metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages m493-m494

Poly[di-μ-aqua-di­aqua­bis­­(μ7-oxalato-κ9O1:O1:O1,O2:O2:O2′:O2′,O1′:O1′)calciumdicaesium]

aLaboratoire de Cristallographie-Thermodynamique, Faculté de Chimie USTHB BP 32 El-Alia, Bab Ezzouar 16111, Alger, Algeria, and bCRM2 UMR-CNRS 7036 Jean Barriol Institut, Lorraine Université BP 230, 54506 Vandoeuvre-lés-Nancy Cedex, France
*Correspondence e-mail: guehria_laidoudi@yahoo.fr

(Received 29 July 2013; accepted 12 August 2013; online 17 August 2013)

In the title compound, [CaCs2(C2O4)2(H2O)4]n, the Ca2+ ion, lying on a twofold rotation axis, is coordinated by four O atoms from two oxalate ligands and two bridging water mol­ecules in an octa­hedral geometry. The Cs+ ion is coordinated by seven O atoms from six oxalate ligands, one bridging water and one terminal water mol­ecule. The oxalate ligand displays a scarce high denticity. The structure contains parallel chain units runnig along [10-1], formed by two edge-sharing Cs polyhedra connected by CsO9 polyhedra connected by a face-sharing CaO6 octahedron. These chains are further linked by the oxalate ligands to build up a three-dimensional framework. O—H⋯O hydrogen bonds involving the water mol­ecules and the carboxyl­ate O atoms enhance the extended structure.

Related literature

For related compounds or structures, see: Chen et al. (2008[Chen, X.-A., Song, F.-P., Chang, X.-A., Zang, H.-G. & Xiao, W.-Q. (2008). Acta Cryst. E64, m983.]); Hursthouse et al. (2004[Hursthouse, M. B., Light, M. E. & Price, D. J. (2004). Angew. Chem. Int. Ed. 43, 472-475.]); Kolitsch (2004[Kolitsch, U. (2004). Acta Cryst. C60, m129-m133.]); Price et al. (1999[Price, D. J., Powell, A. K. & Wood, P. T. (1999). Polyhedron, 18, 2499-2503.]); Schwendtner & Kolitsch (2004[Schwendtner, K. & Kolitsch, U. (2004). Acta Cryst. E60, m659-m661.]); Wu & Liu (2010[Wu, J. & Liu, J. Q. (2010). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 40, 237-240.]).

[Scheme 1]

Experimental

Crystal data
  • [CaCs2(C2O4)2(H2O)4]

  • Mr = 554.00

  • Monoclinic, C 2/c

  • a = 16.8808 (4) Å

  • b = 7.3212 (2) Å

  • c = 13.5268 (3) Å

  • β = 128.364 (1)°

  • V = 1310.79 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.01 mm−1

  • T = 100 K

  • 0.26 × 0.22 × 0.16 mm

Data collection
  • Agilent Xcalibur EOS CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.229, Tmax = 0.382

  • 14337 measured reflections

  • 2196 independent reflections

  • 2189 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.060

  • S = 1.25

  • 2196 reflections

  • 104 parameters

  • 6 restraints

  • All H-atom parameters refined

  • Δρmax = 1.65 e Å−3

  • Δρmin = −1.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1⋯O2i 0.81 (7) 1.91 (7) 2.714 (4) 172 (6)
O1W—H2⋯O3ii 0.81 (4) 1.95 (4) 2.736 (2) 163 (7)
O2W—H3⋯O1Wiii 0.82 (3) 1.89 (3) 2.680 (2) 164 (5)
O2W—H4⋯O4iv 0.81 (4) 1.92 (3) 2.724 (3) 176 (7)
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) -x, -y, -z; (iii) -x, -y+1, -z; (iv) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

In oxalates, AxM(C2O4)2(H2O)n, containing alkaline A, and alkaline-earth M, the A–Mg oxalates (A = Na; Cs) are isostructural with Co(II) analogue (Schwendtner & Kolitsch, 2004), owing to the corresponding ionic radii which are approximately equal [0.65 and 0.72 Å for Co(II) and Mg(II), respectively]. However, the single crystals are not easily obtained, and their growths require alternative reagents, which are not incorporated in the structure (Chen et al., 2008; Kolitsch, 2004). It is the case for the title bi-metallic Cs–Ca compound, where Cr(III) oxide used in synthesis mixture does not react but serves probably in process growth as enhancing inclusion. The same specific single-crystal synthesis conditions are noticed in a mono-metallic Sr oxalate, which needs divalent transition metal to favour single crystals growth (Price et al., 1999). The title compound, investigated at 100 K, is isostructural with the Mg(II) analogue (Kolitsch, 2004) and the Co(II) analogue (Schwendtner & Kolitsch, 2004) previously studied at room temperature. In the title compound, the binuclear Cs units, formed by two edge-sharing Cs polyhedra, are connected by a face-sharing Ca octahedron runnig along [101] (Fig. 1), with a nearly linear Cs—Ca—Cs and Cs—Cs—Ca chain [175.41 (6) and 172.26 (8)°, respectively]. The Cs and Ca ions have the smallest separation of 4.0528 (4) Å, whereas the longest distance [5.6889 (5) Å] occurs between the adjacent Cs atoms bridged by O4 atoms. As shown in Fig. 2, the alkaline atom is nona-coordinated by seven O atoms from six oxalate ligands, one bridging water and one terminal water molecule, while the alkaline-earth atom, which is located on a twofold rotation axis, is bound to two equivalent oxalate groups and two water molecules, the later being in a cis arrangement (Fig. 2). In the CaO4(H2O)2 octahedron, the organic ligands are coordinate with the metal centre in an expected η4 chelation, observed usually with this rigid ligand. The two resulting five-membered rings are perpendicular, the dihedral angle being of 89.76 (6)°. The equatorial plane is defined by two equivalent aqua ligands in cis position and two equivalent O3 atoms, while the axial positions are occupied by O1 atoms. The maximum atomic deviation from the mean plane [O2w, Ca1, O3, O3iii, O2wiii; symmetry code: (iii) -x, y, -z+1/2] is 0.165 (2) Å for the O3 donor. In connecting the Cs and Ca polyhedra, the oxalate ligand acts as bis-chelate, forming five-menbered rings with the both cations. Moreover, it bridges the metal atoms via all its O atoms, and is surrounded by six Cs and one Ca atoms through the two carboxylate groups. One group (O1, C1, O2) bridges five atoms (4 Cs and 1 Ca) and adopts an unusual µ5:η3-η2 coordination mode; the other group (O3, C2, O4) bridges four atoms (3 Cs and 1 Ca) and adopts a common µ4:η2-η2 coordination mode. As a result, the oxalate dianion displays an interesting nonadenticity in its chelating and bridging coordination modes, involving three triply bonding O atoms (O2, O3 and O4) and a tetrabonding one (O1). In the overall packing, the Cs polyhedra, linked alternately by one edge (O1···O1) and one corner (O2 atom) in a one-dimensional ladder running approximately along the [110] direction, are interconnected by the vertices to generate a two-dimensional network drawing small hexagonal cavities (Fig. 3). The adjacent pseudo-layers thus obtained, are stacked along [101] through O4···O4 edges, to give rise to a dense three-dimensional framework. Water molecules provide links between the both metallic atoms. O—H···O hydrogen bonds involving the water molecules and the carboxylate O atoms enhance the extended structure (Table 1, Fig. 4).

Related literature top

For related compounds or structures, see: Chen et al. (2008); Hursthouse et al. (2004); Kolitsch (2004); Price et al. (1999); Schwendtner & Kolitsch (2004); Wu & Liu (2010).

Experimental top

The synthetic preparation was carried out in an aqueous solution at room temperature. The starting materials, caesium carbonate, trivalent chromium oxide and oxalic acid dihydrate, in equal stoechiometric amounts (0.5 mmol) were dissolved in deionized water (20 ml) and the resulting dark pink solution was stirred for two hours. The title compound crystallizes from the slowly evaporated solution after about one month and then filtered from chromium oxide powder. A few light pink crystals with prismatic geometry and suitable size for X-ray analysis were found trapped in colourless crystals of oxalic acid, then isolated, filtered and washed with diethyl ether. The light pink colour, which can not be removed after several washing, shows that small Cr(III) inclusion is present but not incorporated in the structure.

Refinement top

The H atoms were located in a difference Fourier map and were refined isotropically. The highest electron density in the final difference Fourier map is 0.76 Å from Cs1 and the deepest hole is 0.72 Å from Cs1.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The chain built of Cs polyhedra and Ca octahedra.
[Figure 2] Fig. 2. The metal atom environments of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -x+1/2, -y+1/2, -z+1; (ii) -x+1/2, y+1/2, -z+1/2; (iii) -x, y, -z+1/2; (iv) x, -y, z-1/2; (v) x, -y+1, z-1/2.]
[Figure 3] Fig. 3. The Cs polyhedra layer showing pseudo-hexagonal cavities.
[Figure 4] Fig. 4. The three-dimensional packing structure showing hydrogen bonds as dashed lines.
Poly[di-µ-aqua-diaquabis(µ7-oxalato-κ9O1:O1:O1,O2:O2:O2':O2',O1':O1')calciumdicaesium] top
Crystal data top
[CaCs2(C2O4)2(H2O)4]F(000) = 1032
Mr = 554.00Dx = 2.807 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1722 reflections
a = 16.8808 (4) Åθ = 1.9–32.0°
b = 7.3212 (2) ŵ = 6.01 mm1
c = 13.5268 (3) ÅT = 100 K
β = 128.364 (1)°Prismatic, pink
V = 1310.79 (6) Å30.26 × 0.22 × 0.16 mm
Z = 4
Data collection top
Agilent Xcalibur EOS CCD
diffractometer
2196 independent reflections
Radiation source: fine-focus sealed tube2189 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
w scansθmax = 32.0°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 2525
Tmin = 0.229, Tmax = 0.382k = 1010
14337 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024All H-atom parameters refined
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.0199P)2 + 5.1138P]
where P = (Fo2 + 2Fc2)/3
S = 1.25(Δ/σ)max < 0.001
2196 reflectionsΔρmax = 1.65 e Å3
104 parametersΔρmin = 1.14 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0048 (4)
Crystal data top
[CaCs2(C2O4)2(H2O)4]V = 1310.79 (6) Å3
Mr = 554.00Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.8808 (4) ŵ = 6.01 mm1
b = 7.3212 (2) ÅT = 100 K
c = 13.5268 (3) Å0.26 × 0.22 × 0.16 mm
β = 128.364 (1)°
Data collection top
Agilent Xcalibur EOS CCD
diffractometer
2196 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2189 reflections with I > 2σ(I)
Tmin = 0.229, Tmax = 0.382Rint = 0.056
14337 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0246 restraints
wR(F2) = 0.060All H-atom parameters refined
S = 1.25Δρmax = 1.65 e Å3
2196 reflectionsΔρmin = 1.14 e Å3
104 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.152844 (10)0.314498 (19)0.109026 (12)0.01416 (8)
Ca10.00000.33665 (10)0.25000.01801 (14)
C10.12874 (17)0.1846 (3)0.4980 (2)0.0118 (4)
O10.06123 (14)0.3069 (2)0.43831 (17)0.0135 (3)
O20.17036 (14)0.1342 (3)0.60819 (16)0.0183 (3)
C20.15913 (16)0.0871 (3)0.4234 (2)0.0114 (3)
O40.22599 (14)0.0311 (3)0.47650 (17)0.0179 (3)
O30.10886 (13)0.1373 (2)0.30886 (16)0.0133 (3)
O1W0.03349 (15)0.1582 (2)0.15099 (18)0.0161 (3)
H10.071 (3)0.159 (6)0.133 (5)0.033 (12)*
H20.049 (4)0.079 (5)0.202 (4)0.037 (12)*
O2W0.10155 (13)0.5272 (2)0.28003 (17)0.0162 (3)
H30.088 (4)0.632 (4)0.254 (4)0.027 (10)*
H40.154 (3)0.532 (8)0.351 (3)0.050 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.01329 (9)0.01645 (10)0.01254 (9)0.00098 (4)0.00792 (7)0.00063 (4)
Ca10.0185 (3)0.0180 (3)0.0172 (3)0.0000.0109 (3)0.000
C10.0101 (8)0.0146 (9)0.0100 (9)0.0015 (6)0.0060 (7)0.0013 (6)
O10.0136 (7)0.0154 (7)0.0114 (7)0.0021 (5)0.0077 (6)0.0001 (5)
O20.0168 (7)0.0263 (9)0.0110 (7)0.0042 (7)0.0082 (6)0.0034 (6)
C20.0111 (8)0.0115 (8)0.0113 (8)0.0003 (7)0.0068 (7)0.0013 (6)
O40.0160 (7)0.0200 (8)0.0154 (7)0.0066 (6)0.0086 (6)0.0012 (6)
O30.0151 (7)0.0138 (7)0.0110 (7)0.0018 (6)0.0082 (6)0.0005 (5)
O1W0.0188 (8)0.0156 (7)0.0158 (8)0.0026 (6)0.0117 (7)0.0031 (6)
O2W0.0132 (7)0.0142 (7)0.0154 (7)0.0014 (6)0.0060 (6)0.0022 (6)
Geometric parameters (Å, º) top
Cs1—O2i3.0837 (18)Ca1—O12.0823 (18)
Cs1—O4ii3.1206 (18)C1—O21.246 (3)
Cs1—O1W3.1369 (19)C1—O11.269 (3)
Cs1—O1iii3.2557 (18)C1—C21.559 (3)
Cs1—O2iv3.299 (2)C2—O41.238 (3)
Cs1—O1v3.3124 (17)C2—O31.275 (3)
Cs1—O2W3.318 (2)O1W—H10.81 (3)
Cs1—O4iv3.434 (2)O1W—H20.81 (3)
Cs1—O33.4688 (17)O2W—H30.82 (3)
Ca1—O2W2.0456 (18)O2W—H40.81 (3)
Ca1—O32.0797 (18)
O2i—Cs1—O4ii93.63 (5)O3iii—Ca1—C2iii23.63 (6)
O2i—Cs1—O1W163.78 (5)O3—Ca1—C2iii91.29 (7)
O4ii—Cs1—O1W98.53 (5)O1—Ca1—C2iii115.82 (7)
O2i—Cs1—O1iii110.34 (5)O1iii—Ca1—C2iii55.35 (6)
O4ii—Cs1—O1iii146.74 (5)C1iii—Ca1—C2iii31.60 (6)
O1W—Cs1—O1iii63.58 (5)C1—Ca1—C2iii110.84 (6)
O2i—Cs1—O2iv96.06 (5)O2Wiii—Ca1—C2147.17 (7)
O4ii—Cs1—O2iv106.19 (5)O2W—Ca1—C291.60 (6)
O1W—Cs1—O2iv70.28 (5)O3iii—Ca1—C291.29 (7)
O1iii—Cs1—O2iv94.20 (5)O3—Ca1—C223.63 (6)
O2i—Cs1—O1v115.89 (5)O1—Ca1—C255.35 (6)
O4ii—Cs1—O1v64.42 (5)O1iii—Ca1—C2115.82 (7)
O1W—Cs1—O1v79.29 (5)C1iii—Ca1—C2110.84 (6)
O1iii—Cs1—O1v84.04 (4)C1—Ca1—C231.60 (6)
O2iv—Cs1—O1v146.60 (4)C2iii—Ca1—C2100.91 (9)
O2i—Cs1—O2W63.16 (5)O2Wiii—Ca1—Cs1iii54.62 (5)
O4ii—Cs1—O2W127.09 (5)O2W—Ca1—Cs1iii129.31 (6)
O1W—Cs1—O2W116.03 (5)O3iii—Ca1—Cs1iii58.85 (5)
O1iii—Cs1—O2W53.63 (4)O3—Ca1—Cs1iii117.46 (5)
O2iv—Cs1—O2W122.16 (4)O1—Ca1—Cs1iii52.98 (5)
O1v—Cs1—O2W83.25 (4)O1iii—Ca1—Cs1iii126.43 (5)
O2i—Cs1—O4iv109.66 (5)C1iii—Ca1—Cs1iii107.11 (5)
O4ii—Cs1—O4iv59.65 (6)C1—Ca1—Cs1iii71.01 (5)
O1W—Cs1—O4iv68.25 (5)C2iii—Ca1—Cs1iii79.22 (4)
O1iii—Cs1—O4iv127.01 (4)C2—Ca1—Cs1iii97.83 (4)
O2iv—Cs1—O4iv48.27 (4)O2Wiii—Ca1—Cs1129.31 (6)
O1v—Cs1—O4iv107.77 (4)O2W—Ca1—Cs154.62 (5)
O2W—Cs1—O4iv168.93 (4)O3iii—Ca1—Cs1117.46 (5)
O2i—Cs1—O365.75 (5)O3—Ca1—Cs158.85 (5)
O4ii—Cs1—O3158.59 (4)O1—Ca1—Cs1126.43 (5)
O1W—Cs1—O3100.76 (5)O1iii—Ca1—Cs152.98 (5)
O1iii—Cs1—O353.03 (4)C1iii—Ca1—Cs171.01 (5)
O2iv—Cs1—O372.14 (4)C1—Ca1—Cs1107.11 (5)
O1v—Cs1—O3128.54 (4)C2iii—Ca1—Cs197.83 (4)
O2W—Cs1—O350.03 (4)C2—Ca1—Cs179.22 (4)
O4iv—Cs1—O3120.07 (4)Cs1iii—Ca1—Cs1175.41 (2)
O2i—Cs1—C1iv112.56 (5)O2Wiii—Ca1—H380.6 (9)
O4ii—Cs1—C1iv97.66 (5)O2W—Ca1—H314.7 (9)
O1W—Cs1—C1iv55.28 (5)O3iii—Ca1—H3161.3 (9)
O1iii—Cs1—C1iv94.08 (4)O3—Ca1—H3102.5 (9)
O2iv—Cs1—C1iv17.78 (4)O1—Ca1—H3102.7 (10)
O1v—Cs1—C1iv128.86 (4)O1iii—Ca1—H387.3 (10)
O2W—Cs1—C1iv134.64 (5)C1iii—Ca1—H3110.7 (10)
O4iv—Cs1—C1iv38.09 (4)C1—Ca1—H3107.0 (10)
O3—Cs1—C1iv85.85 (4)C2iii—Ca1—H3141.0 (10)
O2i—Cs1—C1v98.81 (5)C2—Ca1—H3106.2 (9)
O4ii—Cs1—C1v56.66 (5)Cs1iii—Ca1—H3123.2 (10)
O1W—Cs1—C1v96.84 (5)Cs1—Ca1—H361.3 (10)
O1iii—Cs1—C1v95.90 (5)O2Wiii—Ca1—H4100.2 (12)
O2iv—Cs1—C1v157.84 (5)O2W—Ca1—H416.9 (10)
O1v—Cs1—C1v18.14 (4)O3iii—Ca1—H4169.1 (11)
O2W—Cs1—C1v79.44 (5)O3—Ca1—H479.6 (12)
O4iv—Cs1—C1v110.71 (4)O1—Ca1—H480.4 (10)
O3—Cs1—C1v129.22 (4)O1iii—Ca1—H4106.6 (10)
C1iv—Cs1—C1v141.18 (6)C1iii—Ca1—H4129.7 (10)
O2i—Cs1—C2iv119.80 (5)C1—Ca1—H478.8 (10)
O4ii—Cs1—C2iv75.48 (5)C2iii—Ca1—H4159.8 (11)
O1W—Cs1—C2iv54.11 (5)C2—Ca1—H477.8 (11)
O1iii—Cs1—C2iv109.27 (4)Cs1iii—Ca1—H4121.0 (11)
O2iv—Cs1—C2iv37.89 (4)Cs1—Ca1—H462.0 (11)
O1v—Cs1—C2iv111.62 (4)H3—Ca1—H429.4 (14)
O2W—Cs1—C2iv157.40 (4)O2—C1—O1125.9 (2)
O4iv—Cs1—C2iv17.93 (4)O2—C1—C2118.1 (2)
O3—Cs1—C2iv108.86 (4)O1—C1—C2116.0 (2)
C1iv—Cs1—C2iv23.10 (5)O2—C1—Ca1166.71 (17)
C1v—Cs1—C2iv119.95 (4)C2—C1—Ca174.64 (12)
O2i—Cs1—H1154.3 (7)O2—C1—Cs1vi53.94 (13)
O4ii—Cs1—H1111.6 (6)O1—C1—Cs1vi138.48 (15)
O1W—Cs1—H114.1 (5)C2—C1—Cs1vi79.72 (11)
O1iii—Cs1—H149.6 (5)Ca1—C1—Cs1vi130.00 (7)
O2iv—Cs1—H172.7 (8)O2—C1—Cs1vii88.32 (14)
O1v—Cs1—H181.2 (8)O1—C1—Cs1vii54.36 (11)
O2W—Cs1—H1102.6 (6)C2—C1—Cs1vii133.18 (13)
O4iv—Cs1—H180.5 (6)Ca1—C1—Cs1vii84.67 (5)
O3—Cs1—H188.6 (6)Cs1vi—C1—Cs1vii141.18 (6)
C1iv—Cs1—H160.7 (8)C1—O1—Ca1114.80 (15)
C1v—Cs1—H199.3 (8)C1—O1—Cs1iii125.89 (14)
C2iv—Cs1—H164.9 (6)Ca1—O1—Cs1iii96.32 (6)
O2Wiii—Ca1—O2W94.03 (11)C1—O1—Cs1vii107.50 (14)
O2Wiii—Ca1—O3iii88.28 (7)Ca1—O1—Cs1vii115.34 (7)
O2W—Ca1—O3iii170.75 (7)Cs1iii—O1—Cs1vii95.96 (4)
O2Wiii—Ca1—O3170.75 (7)C1—O2—Cs1i147.27 (17)
O2W—Ca1—O388.28 (7)C1—O2—Cs1vi108.28 (15)
O3iii—Ca1—O390.86 (10)Cs1i—O2—Cs1vi97.86 (5)
O2Wiii—Ca1—O191.87 (7)O4—C2—O3125.9 (2)
O2W—Ca1—O196.30 (7)O4—C2—C1119.50 (19)
O3iii—Ca1—O192.57 (7)O3—C2—C1114.60 (18)
O3—Ca1—O178.97 (7)O4—C2—Ca1166.69 (16)
O2Wiii—Ca1—O1iii96.30 (7)C1—C2—Ca173.76 (11)
O2W—Ca1—O1iii91.87 (7)O4—C2—Cs1vi58.69 (13)
O3iii—Ca1—O1iii78.97 (7)O3—C2—Cs1vi137.27 (14)
O3—Ca1—O1iii92.57 (7)C1—C2—Cs1vi77.18 (11)
O1—Ca1—O1iii168.01 (10)Ca1—C2—Cs1vi128.24 (7)
O2Wiii—Ca1—C1iii95.70 (7)C2—O4—Cs1viii127.57 (15)
O2W—Ca1—C1iii115.59 (7)C2—O4—Cs1vi103.37 (14)
O3iii—Ca1—C1iii55.22 (6)Cs1viii—O4—Cs1vi120.35 (6)
O3—Ca1—C1iii91.35 (7)C2—O3—Ca1115.54 (14)
O1—Ca1—C1iii146.48 (7)C2—O3—Cs1138.80 (14)
O1iii—Ca1—C1iii23.78 (6)Ca1—O3—Cs190.28 (6)
O2Wiii—Ca1—C1115.59 (7)Cs1—O1W—H195 (4)
O2W—Ca1—C195.70 (7)Cs1—O1W—H2141 (4)
O3iii—Ca1—C191.35 (7)H1—O1W—H2111 (5)
O3—Ca1—C155.22 (6)Ca1—O2W—Cs195.21 (6)
O1—Ca1—C123.78 (6)Ca1—O2W—H3126 (3)
O1iii—Ca1—C1146.48 (7)Cs1—O2W—H3105 (3)
C1iii—Ca1—C1134.14 (9)Ca1—O2W—H4116 (4)
O2Wiii—Ca1—C2iii91.60 (7)Cs1—O2W—H4106 (4)
O2W—Ca1—C2iii147.17 (7)H3—O2W—H4106 (5)
O2i—Cs1—Ca1—O2Wiii115.19 (8)O2—C1—O1—Cs1vii55.7 (3)
O4ii—Cs1—Ca1—O2Wiii39.97 (10)C2—C1—O1—Cs1vii125.96 (15)
O1W—Cs1—Ca1—O2Wiii79.43 (7)Ca1—C1—O1—Cs1vii129.79 (16)
O1iii—Cs1—Ca1—O2Wiii63.90 (9)Cs1vi—C1—O1—Cs1vii129.51 (16)
O2iv—Cs1—Ca1—O2Wiii149.93 (7)O2Wiii—Ca1—O1—C1175.89 (16)
O1v—Cs1—Ca1—O2Wiii0.17 (7)O2W—Ca1—O1—C189.85 (17)
O2W—Cs1—Ca1—O2Wiii61.95 (13)O3iii—Ca1—O1—C187.52 (16)
O4iv—Cs1—Ca1—O2Wiii135.51 (8)O3—Ca1—O1—C12.85 (16)
O3—Cs1—Ca1—O2Wiii174.67 (9)O1iii—Ca1—O1—C142.85 (15)
C1iv—Cs1—Ca1—O2Wiii134.13 (7)C1iii—Ca1—O1—C172.6 (2)
C1v—Cs1—Ca1—O2Wiii18.20 (7)C2iii—Ca1—O1—C183.21 (17)
C2iv—Cs1—Ca1—O2Wiii125.01 (8)C2—Ca1—O1—C12.27 (14)
O2i—Cs1—Ca1—O2W53.23 (7)Cs1iii—Ca1—O1—C1134.50 (17)
O4ii—Cs1—Ca1—O2W21.98 (10)Cs1—Ca1—O1—C139.83 (18)
O1W—Cs1—Ca1—O2W141.38 (7)O2Wiii—Ca1—O1—Cs1iii41.39 (6)
O1iii—Cs1—Ca1—O2W125.86 (9)O2W—Ca1—O1—Cs1iii135.65 (6)
O2iv—Cs1—Ca1—O2W148.11 (7)O3iii—Ca1—O1—Cs1iii46.97 (6)
O1v—Cs1—Ca1—O2W61.78 (7)O3—Ca1—O1—Cs1iii137.35 (7)
O4iv—Cs1—Ca1—O2W162.53 (8)O1iii—Ca1—O1—Cs1iii91.7 (5)
O3—Cs1—Ca1—O2W112.72 (8)C1iii—Ca1—O1—Cs1iii61.87 (12)
C1iv—Cs1—Ca1—O2W163.92 (7)C1—Ca1—O1—Cs1iii134.50 (18)
C1v—Cs1—Ca1—O2W43.75 (7)C2iii—Ca1—O1—Cs1iii51.29 (7)
C2iv—Cs1—Ca1—O2W173.04 (7)C2—Ca1—O1—Cs1iii136.77 (8)
O2i—Cs1—Ca1—O3iii132.36 (7)Cs1—Ca1—O1—Cs1iii174.33 (3)
O4ii—Cs1—Ca1—O3iii152.42 (10)O2Wiii—Ca1—O1—Cs1vii58.29 (8)
O1W—Cs1—Ca1—O3iii33.02 (7)O2W—Ca1—O1—Cs1vii35.97 (8)
O1iii—Cs1—Ca1—O3iii48.55 (8)O3iii—Ca1—O1—Cs1vii146.65 (8)
O2iv—Cs1—Ca1—O3iii37.49 (6)O3—Ca1—O1—Cs1vii122.98 (8)
O1v—Cs1—Ca1—O3iii112.62 (6)O1iii—Ca1—O1—Cs1vii168.7 (4)
O2W—Cs1—Ca1—O3iii174.40 (8)C1iii—Ca1—O1—Cs1vii161.55 (9)
O4iv—Cs1—Ca1—O3iii23.07 (8)C1—Ca1—O1—Cs1vii125.83 (19)
O3—Cs1—Ca1—O3iii72.88 (11)C2iii—Ca1—O1—Cs1vii150.97 (6)
C1iv—Cs1—Ca1—O3iii21.68 (7)C2—Ca1—O1—Cs1vii123.55 (10)
C1v—Cs1—Ca1—O3iii130.65 (7)Cs1iii—Ca1—O1—Cs1vii99.68 (7)
C2iv—Cs1—Ca1—O3iii12.56 (7)Cs1—Ca1—O1—Cs1vii86.00 (7)
O2i—Cs1—Ca1—O359.48 (7)O1—C1—O2—Cs1i90.7 (4)
O4ii—Cs1—Ca1—O3134.70 (10)C2—C1—O2—Cs1i91.0 (3)
O1W—Cs1—Ca1—O3105.90 (7)Ca1—C1—O2—Cs1i106.6 (7)
O1iii—Cs1—Ca1—O3121.43 (8)Cs1vi—C1—O2—Cs1i141.3 (3)
O2iv—Cs1—Ca1—O335.39 (7)Cs1vii—C1—O2—Cs1i48.5 (3)
O1v—Cs1—Ca1—O3174.50 (6)O1—C1—O2—Cs1vi128.0 (2)
O2W—Cs1—Ca1—O3112.72 (8)C2—C1—O2—Cs1vi50.3 (2)
O4iv—Cs1—Ca1—O349.81 (8)Ca1—C1—O2—Cs1vi112.1 (7)
C1iv—Cs1—Ca1—O351.20 (7)Cs1vii—C1—O2—Cs1vi170.22 (7)
C1v—Cs1—Ca1—O3156.47 (7)O2—C1—C2—O43.0 (3)
C2iv—Cs1—Ca1—O360.32 (7)O1—C1—C2—O4178.5 (2)
O2i—Cs1—Ca1—O115.86 (8)Ca1—C1—C2—O4178.8 (2)
O4ii—Cs1—Ca1—O191.08 (11)Cs1vi—C1—C2—O442.18 (19)
O1W—Cs1—Ca1—O1149.52 (7)Cs1vii—C1—C2—O4114.1 (2)
O1iii—Cs1—Ca1—O1165.05 (12)O2—C1—C2—O3175.6 (2)
O2iv—Cs1—Ca1—O179.01 (7)O1—C1—C2—O32.9 (3)
O1v—Cs1—Ca1—O1130.88 (6)Ca1—C1—C2—O30.25 (16)
O2W—Cs1—Ca1—O169.10 (9)Cs1vi—C1—C2—O3136.42 (18)
O4iv—Cs1—Ca1—O193.43 (8)Cs1vii—C1—C2—O367.3 (2)
O3—Cs1—Ca1—O143.62 (8)O2—C1—C2—Ca1175.9 (2)
C1iv—Cs1—Ca1—O194.82 (7)O1—C1—C2—Ca12.63 (16)
C1v—Cs1—Ca1—O1112.85 (7)Cs1vi—C1—C2—Ca1136.67 (5)
C2iv—Cs1—Ca1—O1103.94 (7)Cs1vii—C1—C2—Ca167.05 (14)
O2i—Cs1—Ca1—O1iii179.09 (7)O2—C1—C2—Cs1vi39.20 (19)
O4ii—Cs1—Ca1—O1iii103.88 (10)O1—C1—C2—Cs1vi139.29 (19)
O1W—Cs1—Ca1—O1iii15.53 (7)Ca1—C1—C2—Cs1vi136.67 (5)
O2iv—Cs1—Ca1—O1iii86.03 (7)Cs1vii—C1—C2—Cs1vi156.28 (15)
O1v—Cs1—Ca1—O1iii64.08 (8)O2Wiii—Ca1—C2—O4174.0 (7)
O2W—Cs1—Ca1—O1iii125.86 (9)O2W—Ca1—C2—O486.1 (7)
O4iv—Cs1—Ca1—O1iii71.61 (8)O3iii—Ca1—C2—O485.2 (7)
O3—Cs1—Ca1—O1iii121.43 (8)O3—Ca1—C2—O44.0 (7)
C1iv—Cs1—Ca1—O1iii70.23 (7)O1—Ca1—C2—O4177.4 (8)
C1v—Cs1—Ca1—O1iii82.10 (7)O1iii—Ca1—C2—O46.8 (7)
C2iv—Cs1—Ca1—O1iii61.11 (7)C1iii—Ca1—C2—O432.2 (7)
O2i—Cs1—Ca1—C1iii163.20 (6)C1—Ca1—C2—O4175.6 (8)
O4ii—Cs1—Ca1—C1iii121.58 (10)C2iii—Ca1—C2—O463.4 (7)
O1W—Cs1—Ca1—C1iii2.18 (6)Cs1iii—Ca1—C2—O4143.9 (7)
O1iii—Cs1—Ca1—C1iii17.71 (7)Cs1—Ca1—C2—O432.6 (7)
O2iv—Cs1—Ca1—C1iii68.32 (6)O2Wiii—Ca1—C2—O3178.02 (16)
O1v—Cs1—Ca1—C1iii81.78 (6)O2W—Ca1—C2—O382.03 (17)
O2W—Cs1—Ca1—C1iii143.56 (8)O3iii—Ca1—C2—O389.18 (18)
O4iv—Cs1—Ca1—C1iii53.90 (7)O1—Ca1—C2—O3178.59 (19)
O3—Cs1—Ca1—C1iii103.72 (7)O1iii—Ca1—C2—O310.82 (18)
C1iv—Cs1—Ca1—C1iii52.52 (7)C1iii—Ca1—C2—O336.19 (17)
C1v—Cs1—Ca1—C1iii99.81 (5)C1—Ca1—C2—O3179.7 (2)
C2iv—Cs1—Ca1—C1iii43.40 (6)C2iii—Ca1—C2—O367.45 (15)
O2i—Cs1—Ca1—C131.54 (6)Cs1iii—Ca1—C2—O3147.91 (15)
O4ii—Cs1—Ca1—C1106.76 (10)Cs1—Ca1—C2—O328.54 (15)
O1W—Cs1—Ca1—C1133.84 (6)O2Wiii—Ca1—C2—C11.64 (19)
O1iii—Cs1—Ca1—C1149.37 (8)O2W—Ca1—C2—C198.31 (12)
O2iv—Cs1—Ca1—C163.34 (6)O3iii—Ca1—C2—C190.48 (12)
O1v—Cs1—Ca1—C1146.56 (6)O3—Ca1—C2—C1179.7 (2)
O2W—Cs1—Ca1—C184.78 (8)O1—Ca1—C2—C11.75 (11)
O4iv—Cs1—Ca1—C177.76 (7)O1iii—Ca1—C2—C1168.84 (11)
O3—Cs1—Ca1—C127.94 (7)C1iii—Ca1—C2—C1143.47 (10)
C1iv—Cs1—Ca1—C179.14 (4)C2iii—Ca1—C2—C1112.21 (12)
C1v—Cs1—Ca1—C1128.53 (6)Cs1iii—Ca1—C2—C131.75 (11)
C2iv—Cs1—Ca1—C188.26 (6)Cs1—Ca1—C2—C1151.80 (11)
O2i—Cs1—Ca1—C2iii146.25 (6)O2Wiii—Ca1—C2—Cs1vi56.78 (16)
O4ii—Cs1—Ca1—C2iii138.54 (9)O2W—Ca1—C2—Cs1vi156.73 (9)
O1W—Cs1—Ca1—C2iii19.14 (6)O3iii—Ca1—C2—Cs1vi32.05 (9)
O1iii—Cs1—Ca1—C2iii34.66 (7)O3—Ca1—C2—Cs1vi121.23 (19)
O2iv—Cs1—Ca1—C2iii51.37 (5)O1—Ca1—C2—Cs1vi60.17 (9)
O1v—Cs1—Ca1—C2iii98.74 (5)O1iii—Ca1—C2—Cs1vi110.41 (9)
O2W—Cs1—Ca1—C2iii160.52 (8)C1iii—Ca1—C2—Cs1vi85.05 (9)
O4iv—Cs1—Ca1—C2iii36.95 (7)C1—Ca1—C2—Cs1vi58.42 (11)
O3—Cs1—Ca1—C2iii86.76 (7)C2iii—Ca1—C2—Cs1vi53.78 (6)
C1iv—Cs1—Ca1—C2iii35.56 (6)Cs1iii—Ca1—C2—Cs1vi26.67 (8)
C1v—Cs1—Ca1—C2iii116.76 (6)Cs1—Ca1—C2—Cs1vi149.78 (8)
C2iv—Cs1—Ca1—C2iii26.45 (8)O3—C2—O4—Cs1viii18.6 (3)
O2i—Cs1—Ca1—C246.56 (6)C1—C2—O4—Cs1viii163.01 (13)
O4ii—Cs1—Ca1—C2121.77 (9)Ca1—C2—O4—Cs1viii21.8 (8)
O1W—Cs1—Ca1—C2118.83 (6)Cs1vi—C2—O4—Cs1viii146.96 (19)
O1iii—Cs1—Ca1—C2134.35 (7)O3—C2—O4—Cs1vi128.4 (2)
O2iv—Cs1—Ca1—C248.32 (5)C1—C2—O4—Cs1vi50.0 (2)
O1v—Cs1—Ca1—C2161.57 (5)Ca1—C2—O4—Cs1vi125.2 (7)
O2W—Cs1—Ca1—C299.79 (7)O4—C2—O3—Ca1178.86 (19)
O4iv—Cs1—Ca1—C262.74 (7)C1—C2—O3—Ca10.4 (2)
O3—Cs1—Ca1—C212.93 (7)Cs1vi—C2—O3—Ca198.19 (19)
C1iv—Cs1—Ca1—C264.13 (6)O4—C2—O3—Cs157.5 (3)
C1v—Cs1—Ca1—C2143.54 (6)C1—C2—O3—Cs1123.99 (18)
C2iv—Cs1—Ca1—C273.24 (2)Ca1—C2—O3—Cs1123.6 (2)
O2Wiii—Ca1—C1—O215.1 (8)Cs1vi—C2—O3—Cs1138.18 (13)
O2W—Ca1—C1—O2112.3 (7)O2W—Ca1—O3—C297.94 (16)
O3iii—Ca1—C1—O273.7 (8)O3iii—Ca1—O3—C291.27 (16)
O3—Ca1—C1—O2163.8 (8)O1—Ca1—O3—C21.18 (16)
O1—Ca1—C1—O219.6 (7)O1iii—Ca1—O3—C2170.26 (16)
O1iii—Ca1—C1—O2145.6 (7)C1iii—Ca1—O3—C2146.50 (16)
C1iii—Ca1—C1—O2113.1 (8)C1—Ca1—O3—C20.22 (14)
C2iii—Ca1—C1—O287.4 (7)C2iii—Ca1—O3—C2114.89 (16)
C2—Ca1—C1—O2164.0 (8)Cs1iii—Ca1—O3—C236.38 (17)
Cs1iii—Ca1—C1—O217.4 (7)Cs1—Ca1—O3—C2146.74 (17)
Cs1—Ca1—C1—O2167.0 (7)O2W—Ca1—O3—Cs148.80 (6)
O2Wiii—Ca1—C1—O14.56 (18)O3iii—Ca1—O3—Cs1121.99 (6)
O2W—Ca1—C1—O192.68 (17)O1—Ca1—O3—Cs1145.56 (6)
O3iii—Ca1—C1—O193.30 (16)O1iii—Ca1—O3—Cs143.00 (6)
O3—Ca1—C1—O1176.60 (19)C1iii—Ca1—O3—Cs166.76 (5)
O1iii—Ca1—C1—O1165.18 (13)C1—Ca1—O3—Cs1146.96 (8)
C1iii—Ca1—C1—O1132.75 (17)C2iii—Ca1—O3—Cs198.37 (5)
C2iii—Ca1—C1—O1106.99 (16)C2—Ca1—O3—Cs1146.74 (17)
C2—Ca1—C1—O1176.4 (2)Cs1iii—Ca1—O3—Cs1176.877 (14)
Cs1iii—Ca1—C1—O137.03 (15)O2i—Cs1—O3—C219.6 (2)
Cs1—Ca1—C1—O1147.37 (15)O4ii—Cs1—O3—C23.0 (3)
O2Wiii—Ca1—C1—C2179.01 (11)O1W—Cs1—O3—C2150.9 (2)
O2W—Ca1—C1—C283.74 (12)O1iii—Cs1—O3—C2164.4 (2)
O3iii—Ca1—C1—C290.27 (12)O2iv—Cs1—O3—C285.8 (2)
O3—Ca1—C1—C20.17 (11)O1v—Cs1—O3—C2124.3 (2)
O1—Ca1—C1—C2176.4 (2)O2W—Cs1—O3—C294.1 (2)
O1iii—Ca1—C1—C218.39 (18)O4iv—Cs1—O3—C279.9 (2)
C1iii—Ca1—C1—C250.82 (10)C1iv—Cs1—O3—C297.4 (2)
C2iii—Ca1—C1—C276.58 (14)C1v—Cs1—O3—C2101.0 (2)
Cs1iii—Ca1—C1—C2146.54 (11)C2iv—Cs1—O3—C295.3 (2)
Cs1—Ca1—C1—C229.06 (11)O2i—Cs1—O3—Ca1111.65 (7)
O2Wiii—Ca1—C1—Cs1vi117.19 (10)O4ii—Cs1—O3—Ca1128.25 (11)
O2W—Ca1—C1—Cs1vi145.57 (10)O1W—Cs1—O3—Ca177.83 (6)
O3iii—Ca1—C1—Cs1vi28.45 (10)O1iii—Cs1—O3—Ca133.05 (5)
O3—Ca1—C1—Cs1vi61.65 (9)O2iv—Cs1—O3—Ca1142.87 (7)
O1—Ca1—C1—Cs1vi121.8 (2)O1v—Cs1—O3—Ca16.97 (8)
O1iii—Ca1—C1—Cs1vi43.43 (17)O2W—Cs1—O3—Ca137.23 (5)
C1iii—Ca1—C1—Cs1vi11.00 (6)O4iv—Cs1—O3—Ca1148.82 (5)
C2iii—Ca1—C1—Cs1vi14.76 (11)C1iv—Cs1—O3—Ca1131.32 (6)
C2—Ca1—C1—Cs1vi61.82 (11)C1v—Cs1—O3—Ca130.32 (8)
Cs1iii—Ca1—C1—Cs1vi84.72 (8)C2iv—Cs1—O3—Ca1133.39 (5)
Cs1—Ca1—C1—Cs1vi90.88 (8)O2Wiii—Ca1—O2W—Cs1136.80 (8)
O2Wiii—Ca1—C1—Cs1vii43.40 (8)O3—Ca1—O2W—Cs152.16 (6)
O2W—Ca1—C1—Cs1vii53.84 (7)O1—Ca1—O2W—Cs1130.87 (6)
O3iii—Ca1—C1—Cs1vii132.14 (6)O1iii—Ca1—O2W—Cs140.35 (6)
O3—Ca1—C1—Cs1vii137.76 (8)C1iii—Ca1—O2W—Cs138.51 (8)
O1—Ca1—C1—Cs1vii38.84 (15)C1—Ca1—O2W—Cs1106.96 (6)
O1iii—Ca1—C1—Cs1vii155.98 (10)C2iii—Ca1—O2W—Cs137.56 (14)
C1iii—Ca1—C1—Cs1vii171.59 (5)C2—Ca1—O2W—Cs175.56 (5)
C2iii—Ca1—C1—Cs1vii145.83 (5)Cs1iii—Ca1—O2W—Cs1177.031 (16)
C2—Ca1—C1—Cs1vii137.59 (12)O2i—Cs1—O2W—Ca1117.98 (8)
Cs1iii—Ca1—C1—Cs1vii75.87 (3)O4ii—Cs1—O2W—Ca1169.09 (5)
Cs1—Ca1—C1—Cs1vii108.53 (3)O1W—Cs1—O2W—Ca143.91 (7)
O2—C1—O1—Ca1174.53 (19)O1iii—Cs1—O2W—Ca130.93 (5)
C2—C1—O1—Ca13.8 (2)O2iv—Cs1—O2W—Ca138.25 (8)
Cs1vi—C1—O1—Ca1100.7 (2)O1v—Cs1—O2W—Ca1118.48 (6)
Cs1vii—C1—O1—Ca1129.79 (16)O4iv—Cs1—O2W—Ca166.5 (2)
O2—C1—O1—Cs1iii55.6 (3)O3—Cs1—O2W—Ca138.14 (5)
C2—C1—O1—Cs1iii122.78 (17)C1iv—Cs1—O2W—Ca121.98 (9)
Ca1—C1—O1—Cs1iii118.94 (19)C1v—Cs1—O2W—Ca1136.42 (7)
Cs1vi—C1—O1—Cs1iii18.2 (3)C2iv—Cs1—O2W—Ca114.46 (15)
Cs1vii—C1—O1—Cs1iii111.26 (16)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y, z+1/2; (iv) x, y, z1/2; (v) x, y+1, z1/2; (vi) x, y, z+1/2; (vii) x, y+1, z+1/2; (viii) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1···O2iii0.81 (7)1.91 (7)2.714 (4)172 (6)
O1W—H2···O3ix0.81 (4)1.95 (4)2.736 (2)163 (7)
O2W—H3···O1Wx0.82 (3)1.89 (3)2.680 (2)164 (5)
O2W—H4···O4i0.81 (4)1.92 (3)2.724 (3)176 (7)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (iii) x, y, z+1/2; (ix) x, y, z; (x) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1···O2i0.81 (7)1.91 (7)2.714 (4)172 (6)
O1W—H2···O3ii0.81 (4)1.95 (4)2.736 (2)163 (7)
O2W—H3···O1Wiii0.82 (3)1.89 (3)2.680 (2)164 (5)
O2W—H4···O4iv0.81 (4)1.92 (3)2.724 (3)176 (7)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z; (iii) x, y+1, z; (iv) x+1/2, y+1/2, z+1.
 

Acknowledgements

The authors thank E. Wenger, Service Commun de Diffractométrie, CRM2 UMR-CNRS 7036, Jean Barriol Institut, Lorraine Université BP 230, 54506 Vandoeuvre-lés-Nancy Cedex France, for X-ray data collection. We are grateful for financial support from the project CMEP-TASSILI programme (MESRS-Algeria and MDU-France).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChen, X.-A., Song, F.-P., Chang, X.-A., Zang, H.-G. & Xiao, W.-Q. (2008). Acta Cryst. E64, m983.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHursthouse, M. B., Light, M. E. & Price, D. J. (2004). Angew. Chem. Int. Ed. 43, 472–475.  Web of Science CSD CrossRef CAS Google Scholar
First citationKolitsch, U. (2004). Acta Cryst. C60, m129–m133.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPrice, D. J., Powell, A. K. & Wood, P. T. (1999). Polyhedron, 18, 2499–2503.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2004). Acta Cryst. E60, m659–m661.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, J. & Liu, J. Q. (2010). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 40, 237–240.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages m493-m494
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds