organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-amino-6-(4-bromo­phen­yl)-4-(4-fluoro­phen­yl)cyclo­hexa-1,3-diene-1-carboxyl­ate

aDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 14 August 2013; accepted 19 August 2013; online 23 August 2013)

In the title compound, C21H19BrFNO2, two independent mol­ecules crystallize in the asymmetric unit. The cyclo­hexa-1,3-diene ring is in a slightly distorted screw-boat conformation. The dihedral angles between the mean planes of the 4-bromo­phenyl and 4-fluoro­phenyl rings are 81.0 (3) and 76.4 (2)° in the two independent mol­ecules. In the crystal, N—H⋯O hydrogen bonds link the molecules into [100] chains.

Related literature

For cyclo­hexenones as precursors for functionalized derivatives, see: Samshuddin et al. (2013[Samshuddin, S., Narayana, B., Sarojini, B. K. & Madhu, L. N. (2013). Med. Chem. Res. 22, 3002-3011.]); For 4-bromo-4′-fluoro­chalcone derivatives, see: Fun et al. (2012a[Fun, H.-K., Chia, T. S., Sapnakumari, M., Narayana, B. & Sarojini, B. K. (2012a). Acta Cryst. E68, o2680.],b[Fun, H.-K., Loh, W.-S., Sapnakumari, M., Narayana, B. & Sarojini, B. K. (2012b). Acta Cryst. E68, o2655-o2656.],c[Fun, H.-K., Loh, W.-S., Sapnakumari, M., Narayana, B. & Sarojini, B. K. (2012c). Acta Cryst. E68, o2586.]). For related structures, see: Jasinski et al. (2012[Jasinski, J. P., Golen, J. A., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2012). Acta Cryst. E68, o585.]); Kant et al. (2012[Kant, R., Gupta, V. K., Kapoor, K., Sapnakumari, M., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2917-o2918.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For standard bond lengths, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C21H19BrFNO2

  • Mr = 416.28

  • Monoclinic, P 21 /n

  • a = 9.4599 (2) Å

  • b = 23.3634 (5) Å

  • c = 17.2312 (4) Å

  • β = 96.001 (2)°

  • V = 3787.51 (15) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 3.16 mm−1

  • T = 173 K

  • 0.32 × 0.28 × 0.22 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.587, Tmax = 1.000

  • 25170 measured reflections

  • 7427 independent reflections

  • 5973 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.148

  • S = 1.03

  • 7427 reflections

  • 487 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.13 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1AA⋯O2A 0.77 (3) 2.09 (3) 2.698 (4) 136 (3)
N1A—H1AB⋯O2Bi 0.77 (4) 2.17 (4) 2.915 (4) 162 (4)
N1B—H1BA⋯O2Aii 0.87 (3) 2.20 (4) 3.044 (3) 163 (3)
N1B—H1BB⋯O2B 0.85 (4) 2.07 (4) 2.714 (3) 132 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Comment top

Cyclohexenones are well known precursors for various functionalized derivatives such as indazoles, dibenzodiazepines, terphenyls, aminated derivatves etc. (Samshuddin et al., 2013). The title compound, (I), was prepared by the amination of cyclohexenone derivative of 4-bromo-4'-fluorochalcone with ammonium acetate. The crystal structure of a similar aminated product viz., ethyl 2-amino-4,6-bis (4-fluorophenyl)cyclohexa-1,3-diene-1-carboxylate has been reported (Jasinski et al., 2012). Also, the crystal structure of precursor of the title compound (I) viz., ethyl 6-(4-bromophenyl)-4- (4-fluorophenyl)-2-oxocyclohex-3-ene-1-carboxylate has been reported (Kant et al., 2012). In continuation of our work on the synthesis of 4-bromo-4'-fluorochalcone derivatives (Fun et al. 2012a, 2012b, 2012c), the title compound (I), C21H19NO2FBr, was prepared and its crystal structure is reported.

In the title compound, C21H19NO2FBr two independent molecules [A & B]crystallize in the asymmetric unit (Fig. 1). The cyclohexa-1,3-diene ring is in a slightly distorted screw-boat conformation (puckering parameters Q, θ, and ϕ = 0.434 (3)Å, 64.7 (4)°, 271.3 (4)° [A] and 0.355 (3)Å, 63.3 (5)°, 269.7 (6)° [B], respectively; (Cremer & Pople, 1975). Bond lengths are in normal ranges (Allen et al., 1987)). The dihedral angle between the mean planes of the 4-bromophenyl and 4-fluorophenyl rings is 81.0 (3)° [A] and 76.4 (2)° [B]. In the crystal, N—H···O hydrogen bonds form chains along [010] and contribute to packing stability (Fig. 2).

