 (15)             | C15-C16-H16                         | 120.00      |
| C17—O4—H4B       | 111.6 (15)             | C11—C16—H16                         | 120.00      |
| C6—N1—C7         | 127.16 (13)            | O4—C17—C18                          | 124.48 (16) |
| N3—N2—C9         | 110.49 (13)            | O4—C17—C22                          | 115.99 (15) |
| N3—N2—C11        | 118.54 (12)            | C18—C17—C22                         | 119.53 (16) |
| C9—N2—C11        | 129.12 (13)            | C17—C18—C19                         | 119.91 (17) |
| N2—N3—C10        | 107.55 (12)            | C18—C19—C20                         | 120.53 (17) |
| C7—N1—H1         | 116.5 (13)             | C19—C20—C21                         | 120.25 (17) |
| C6—N1—H1         | 116.2 (13)             | C20—C21—C22                         | 119.24 (16) |
| C10—N3—H3A       | 116.6 (13)             | C17—C22—C21                         | 120.52 (16) |
| N2—N3—H3A        | 114.2 (12)             | N4—C22—C21                          | 124.13 (15) |
| C22—N4—C23       | 127.91 (14)            | N4—C22—C17                          | 115.34 (15) |
| C25—N5—C27       | 130.40 (13)            | N4—C23—C24                          | 121.98 (15) |
| N6-N5-C25        | 110 15 (12)            | $C_{23}$ $C_{24}$ $C_{26}$          | 124.17 (15) |
| N6—N5—C27        | 118 85 (12)            | $C_{23}$ $C_{24}$ $C_{25}$          | 127.93 (14) |
| N5—N6—C26        | 108.04(12)             | $C_{25}$ $C_{24}$ $C_{26}$          | 107 76 (14) |
| C22—N4—H4A       | 1160(12)               | N5-C25-C24                          | 105 83 (13) |
|                  | 110.0 (12)             | 110 020 021                         | 102.02 (12) |

| C23—N4—H4A              | 116.0(12)                | 05—C25—N5                                       | 124.06 (15)              |
|-------------------------|--------------------------|-------------------------------------------------|--------------------------|
| N5—N6—H6                | 116.1 (12)               | 05                                              | 130 11 (15)              |
| C26—N6—H6               | 119.1 (11)               | N6-C26-C24                                      | 10770(14)                |
| 01-C1-C2                | 124 32 (15)              | $06-C^{2}6-C^{2}4$                              | 128 32 (16)              |
| 01 - C1 - C6            | 124.52(15)<br>116.43(15) | $06-C^{2}6-N6$                                  | 123.92(10)<br>123.98(14) |
| $C_2 C_1 C_6$           | 110.45 (15)              | N5 C27 C28                                      | 129.96(14)<br>110.05(14) |
| $C_{2} - C_{1} - C_{0}$ | 119.25 (15)              | $C_{28} C_{27} C_{28}$                          | 119.95 (14)              |
| $C_1 = C_2 = C_3$       | 120.71 (16)              | N5 C27 C32                                      | 119.79(10)<br>120.20(14) |
| $C_2 = C_3 = C_4$       | 110.05 (16)              | 113 - 27 - 232                                  | 120.29(14)<br>110.51(16) |
| $C_{3}$                 | 119.95(10)<br>110.72(16) | $C_{2}^{2}$ $C_{2}^{2}$ $C_{2}^{2}$ $C_{2}^{2}$ | 119.51(10)<br>121.06(17) |
| $C_{1} C_{6} C_{5}$     | 119.72(10)<br>120.28(15) | $C_{20} = C_{20} = C_{30}$                      | 121.00(17)               |
| $C_1 = C_0 = C_3$       | 120.36(13)<br>115.82(14) | $C_{29} = C_{30} = C_{31}$                      | 119.12(10)               |
|                         | 113.62(14)<br>122.78(14) | $C_{30} = C_{31} = C_{32}$                      | 120.80(10)               |
| $NI = C_0 = C_3$        | 123.78(14)<br>121.97(15) | $C_2/-C_{32}-C_{31}$                            | 119.69 (15)              |
| NI = C / = C8           | 121.87 (15)              | C19—C18—H18                                     | 120.00                   |
| C/-C8-C10               | 124.68 (15)              | C1/-C18-H18                                     | 120.00                   |
| C9—C8—C10               | 108.23 (14)              | C18—C19—H19                                     | 120.00                   |
| C7—C8—C9                | 126.77 (16)              | C20—C19—H19                                     | 120.00                   |
| N2-C9-C8                | 105.69 (14)              | С19—С20—Н20                                     | 120.00                   |
| O2—C9—N2                | 124.45 (14)              | C21—C20—H20                                     | 120.00                   |
| 02—C9—C8                | 129.85 (16)              | C22—C21—H21                                     | 120.00                   |
| N3—C10—C8               | 107.75 (13)              | C20—C21—H21                                     | 120.00                   |
| O3—C10—C8               | 128.75 (15)              | С24—С23—Н23                                     | 119.00                   |
| O3—C10—N3               | 123.49 (15)              | N4—C23—H23                                      | 119.00                   |
| N2—C11—C16              | 119.35 (14)              | C27—C28—H28                                     | 120.00                   |
| N2—C11—C12              | 121.03 (15)              | C29—C28—H28                                     | 120.00                   |
| C12—C11—C16             | 119.60 (15)              | С28—С29—Н29                                     | 119.00                   |
| C11—C12—C13             | 119.25 (16)              | С30—С29—Н29                                     | 119.00                   |
| C12—C13—C14             | 121.64 (16)              | С31—С30—Н30                                     | 120.00                   |
| C13—C14—C15             | 118.67 (16)              | С29—С30—Н30                                     | 120.00                   |
| C14—C15—C16             | 121.10 (16)              | С30—С31—Н31                                     | 120.00                   |
| C11—C16—C15             | 119.73 (16)              | С32—С31—Н31                                     | 120.00                   |
| С1—С2—Н2                | 120.00                   | С27—С32—Н32                                     | 120.00                   |
| С3—С2—Н2                | 120.00                   | C31—C32—H32                                     | 120.00                   |
| С2—С3—Н3                | 120.00                   | S1—C33—H33A                                     | 109.00                   |
| С4—С3—Н3                | 120.00                   | S1—C33—H33B                                     | 109.00                   |
| C5—C4—H4                | 120.00                   | S1—C33—H33C                                     | 109.00                   |
| C3—C4—H4                | 120.00                   | H33A—C33—H33B                                   | 109.00                   |
| С6—С5—Н5                | 120.00                   | H33A—C33—H33C                                   | 109.00                   |
| С4—С5—Н5                | 120.00                   | H33B—C33—H33C                                   | 109.00                   |
| С8—С7—Н7                | 119.00                   | S1—C34—H34A                                     | 109.00                   |
| N1—C7—H7                | 119.00                   | S1—C34—H34B                                     | 110.00                   |
| C13—C12—H12             | 120.00                   | S1—C34—H34C                                     | 109.00                   |
| C11—C12—H12             | 120.00                   | H34A—C34—H34B                                   | 110.00                   |
| C14—C13—H13             | 119.00                   | H34A—C34—H34C                                   | 109.00                   |
| C12—C13—H13             | 119.00                   | H34B—C34—H34C                                   | 109.00                   |
| C13—C14—H14             | 121.00                   |                                                 |                          |
|                         |                          |                                                 |                          |
| C6—N1—C7—C8             | -174.14 (15)             | C7—C8—C9—N2                                     | -172.41 (15)             |

| C7—N1—C6—C5    | 5.4 (2)      | C10—C8—C9—O2    | -177.61 (16) |
|----------------|--------------|-----------------|--------------|
| C7—N1—C6—C1    | -176.59 (15) | C7—C8—C10—O3    | -3.3 (3)     |
| C9—N2—C11—C12  | -18.0 (2)    | C7-C8-C10-N3    | 175.97 (15)  |
| C11—N2—N3—C10  | 171.57 (13)  | C7—C8—C9—O2     | 8.7 (3)      |
| C11—N2—C9—O2   | 10.8 (3)     | C9—C8—C10—O3    | -177.15 (17) |
| N3—N2—C11—C16  | 0.8 (2)      | C9-C8-C10-N3    | 2.08 (18)    |
| C9—N2—C11—C16  | 163.72 (15)  | N2-C11-C16-C15  | 177.38 (15)  |
| C9—N2—N3—C10   | 5.64 (17)    | C12—C11—C16—C15 | -0.9 (2)     |
| C11—N2—C9—C8   | -168.25 (14) | N2-C11-C12-C13  | -177.88 (14) |
| N3—N2—C11—C12  | 179.05 (14)  | C16—C11—C12—C13 | 0.4 (2)      |
| N3—N2—C9—O2    | 174.78 (15)  | C11—C12—C13—C14 | 0.4 (2)      |
| N3—N2—C9—C8    | -4.22 (16)   | C12-C13-C14-C15 | -0.7 (3)     |
| N2—N3—C10—C8   | -4.60 (17)   | C13-C14-C15-C16 | 0.1 (3)      |
| N2—N3—C10—O3   | 174.69 (15)  | C14-C15-C16-C11 | 0.7 (3)      |
| C23—N4—C22—C17 | -171.75 (16) | O4—C17—C22—C21  | 179.01 (16)  |
| C22—N4—C23—C24 | 179.09 (16)  | C18—C17—C22—N4  | 179.75 (16)  |
| C23—N4—C22—C21 | 9.1 (3)      | O4—C17—C22—N4   | -0.2 (2)     |
| N6—N5—C27—C28  | 174.88 (15)  | O4—C17—C18—C19  | -179.90 (17) |
| N6—N5—C27—C32  | -4.1 (2)     | C22-C17-C18-C19 | 0.2 (3)      |
| C27—N5—C25—C24 | -175.58 (15) | C18—C17—C22—C21 | -1.1 (3)     |
| N6—N5—C25—O5   | 174.60 (15)  | C17—C18—C19—C20 | 0.5 (3)      |
| C25—N5—C27—C28 | -15.0 (3)    | C18—C19—C20—C21 | -0.4 (3)     |
| C27—N5—C25—O5  | 3.8 (3)      | C19—C20—C21—C22 | -0.5 (3)     |
| C25—N5—C27—C32 | 166.08 (16)  | C20-C21-C22-C17 | 1.2 (3)      |
| C27—N5—N6—C26  | 179.47 (14)  | C20-C21-C22-N4  | -179.68 (16) |
| C25—N5—N6—C26  | 7.45 (17)    | N4—C23—C24—C26  | 1.5 (3)      |
| N6—N5—C25—C24  | -4.77 (17)   | N4—C23—C24—C25  | 176.69 (16)  |
| N5—N6—C26—O6   | 172.99 (15)  | C26—C24—C25—N5  | 0.50 (18)    |
| N5—N6—C26—C24  | -6.87 (18)   | C23—C24—C26—O6  | 0.2 (3)      |
| C2—C1—C6—N1    | -176.10 (14) | C23—C24—C26—N6  | -179.97 (16) |
| O1—C1—C6—N1    | 4.4 (2)      | C25—C24—C26—O6  | -175.85 (17) |
| O1—C1—C6—C5    | -177.50 (15) | C25—C24—C26—N6  | 4.01 (19)    |
| C6—C1—C2—C3    | -0.9 (2)     | C23—C24—C25—O5  | 5.4 (3)      |
| O1—C1—C2—C3    | 178.54 (16)  | C23—C24—C25—N5  | -175.32 (17) |
| C2—C1—C6—C5    | 2.0 (2)      | C26—C24—C25—O5  | -178.81 (17) |
| C1—C2—C3—C4    | -0.7 (3)     | N5-C27-C28-C29  | 179.85 (15)  |
| C2—C3—C4—C5    | 1.2 (3)      | C32—C27—C28—C29 | -1.2 (3)     |
| C3—C4—C5—C6    | -0.1 (3)     | N5-C27-C32-C31  | 179.89 (16)  |
| C4—C5—C6—N1    | 176.44 (15)  | C28—C27—C32—C31 | 0.9 (3)      |
| C4—C5—C6—C1    | -1.5 (2)     | C27—C28—C29—C30 | 0.5 (3)      |
| N1—C7—C8—C10   | 6.4 (2)      | C28—C29—C30—C31 | 0.4 (3)      |
| N1—C7—C8—C9    | 179.11 (15)  | C29—C30—C31—C32 | -0.7 (3)     |
| C10—C8—C9—N2   | 1.32 (17)    | C30—C31—C32—C27 | 0.0 (3)      |

## Hydrogen-bond geometry (Å, °)

| Cg3 and Cg6 are the centroids of the C11–C16 and C27–C32 phenyl rings, respe | ctivelv. |
|------------------------------------------------------------------------------|----------|
| ego and ego are the tentorial of the off of and ego phonyringo, respe        | eu eij.  |

| D—H···A                              | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H···A |
|--------------------------------------|-------------|--------------|--------------|---------|
| N1—H1…O1                             | 0.86 (2)    | 2.23 (2)     | 2.6235 (18)  | 107 (2) |
| N1—H1…O3                             | 0.86 (2)    | 2.15 (2)     | 2.8265 (17)  | 135 (2) |
| 01—H1A···O5                          | 0.85 (2)    | 1.80 (2)     | 2.6479 (17)  | 174 (2) |
| N3—H3A····O2 <sup>i</sup>            | 0.88 (2)    | 1.90 (2)     | 2.7740 (17)  | 174 (2) |
| N4—H4 <i>A</i> ···O4                 | 0.88 (2)    | 2.19 (2)     | 2.6019 (18)  | 109 (2) |
| N4—H4 <i>A</i> …O6                   | 0.88 (2)    | 2.11 (2)     | 2.8050 (18)  | 136 (2) |
| O4— $H4B$ ···S1 <sup>ii</sup>        | 0.85 (2)    | 2.85 (2)     | 3.5767 (14)  | 145 (2) |
| $O4$ — $H4B$ ···O $7^{ii}$           | 0.85 (2)    | 1.76 (2)     | 2.6061 (18)  | 172 (2) |
| N6—H6···O6 <sup>iii</sup>            | 0.88 (2)    | 1.92 (2)     | 2.7831 (19)  | 169 (2) |
| C7—H7···O3 <sup>iv</sup>             | 0.95        | 2.40         | 3.055 (2)    | 126     |
| С12—Н12…О2                           | 0.95        | 2.27         | 2.897 (2)    | 122     |
| C16—H16…N3                           | 0.95        | 2.42         | 2.775 (2)    | 102     |
| C28—H28…O5                           | 0.95        | 2.27         | 2.893 (2)    | 123     |
| C32—H32…N6                           | 0.95        | 2.46         | 2.801 (2)    | 101     |
| C34—H34 <i>B</i> ····O3 <sup>v</sup> | 0.98        | 2.43         | 3.403 (3)    | 175     |
| C29—H29…Cg3 <sup>vi</sup>            | 0.95        | 2.64         | 3.548 (2)    | 160     |
| С33—Н33С…Сдб <sup>і</sup>            | 0.98        | 2.74         | 3.690 (2)    | 163     |
|                                      |             |              |              |         |

Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y+1, -z+1; (iv) x-1, y, z; (v) x-1, y+1, z; (vi) x+1, y+1, z.