Related literature top

For cyclohexenones as precursors for functionalized derivatives, see: Samshuddin et al. (2013); For 4-bromo-4'-fluorochalcone derivatives, see: Fun et al. (2012a,b,c). For related structures, see: Jasinski et al. (2012); Kant et al. (2012). For puckering parameters, see: Cremer & Pople (1975). For standard bond lengths, see Allen et al. (1987).

Experimental top

A mixture of ethyl 6-(4-bromophenyl)-4-(4-fluorophenyl)-2-oxocyclohex- 3-ene-1-carboxylate (4.17 g, 0.01 mol) and ammonium acetate (1.54 g, 0.02 mol) in 30 ml glacial acetic acid was refluxed for 6 hours. The reaction mixture was cooled and poured into 50 ml ice-cold water. The precipitate was collected by filtration and purified by recrystallization from ethanol. Single crystals were grown from ethanol by the slow evaporation method. (m.p. 418–420 K).

Refinement top

H1AA, H1AB, H1BA and H1BB were located by a difference map and refined isotropically. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH) or 0.99° (CH2) or 0.98° (CH3). Isotropic displacement parameters for these atoms were set to 1.2 (CH) or 1.5 (OH) times Ueq of the parent atom. Idealised Me refined as rotating group: C1A(H1AC,H1AD,H1AE), C1B(H1BC,H1BD,H1BE).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the b axis. Dashed lines indicate weak N—H···O hydrogen bonds which form chains along [100]. H atoms not involved in these hydrogen bonds have been deleted for clarity.
[Figure 3] Fig. 3. Synthesis of (I).
Ethyl 2-amino-6-(4-bromophenyl)-4-(4-fluorophenyl)cyclohexa-1,3-diene-1-carboxylate top
Crystal data top
C21H19BrFNO2F(000) = 1696
Mr = 416.28Dx = 1.460 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.5418 Å
a = 9.4599 (2) ÅCell parameters from 7321 reflections
b = 23.3634 (5) Åθ = 3.2–72.3°
c = 17.2312 (4) ŵ = 3.16 mm1
β = 96.001 (2)°T = 173 K
V = 3787.51 (15) Å3Irregular, yellow
Z = 80.32 × 0.28 × 0.22 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
7427 independent reflections
Radiation source: Enhance (Cu) X-ray Source5973 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 16.0416 pixels mm-1θmax = 72.5°, θmin = 3.2°
ω scansh = 1110
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
k = 2825
Tmin = 0.587, Tmax = 1.000l = 2120
25170 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0771P)2 + 2.9658P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
7427 reflectionsΔρmax = 1.13 e Å3
487 parametersΔρmin = 0.53 e Å3
0 restraints
Crystal data top
C21H19BrFNO2V = 3787.51 (15) Å3
Mr = 416.28Z = 8
Monoclinic, P21/nCu Kα radiation
a = 9.4599 (2) ŵ = 3.16 mm1
b = 23.3634 (5) ÅT = 173 K
c = 17.2312 (4) Å0.32 × 0.28 × 0.22 mm
β = 96.001 (2)°
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
7427 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
5973 reflections with I > 2σ(I)
Tmin = 0.587, Tmax = 1.000Rint = 0.040
25170 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 1.13 e Å3
7427 reflectionsΔρmin = 0.53 e Å3
487 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br1A0.37157 (5)0.43234 (2)0.64815 (2)0.05829 (15)
F1A0.1959 (2)0.20568 (10)0.24677 (16)0.0692 (7)
O1A0.7906 (2)0.41473 (10)0.33655 (13)0.0414 (5)
O2A0.7261 (2)0.46881 (9)0.23026 (12)0.0364 (5)
N1A0.4536 (3)0.45651 (12)0.16870 (16)0.0377 (6)
H1AA0.523 (4)0.4738 (13)0.1701 (18)0.022 (8)*
H1AB0.382 (4)0.4657 (16)0.147 (2)0.039 (10)*
C1A1.0010 (5)0.4226 (2)0.4216 (3)0.0819 (16)
H1AC1.02180.38250.41100.123*
H1AD0.94480.42490.46620.123*
H1AE1.09030.44360.43370.123*
C2A0.9191 (4)0.44839 (17)0.3518 (2)0.0478 (8)
H2AA0.89550.48880.36200.057*
H2AB0.97520.44710.30640.057*
C3A0.6981 (3)0.43038 (12)0.27564 (17)0.0317 (6)
C4A0.5687 (3)0.39797 (12)0.27159 (16)0.0315 (6)
C5A0.4532 (3)0.41309 (12)0.22021 (16)0.0315 (6)
C6A0.3182 (3)0.38225 (13)0.22013 (17)0.0342 (6)
H6A0.23400.39880.19470.041*
C7A0.3106 (3)0.33092 (12)0.25538 (16)0.0325 (6)
C8A0.4461 (3)0.30516 (12)0.29415 (17)0.0345 (6)
H8AA0.49240.28270.25520.041*
H8AB0.42270.27860.33570.041*
C9A0.5506 (3)0.35068 (12)0.32998 (16)0.0320 (6)
H9A0.64510.33160.34160.038*
C10A0.5058 (3)0.37256 (12)0.40751 (16)0.0303 (6)
C11A0.5381 (4)0.33980 (13)0.47408 (18)0.0385 (7)
H11A0.58850.30490.47040.046*
C12A0.4988 (4)0.35662 (14)0.54587 (18)0.0436 (7)
H12A0.52180.33370.59100.052*
C13A0.4255 (3)0.40728 (14)0.55037 (18)0.0388 (7)
C14A0.3931 (4)0.44123 (15)0.4856 (2)0.0418 (7)
H14A0.34310.47620.48970.050*
C15A0.4342 (3)0.42383 (14)0.41475 (18)0.0391 (7)
H15A0.41300.44740.37010.047*
C16A0.1765 (3)0.29819 (13)0.25295 (17)0.0348 (6)
C17A0.0446 (4)0.32440 (14)0.2399 (2)0.0452 (8)
H17A0.04000.36460.23190.054*
C18A0.0808 (4)0.29345 (16)0.2383 (2)0.0500 (8)
H18A0.17030.31220.23080.060*
C19A0.0729 (4)0.23585 (16)0.2475 (2)0.0472 (8)
C20A0.0542 (4)0.20668 (15)0.2570 (2)0.0518 (9)
H20A0.05650.16610.26120.062*
C21A0.1786 (4)0.23819 (14)0.2602 (2)0.0443 (7)
H21A0.26740.21890.26740.053*
Br1B0.32238 (5)0.06632 (2)0.13555 (2)0.06171 (15)
F1B0.1976 (3)0.29436 (12)0.58030 (17)0.0815 (8)
O1B0.7450 (2)0.08834 (9)0.46357 (12)0.0365 (5)
O2B0.7067 (2)0.02371 (9)0.55597 (12)0.0341 (4)
N1B0.4602 (3)0.03596 (11)0.62187 (15)0.0357 (5)
H1BA0.394 (4)0.0269 (14)0.6509 (19)0.030 (8)*
H1BB0.532 (4)0.0150 (15)0.618 (2)0.036 (9)*
C1B0.9329 (4)0.09062 (15)0.3842 (2)0.0476 (8)
H1BC0.86710.09000.33640.071*
H1BD1.02350.07330.37400.071*
H1BE0.94900.13030.40140.071*
C2B0.8696 (3)0.05690 (13)0.4476 (2)0.0387 (7)
H2BA0.84370.01770.42920.046*
H2BB0.93810.05420.49500.046*
C3B0.6680 (3)0.06649 (12)0.51815 (17)0.0311 (6)
C4B0.5413 (3)0.09959 (12)0.52506 (17)0.0322 (6)
C5B0.4440 (3)0.08185 (12)0.57450 (17)0.0315 (6)
C6B0.3117 (3)0.11419 (12)0.57836 (17)0.0353 (6)
H6B0.23810.09800.60480.042*
C7B0.2919 (3)0.16682 (12)0.54492 (18)0.0367 (6)
C8B0.4108 (4)0.19339 (14)0.5065 (2)0.0478 (8)
H8BA0.46800.21740.54540.057*
H8BB0.36940.21900.46430.057*
C9B0.5104 (3)0.15061 (12)0.47171 (18)0.0344 (6)
H9B0.60290.17090.46920.041*
C10B0.4599 (3)0.13196 (12)0.38868 (18)0.0338 (6)
C11B0.5379 (3)0.14645 (15)0.32743 (19)0.0439 (8)
H11B0.62000.16980.33750.053*
C12B0.4985 (4)0.12771 (17)0.2523 (2)0.0492 (8)
H12B0.55290.13790.21100.059*
C13B0.3789 (4)0.09399 (14)0.23795 (19)0.0425 (7)
C14B0.2974 (4)0.07961 (14)0.2971 (2)0.0427 (7)
H14B0.21390.05710.28640.051*
C15B0.3393 (3)0.09842 (13)0.3717 (2)0.0408 (7)
H15B0.28430.08820.41260.049*
C16B0.1623 (3)0.20068 (13)0.55263 (18)0.0383 (7)
C17B0.1648 (4)0.26074 (15)0.5510 (2)0.0506 (9)
H17B0.25080.27990.54320.061*
C18B0.0451 (5)0.29259 (17)0.5605 (2)0.0583 (10)
H18B0.04790.33320.56020.070*
C19B0.0789 (4)0.26373 (18)0.5706 (2)0.0545 (9)
C20B0.0863 (4)0.20618 (17)0.5734 (2)0.0496 (8)
H20B0.17340.18770.58060.060*
C21B0.0355 (3)0.17440 (14)0.56566 (19)0.0412 (7)
H21B0.03190.13390.56930.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1A0.0728 (3)0.0676 (3)0.0371 (2)0.0088 (2)0.01827 (18)0.00322 (16)
F1A0.0491 (12)0.0690 (15)0.0906 (18)0.0199 (11)0.0129 (12)0.0164 (13)
O1A0.0323 (11)0.0490 (12)0.0426 (12)0.0040 (9)0.0018 (9)0.0067 (10)
O2A0.0354 (11)0.0427 (11)0.0327 (10)0.0033 (9)0.0117 (8)0.0009 (9)
N1A0.0364 (15)0.0392 (14)0.0367 (14)0.0076 (13)0.0002 (12)0.0096 (11)
C1A0.062 (3)0.101 (4)0.076 (3)0.025 (3)0.023 (2)0.025 (3)
C2A0.0348 (17)0.057 (2)0.050 (2)0.0069 (15)0.0012 (14)0.0017 (16)
C3A0.0294 (14)0.0369 (15)0.0303 (14)0.0033 (11)0.0090 (11)0.0031 (11)
C4A0.0355 (15)0.0318 (14)0.0280 (13)0.0030 (12)0.0068 (11)0.0012 (11)
C5A0.0356 (15)0.0307 (14)0.0290 (14)0.0035 (11)0.0076 (11)0.0007 (11)
C6A0.0345 (15)0.0361 (15)0.0316 (14)0.0031 (12)0.0016 (11)0.0028 (11)
C7A0.0360 (15)0.0329 (14)0.0287 (14)0.0028 (12)0.0044 (11)0.0001 (11)
C8A0.0404 (16)0.0305 (14)0.0320 (14)0.0013 (12)0.0015 (12)0.0031 (11)
C9A0.0315 (14)0.0330 (14)0.0313 (14)0.0011 (11)0.0027 (11)0.0031 (11)
C10A0.0251 (13)0.0332 (14)0.0325 (14)0.0048 (11)0.0025 (11)0.0024 (11)
C11A0.0459 (17)0.0357 (15)0.0339 (15)0.0017 (13)0.0038 (13)0.0040 (12)
C12A0.056 (2)0.0441 (17)0.0304 (15)0.0007 (15)0.0056 (14)0.0080 (13)
C13A0.0393 (16)0.0478 (17)0.0303 (15)0.0025 (14)0.0080 (12)0.0032 (13)
C14A0.0397 (17)0.0468 (18)0.0393 (17)0.0067 (14)0.0061 (13)0.0005 (13)
C15A0.0404 (17)0.0451 (17)0.0315 (15)0.0060 (13)0.0018 (12)0.0059 (12)
C16A0.0393 (16)0.0341 (15)0.0314 (14)0.0049 (12)0.0050 (12)0.0039 (11)
C17A0.0445 (18)0.0381 (16)0.054 (2)0.0030 (14)0.0088 (15)0.0052 (14)
C18A0.0397 (18)0.056 (2)0.056 (2)0.0000 (15)0.0092 (15)0.0112 (17)
C19A0.0426 (18)0.053 (2)0.0471 (19)0.0129 (15)0.0082 (15)0.0070 (15)
C20A0.058 (2)0.0392 (18)0.059 (2)0.0102 (16)0.0086 (17)0.0055 (15)
C21A0.0453 (18)0.0407 (17)0.0469 (18)0.0027 (14)0.0053 (14)0.0029 (14)
Br1B0.0622 (3)0.0741 (3)0.0478 (2)0.0055 (2)0.00066 (19)0.00554 (18)
F1B0.0622 (15)0.0926 (19)0.0917 (19)0.0427 (14)0.0173 (14)0.0110 (15)
O1B0.0350 (11)0.0394 (11)0.0377 (11)0.0048 (9)0.0154 (9)0.0039 (9)
O2B0.0336 (10)0.0355 (10)0.0332 (10)0.0024 (8)0.0039 (8)0.0014 (8)
N1B0.0362 (13)0.0371 (13)0.0358 (13)0.0046 (11)0.0140 (11)0.0068 (10)
C1B0.0456 (18)0.0488 (19)0.052 (2)0.0019 (15)0.0248 (16)0.0068 (16)
C2B0.0348 (15)0.0390 (16)0.0440 (17)0.0022 (13)0.0127 (13)0.0027 (13)
C3B0.0321 (14)0.0334 (14)0.0283 (14)0.0037 (11)0.0057 (11)0.0051 (11)
C4B0.0351 (15)0.0297 (14)0.0332 (14)0.0009 (12)0.0106 (11)0.0002 (11)
C5B0.0356 (15)0.0300 (13)0.0299 (14)0.0001 (11)0.0081 (11)0.0007 (11)
C6B0.0390 (16)0.0334 (14)0.0359 (15)0.0025 (12)0.0150 (12)0.0038 (12)
C7B0.0390 (16)0.0303 (14)0.0430 (16)0.0029 (12)0.0144 (13)0.0004 (12)
C8B0.058 (2)0.0322 (16)0.058 (2)0.0094 (15)0.0280 (17)0.0110 (14)
C9B0.0356 (15)0.0287 (14)0.0415 (16)0.0016 (12)0.0160 (12)0.0051 (12)
C10B0.0326 (14)0.0303 (14)0.0403 (16)0.0085 (11)0.0120 (12)0.0120 (12)
C11B0.0329 (15)0.057 (2)0.0435 (18)0.0055 (14)0.0102 (13)0.0132 (15)
C12B0.0404 (18)0.068 (2)0.0408 (18)0.0018 (16)0.0120 (14)0.0133 (16)
C13B0.0422 (17)0.0464 (17)0.0391 (17)0.0081 (14)0.0045 (13)0.0049 (14)
C14B0.0372 (16)0.0399 (16)0.0515 (19)0.0001 (13)0.0075 (14)0.0062 (14)
C15B0.0378 (16)0.0385 (16)0.0482 (18)0.0005 (13)0.0148 (14)0.0095 (13)
C16B0.0437 (17)0.0360 (15)0.0367 (16)0.0048 (13)0.0112 (13)0.0015 (12)
C17B0.055 (2)0.0398 (17)0.059 (2)0.0078 (16)0.0197 (17)0.0024 (15)
C18B0.071 (3)0.046 (2)0.060 (2)0.0206 (19)0.015 (2)0.0042 (17)
C19B0.051 (2)0.067 (2)0.047 (2)0.0254 (19)0.0099 (16)0.0043 (17)
C20B0.0385 (17)0.070 (2)0.0410 (18)0.0084 (16)0.0059 (14)0.0041 (16)
C21B0.0407 (17)0.0443 (17)0.0391 (16)0.0046 (14)0.0073 (13)0.0021 (13)
Geometric parameters (Å, º) top
Br1A—C13A1.903 (3)Br1B—C13B1.903 (3)
F1A—C19A1.359 (4)F1B—C19B1.357 (4)
O1A—C2A1.449 (4)O1B—C2B1.439 (4)
O1A—C3A1.345 (4)O1B—C3B1.348 (3)
O2A—C3A1.237 (4)O2B—C3B1.228 (4)
N1A—H1AA0.77 (3)N1B—H1BA0.87 (3)
N1A—H1AB0.77 (4)N1B—H1BB0.85 (4)
N1A—C5A1.348 (4)N1B—C5B1.346 (4)
C1A—H1AC0.9800C1B—H1BC0.9800
C1A—H1AD0.9800C1B—H1BD0.9800
C1A—H1AE0.9800C1B—H1BE0.9800
C1A—C2A1.489 (6)C1B—C2B1.519 (4)
C2A—H2AA0.9900C2B—H2BA0.9900
C2A—H2AB0.9900C2B—H2BB0.9900
C3A—C4A1.434 (4)C3B—C4B1.442 (4)
C4A—C5A1.379 (4)C4B—C5B1.382 (4)
C4A—C9A1.516 (4)C4B—C9B1.515 (4)
C5A—C6A1.466 (4)C5B—C6B1.469 (4)
C6A—H6A0.9500C6B—H6B0.9500
C6A—C7A1.350 (4)C6B—C7B1.363 (4)
C7A—C8A1.507 (4)C7B—C8B1.498 (4)
C7A—C16A1.478 (4)C7B—C16B1.477 (4)
C8A—H8AA0.9900C8B—H8BA0.9900
C8A—H8AB0.9900C8B—H8BB0.9900
C8A—C9A1.537 (4)C8B—C9B1.537 (4)
C9A—H9A1.0000C9B—H9B1.0000
C9A—C10A1.531 (4)C9B—C10B1.524 (4)
C10A—C11A1.386 (4)C10B—C11B1.391 (4)
C10A—C15A1.388 (4)C10B—C15B1.389 (4)
C11A—H11A0.9500C11B—H11B0.9500
C11A—C12A1.385 (4)C11B—C12B1.381 (5)
C12A—H12A0.9500C12B—H12B0.9500
C12A—C13A1.378 (5)C12B—C13B1.379 (5)
C13A—C14A1.377 (5)C13B—C14B1.382 (5)
C14A—H14A0.9500C14B—H14B0.9500
C14A—C15A1.381 (5)C14B—C15B1.377 (5)
C15A—H15A0.9500C15B—H15B0.9500
C16A—C17A1.388 (5)C16B—C17B1.404 (5)
C16A—C21A1.407 (4)C16B—C21B1.387 (5)
C17A—H17A0.9500C17B—H17B0.9500
C17A—C18A1.387 (5)C17B—C18B1.379 (5)
C18A—H18A0.9500C18B—H18B0.9500
C18A—C19A1.356 (5)C18B—C19B1.379 (6)
C19A—C20A1.378 (5)C19B—C20B1.348 (6)
C20A—H20A0.9500C20B—H20B0.9500
C20A—C21A1.384 (5)C20B—C21B1.389 (5)
C21A—H21A0.9500C21B—H21B0.9500
C3A—O1A—C2A117.3 (2)C3B—O1B—C2B116.9 (2)
H1AA—N1A—H1AB125 (4)H1BA—N1B—H1BB122 (3)
C5A—N1A—H1AA116 (2)C5B—N1B—H1BA120 (2)
C5A—N1A—H1AB118 (3)C5B—N1B—H1BB117 (2)
H1AC—C1A—H1AD109.5H1BC—C1B—H1BD109.5
H1AC—C1A—H1AE109.5H1BC—C1B—H1BE109.5
H1AD—C1A—H1AE109.5H1BD—C1B—H1BE109.5
C2A—C1A—H1AC109.5C2B—C1B—H1BC109.5
C2A—C1A—H1AD109.5C2B—C1B—H1BD109.5
C2A—C1A—H1AE109.5C2B—C1B—H1BE109.5
O1A—C2A—C1A106.4 (3)O1B—C2B—C1B105.4 (3)
O1A—C2A—H2AA110.4O1B—C2B—H2BA110.7
O1A—C2A—H2AB110.4O1B—C2B—H2BB110.7
C1A—C2A—H2AA110.4C1B—C2B—H2BA110.7
C1A—C2A—H2AB110.4C1B—C2B—H2BB110.7
H2AA—C2A—H2AB108.6H2BA—C2B—H2BB108.8
O1A—C3A—C4A112.1 (2)O1B—C3B—C4B111.6 (2)
O2A—C3A—O1A121.7 (3)O2B—C3B—O1B121.7 (3)
O2A—C3A—C4A126.2 (3)O2B—C3B—C4B126.7 (3)
C3A—C4A—C9A120.5 (3)C3B—C4B—C9B118.8 (2)
C5A—C4A—C3A120.7 (3)C5B—C4B—C3B120.2 (3)
C5A—C4A—C9A118.4 (3)C5B—C4B—C9B120.7 (3)
N1A—C5A—C4A124.0 (3)N1B—C5B—C4B124.9 (3)
N1A—C5A—C6A115.6 (3)N1B—C5B—C6B115.2 (3)
C4A—C5A—C6A120.4 (3)C4B—C5B—C6B119.9 (3)
C5A—C6A—H6A119.2C5B—C6B—H6B119.2
C7A—C6A—C5A121.5 (3)C7B—C6B—C5B121.7 (3)
C7A—C6A—H6A119.2C7B—C6B—H6B119.2
C6A—C7A—C8A118.2 (3)C6B—C7B—C8B119.0 (3)
C6A—C7A—C16A122.2 (3)C6B—C7B—C16B121.6 (3)
C16A—C7A—C8A119.6 (3)C16B—C7B—C8B119.1 (3)
C7A—C8A—H8AA109.1C7B—C8B—H8BA108.5
C7A—C8A—H8AB109.1C7B—C8B—H8BB108.5
C7A—C8A—C9A112.5 (2)C7B—C8B—C9B115.0 (3)
H8AA—C8A—H8AB107.8H8BA—C8B—H8BB107.5
C9A—C8A—H8AA109.1C9B—C8B—H8BA108.5
C9A—C8A—H8AB109.1C9B—C8B—H8BB108.5
C4A—C9A—C8A110.5 (2)C4B—C9B—C8B111.3 (2)
C4A—C9A—H9A107.3C4B—C9B—H9B106.5
C4A—C9A—C10A113.4 (2)C4B—C9B—C10B111.5 (2)
C8A—C9A—H9A107.3C8B—C9B—H9B106.5
C10A—C9A—C8A110.9 (2)C10B—C9B—C8B114.0 (3)
C10A—C9A—H9A107.3C10B—C9B—H9B106.5
C11A—C10A—C9A118.7 (3)C11B—C10B—C9B120.2 (3)
C11A—C10A—C15A118.0 (3)C15B—C10B—C9B121.9 (3)
C15A—C10A—C9A123.3 (3)C15B—C10B—C11B117.8 (3)
C10A—C11A—H11A119.1C10B—C11B—H11B119.3
C12A—C11A—C10A121.7 (3)C12B—C11B—C10B121.5 (3)
C12A—C11A—H11A119.1C12B—C11B—H11B119.3
C11A—C12A—H12A120.7C11B—C12B—H12B120.5
C13A—C12A—C11A118.5 (3)C13B—C12B—C11B119.0 (3)
C13A—C12A—H12A120.7C13B—C12B—H12B120.5
C12A—C13A—Br1A119.8 (2)C12B—C13B—Br1B120.4 (3)
C14A—C13A—Br1A118.8 (2)C12B—C13B—C14B121.2 (3)
C14A—C13A—C12A121.3 (3)C14B—C13B—Br1B118.5 (3)
C13A—C14A—H14A120.4C13B—C14B—H14B120.6
C13A—C14A—C15A119.2 (3)C15B—C14B—C13B118.8 (3)
C15A—C14A—H14A120.4C15B—C14B—H14B120.6
C10A—C15A—H15A119.4C10B—C15B—H15B119.1
C14A—C15A—C10A121.2 (3)C14B—C15B—C10B121.8 (3)
C14A—C15A—H15A119.4C14B—C15B—H15B119.1
C17A—C16A—C7A122.1 (3)C17B—C16B—C7B121.2 (3)
C17A—C16A—C21A117.3 (3)C21B—C16B—C7B121.2 (3)
C21A—C16A—C7A120.6 (3)C21B—C16B—C17B117.5 (3)
C16A—C17A—H17A119.1C16B—C17B—H17B119.3
C18A—C17A—C16A121.8 (3)C18B—C17B—C16B121.4 (4)
C18A—C17A—H17A119.1C18B—C17B—H17B119.3
C17A—C18A—H18A120.7C17B—C18B—H18B121.0
C19A—C18A—C17A118.6 (3)C17B—C18B—C19B118.1 (4)
C19A—C18A—H18A120.7C19B—C18B—H18B121.0
F1A—C19A—C20A118.7 (3)F1B—C19B—C18B118.9 (4)
C18A—C19A—F1A118.5 (3)C20B—C19B—F1B118.3 (4)
C18A—C19A—C20A122.8 (3)C20B—C19B—C18B122.7 (3)
C19A—C20A—H20A121.0C19B—C20B—H20B120.6
C19A—C20A—C21A118.0 (3)C19B—C20B—C21B118.9 (3)
C21A—C20A—H20A121.0C21B—C20B—H20B120.6
C16A—C21A—H21A119.3C16B—C21B—C20B121.3 (3)
C20A—C21A—C16A121.5 (3)C16B—C21B—H21B119.3
C20A—C21A—H21A119.3C20B—C21B—H21B119.3
Br1A—C13A—C14A—C15A178.8 (3)Br1B—C13B—C14B—C15B178.6 (2)
F1A—C19A—C20A—C21A177.9 (3)F1B—C19B—C20B—C21B178.3 (3)
O1A—C3A—C4A—C5A170.7 (3)O1B—C3B—C4B—C5B175.9 (3)
O1A—C3A—C4A—C9A2.3 (4)O1B—C3B—C4B—C9B1.7 (4)
O2A—C3A—C4A—C5A8.9 (5)O2B—C3B—C4B—C5B4.6 (5)
O2A—C3A—C4A—C9A178.1 (3)O2B—C3B—C4B—C9B178.8 (3)
N1A—C5A—C6A—C7A165.1 (3)N1B—C5B—C6B—C7B168.0 (3)
C2A—O1A—C3A—O2A6.0 (4)C2B—O1B—C3B—O2B4.4 (4)
C2A—O1A—C3A—C4A173.7 (3)C2B—O1B—C3B—C4B176.1 (2)
C3A—O1A—C2A—C1A179.5 (3)C3B—O1B—C2B—C1B179.4 (3)
C3A—C4A—C5A—N1A3.0 (5)C3B—C4B—C5B—N1B3.5 (5)
C3A—C4A—C5A—C6A175.7 (3)C3B—C4B—C5B—C6B176.9 (3)
C3A—C4A—C9A—C8A152.6 (3)C3B—C4B—C9B—C8B157.6 (3)
C3A—C4A—C9A—C10A82.2 (3)C3B—C4B—C9B—C10B73.9 (3)
C4A—C5A—C6A—C7A16.0 (4)C4B—C5B—C6B—C7B11.6 (5)
C4A—C9A—C10A—C11A155.2 (3)C4B—C9B—C10B—C11B118.5 (3)
C4A—C9A—C10A—C15A24.8 (4)C4B—C9B—C10B—C15B58.9 (4)
C5A—C4A—C9A—C8A34.3 (4)C5B—C4B—C9B—C8B28.3 (4)
C5A—C4A—C9A—C10A90.9 (3)C5B—C4B—C9B—C10B100.2 (3)
C5A—C6A—C7A—C8A1.0 (4)C5B—C6B—C7B—C8B2.8 (5)
C5A—C6A—C7A—C16A177.4 (3)C5B—C6B—C7B—C16B176.5 (3)
C6A—C7A—C8A—C9A33.8 (4)C6B—C7B—C8B—C9B29.7 (5)
C6A—C7A—C16A—C17A23.2 (5)C6B—C7B—C16B—C17B151.0 (3)
C6A—C7A—C16A—C21A153.7 (3)C6B—C7B—C16B—C21B25.7 (5)
C7A—C8A—C9A—C4A48.8 (3)C7B—C8B—C9B—C4B40.7 (4)
C7A—C8A—C9A—C10A77.8 (3)C7B—C8B—C9B—C10B86.4 (4)
C7A—C16A—C17A—C18A179.5 (3)C7B—C16B—C17B—C18B178.0 (3)
C7A—C16A—C21A—C20A179.1 (3)C7B—C16B—C21B—C20B179.6 (3)
C8A—C7A—C16A—C17A160.5 (3)C8B—C7B—C16B—C17B22.7 (5)
C8A—C7A—C16A—C21A22.6 (4)C8B—C7B—C16B—C21B160.6 (3)
C8A—C9A—C10A—C11A79.9 (3)C8B—C9B—C10B—C11B114.5 (3)
C8A—C9A—C10A—C15A100.2 (3)C8B—C9B—C10B—C15B68.1 (4)
C9A—C4A—C5A—N1A176.1 (3)C9B—C4B—C5B—N1B177.6 (3)
C9A—C4A—C5A—C6A2.7 (4)C9B—C4B—C5B—C6B2.9 (4)
C9A—C10A—C11A—C12A179.0 (3)C9B—C10B—C11B—C12B176.7 (3)
C9A—C10A—C15A—C14A178.5 (3)C9B—C10B—C15B—C14B177.2 (3)
C10A—C11A—C12A—C13A0.1 (5)C10B—C11B—C12B—C13B0.1 (5)
C11A—C10A—C15A—C14A1.5 (5)C11B—C10B—C15B—C14B0.3 (5)
C11A—C12A—C13A—Br1A179.3 (3)C11B—C12B—C13B—Br1B179.1 (3)
C11A—C12A—C13A—C14A0.9 (5)C11B—C12B—C13B—C14B1.0 (5)
C12A—C13A—C14A—C15A0.5 (5)C12B—C13B—C14B—C15B1.5 (5)
C13A—C14A—C15A—C10A0.8 (5)C13B—C14B—C15B—C10B0.8 (5)
C15A—C10A—C11A—C12A1.0 (5)C15B—C10B—C11B—C12B0.8 (5)
C16A—C7A—C8A—C9A149.8 (3)C16B—C7B—C8B—C9B156.5 (3)
C16A—C17A—C18A—C19A1.9 (6)C16B—C17B—C18B—C19B0.9 (6)
C17A—C16A—C21A—C20A2.0 (5)C17B—C16B—C21B—C20B2.8 (5)
C17A—C18A—C19A—F1A179.2 (3)C17B—C18B—C19B—F1B179.8 (4)
C17A—C18A—C19A—C20A1.2 (6)C17B—C18B—C19B—C20B1.7 (6)
C18A—C19A—C20A—C21A2.6 (6)C18B—C19B—C20B—C21B0.2 (6)
C19A—C20A—C21A—C16A0.9 (5)C19B—C20B—C21B—C16B2.1 (5)
C21A—C16A—C17A—C18A3.5 (5)C21B—C16B—C17B—C18B1.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AA···O2A0.77 (3)2.09 (3)2.698 (4)136 (3)
N1A—H1AB···O2Bi0.77 (4)2.17 (4)2.915 (4)162 (4)
N1B—H1BA···O2Aii0.87 (3)2.20 (4)3.044 (3)163 (3)
N1B—H1BB···O2B0.85 (4)2.07 (4)2.714 (3)132 (3)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AA···O2A0.77 (3)2.09 (3)2.698 (4)136 (3)
N1A—H1AB···O2Bi0.77 (4)2.17 (4)2.915 (4)162 (4)
N1B—H1BA···O2Aii0.87 (3)2.20 (4)3.044 (3)163 (3)
N1B—H1BB···O2B0.85 (4)2.07 (4)2.714 (3)132 (3)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x1/2, y+1/2, z+1/2.
 

Acknowledgements

BN thanks the UGC for financial assistance through a BSR one-time grant for the purchase of chemicals. MS thanks the DST for providing financial help for the research work through an INSPIRE Fellowship. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals
First citationFun, H.-K., Chia, T. S., Sapnakumari, M., Narayana, B. & Sarojini, B. K. (2012a). Acta Cryst. E68, o2680.  CSD CrossRef IUCr Journals
First citationFun, H.-K., Loh, W.-S., Sapnakumari, M., Narayana, B. & Sarojini, B. K. (2012b). Acta Cryst. E68, o2655–o2656.  CSD CrossRef CAS IUCr Journals
First citationFun, H.-K., Loh, W.-S., Sapnakumari, M., Narayana, B. & Sarojini, B. K. (2012c). Acta Cryst. E68, o2586.  CSD CrossRef IUCr Journals
First citationJasinski, J. P., Golen, J. A., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2012). Acta Cryst. E68, o585.  CSD CrossRef IUCr Journals
First citationKant, R., Gupta, V. K., Kapoor, K., Sapnakumari, M., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2917–o2918.  CSD CrossRef CAS IUCr Journals
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals
First citationSamshuddin, S., Narayana, B., Sarojini, B. K. & Madhu, L. N. (2013). Med. Chem. Res. 22, 3002–3011.  Web of Science CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds