organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1477-o1478

1-Allyl-3-benzyl-1H-benzimidazol-2(3H)-one

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202 Fès, Morocco, bUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181, Ecole Nationale Supérieure de Chimie de Lille, France, cUSR 3290 Miniaturisation pour l'Analyse, la Synthèse et la Protéomique, 59655 Villeneuve d'Ascq Cedex, Université Lille 1, France, dLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue, Ibn Batouta, Rabat, Morocco, and eLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: amal_haoudi@yahoo.fr

(Received 5 August 2013; accepted 21 August 2013; online 31 August 2013)

In the title compound, C17H16N2O, the fused benzimidazol-2(3H)-one system is essentially planar, the largest deviation from the mean plane being 0.006 (2) Å for the carbonyl C atom. Its mean plane is almost perpendicular to the benzyl plane and to the allyl group, making dihedral angles of 80.6 (1) and 77.4 (3)°, respectively. The benzyl group and the allyl subsituent lie on opposite sides of the fused ring system. In the crystal, mol­ecules are linked by bifurcated C—H⋯O hydrogen bonds in which the carbonyl O atom acts as accepter to two aromatic C—H groups, forming a two-dimensional network parallel to (001).

Related literature

For the biological activity of benzimidazole derivatives, see: Gravatt et al. (1994[Gravatt, G. L., Baguley, B. C., Wilson, W. R. & Denny, W. A. (1994). J. Med. Chem. 37, 4338-4345.]); Soderlind et al. (1999[Soderlind, K. J., Gorodetsky, B., Singh, A. K., Bachur, N. R., Miller, G. G. & Lown, J. W. (1999). Anticancer Drug Des. 14, 19-36.]); Bouwman et al. (1990[Bouwman, E., Driessen, W. L. & Reedjik, J. (1990). Coord. Chem. Rev. 104, 143-172.]) and for potential applications in the treatment of some diseases, see: Zhu et al. (2008[Zhu, G.-D., Gandhi, V. B., Gong, J., Thomas, S., Luo, Y., Liu, X., Shi, Y., Klinghofer, V., Johnson, E. F., Frost, D., Donawho, C., Jarvis, K., Bouska, J., Marsh, K. C., Rosenberg, S. H., Giranda, V. L. & Penning, T. D. (2008). Bioorg. Med. Chem. Lett. 18, 3955-3958.]); Ogino et al. (2008[Ogino, Y., Ohtake, N., Nagae, Y., Matsuda, K., Moriya, M., Suga, T., Ishikawa, M., Kanesaka, M., Mitobe, Y., Ito, J., Kanno, T., Ishiara, A., Iwaasa, H., Ohe, T., Kanatani, A. & Fukami, T. (2008). Bioorg. Med. Chem. Lett. 18, 5010-5014.]); Shah et al. (2008[Shah, D. I., Sharma, M., Bansal, Y., Bansal, G. & Singh, M. (2008). Eur. J. Med. Chem. 43, 1808-1812.]). For their use as inter­mediates in chemical synthesis, see: Bai et al. (2001[Bai, Y., Lu, J., Shi, Z. & Yang, B. (2001). Synlett, 12, 544-546.]). For similar compounds, see: Belaziz et al. (2012[Belaziz, D., Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Saadi, M. & El Ammari, L. (2012). Acta Cryst. E68, o3212.], 2013[Belaziz, D., Kandri Rodi, Y., Kandri Rodi, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o641-o642.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16N2O

  • Mr = 264.32

  • Triclinic, [P \overline 1]

  • a = 9.0667 (2) Å

  • b = 9.3922 (2) Å

  • c = 9.6486 (2) Å

  • α = 94.218 (1)°

  • β = 113.543 (1)°

  • γ = 106.265 (1)°

  • V = 706.87 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.43 × 0.20 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.967, Tmax = 0.988

  • 12670 measured reflections

  • 3494 independent reflections

  • 2573 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.141

  • S = 1.06

  • 3494 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.93 2.48 3.405 (2) 173
C14—H14⋯O1ii 0.93 2.56 3.330 (2) 141
Symmetry codes: (i) x-1, y, z; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Functionalized benzimidazoles represent an important class of N-containing heterocyclic compounds and have received considerable attention in recent times because of their applications as antiulcers, antihypertensives, antivirals, antifungals, anticancers and antihistamines among others (Gravatt et al., 1994; Soderlind et al., 1999). They are also important intermediates in many organic reactions (Bai et al., 2001) and act as ligands to transition metals for modelling biological systems (Bouwman et al., 1990). In addition, the treatment potency of benzimidazoles in diseases such as ischemia–reperfusion injury (Zhu et al., 2008), hypertension (Ogino et al., 2008), obesity (Shah et al., 2008) etc. have been recently reported.

In continuation of our research work devoted to the development of substituted benzimidazol-2-one derivatives (Belaziz et al., 2012, 2013), we reported a synthesis of new benzimidazol-2-one derivative differently substituted by action of allylbromide with 1-benzyl -1H-benzo[d]imidazol-2(3H)-one in the presence of a catalytic quantity of tetra-n-butylammonium bromide under mild conditions to obtain disubstituted compound (Scheme 1).

The molecule of title compound, 1-allyl-3-(benzyl)-1H-benzo[d]imidazol-2(3H)- one, is built up from two fused five- and six-membered rings linked to a benzyl substituent and an allyl group as shown in Fig. 1. The fused rings system (N1, N2, C1-C7) is essentially planar with the largest deviation from the mean plane being -0.006 (2) A° at C5 atom. The benzyl group and the allyl group are almost perpendicular to the benzo[d]imidazol-2(3H)-one as indicated by the dihedral angles of 80.6 (1) and 77.4 (3) °, respectively.

In the crystal, the molecules are linked by C3–H3···O1 and C14–H14···O1 hydrogen bonds in the way to build two-dimensional network as shown in Fig. 2 and Table 2.

Related literature top

For the biological activity of benzimidazole derivatives, see: Gravatt et al. (1994); Soderlind et al. (1999); Bouwman et al. (1990) and for potential applications in the treatment of some diseases, see: Zhu et al. (2008); Ogino et al. (2008); Shah et al. (2008). For their use as intermediates in chemical synthesis, see: Bai et al. (2001). For similar compounds, see: Belaziz et al. (2012, 2013).

Experimental top

To 1H-benzo[d]imidazol-2(3H)-one (0.2 g, 1.49 mmol), potassium carbonate (0.41 g, 2.98 mmol) and tetra-n-butylammonium bromide (0.05 g, 0.15 mmol) in DMF (20 ml) was added benzylchloride (0.22 g, 1.79 mmol). Stirring was continued at room temperature for 6 h. The resulting salt was removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1/2) as eluent. The compound was recrystallized from ethanol to give colorless crystals. To the compound obtained (1-benzyl-benzimidazol-2-one (0.15 g, 0.67 mmol) was added allylbromide (0.10 g, 0.87 mmol) in DMF (10 ml), and potassium carbonate (0.18 g, 1.33 mmol) and tetra-n-butylammonium bromide (0.02 g, 0.07 mmol). Stirring was continued at room temperature for 12 h. The formed salt was removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1/1) as eluent (yield 82%, based on the intermediate). The title compound was recrystallized from dichloromethane/hexane to give colourless crystals.

Refinement top

All H atoms could be located in a difference Fourier map. However, they were placed in calculated positions with C—H = 0.93 Å (aromatic, olefinic), and C—H = 0.97 Å (methylene) and refined as riding on their parent atoms with Uiso(H) = 1.2 Ueq (C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. : Intermolecular interactions in the title compound building a two-dimensional network. Hydrogen bonds are shown as dashed blue lines.
1-Allyl-3-benzyl-1H-benzimidazol-2(3H)-one top
Crystal data top
C17H16N2OZ = 2
Mr = 264.32F(000) = 280
Triclinic, P1Dx = 1.242 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0667 (2) ÅCell parameters from 3494 reflections
b = 9.3922 (2) Åθ = 2.3–28.3°
c = 9.6486 (2) ŵ = 0.08 mm1
α = 94.218 (1)°T = 296 K
β = 113.543 (1)°Irregular shape, colourless
γ = 106.265 (1)°0.43 × 0.20 × 0.16 mm
V = 706.87 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3494 independent reflections
Radiation source: microfocus source2573 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.967, Tmax = 0.988k = 1212
12670 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0617P)2 + 0.1232P]
where P = (Fo2 + 2Fc2)/3
3494 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C17H16N2Oγ = 106.265 (1)°
Mr = 264.32V = 706.87 (3) Å3
Triclinic, P1Z = 2
a = 9.0667 (2) ÅMo Kα radiation
b = 9.3922 (2) ŵ = 0.08 mm1
c = 9.6486 (2) ÅT = 296 K
α = 94.218 (1)°0.43 × 0.20 × 0.16 mm
β = 113.543 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3494 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2573 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.988Rint = 0.021
12670 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.06Δρmax = 0.18 e Å3
3494 reflectionsΔρmin = 0.15 e Å3
181 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.08458 (17)0.53012 (15)0.75007 (15)0.0503 (3)
C20.0580 (2)0.4975 (2)0.77755 (18)0.0652 (4)
H20.08000.42350.83250.078*
C30.1663 (2)0.5780 (2)0.7211 (2)0.0785 (5)
H30.26380.55750.73760.094*
C40.1336 (2)0.6887 (2)0.6404 (2)0.0778 (5)
H40.20980.74100.60340.093*
C50.0111 (2)0.72378 (18)0.61297 (19)0.0636 (4)
H50.03380.79890.55940.076*
C60.11833 (17)0.64210 (14)0.66878 (15)0.0484 (3)
C70.33127 (18)0.54248 (15)0.73733 (17)0.0524 (3)
C80.2415 (2)0.35712 (18)0.88407 (19)0.0710 (5)
H8A0.22680.38450.97550.085*
H8B0.35820.35880.91810.085*
C90.1241 (3)0.20112 (19)0.8030 (2)0.0777 (5)
H90.12570.16090.71280.093*
C100.0209 (3)0.1174 (3)0.8466 (4)0.1171 (9)
H10A0.01540.15350.93620.141*
H10B0.04900.02010.78890.141*
C110.3572 (2)0.74859 (15)0.59174 (18)0.0576 (4)
H11A0.27510.75080.49040.069*
H11B0.44010.70990.57780.069*
C120.44798 (18)0.90823 (15)0.68814 (16)0.0507 (3)
C130.4105 (2)1.02876 (17)0.6275 (2)0.0635 (4)
H130.32851.01180.52610.076*
C140.4935 (3)1.17505 (18)0.7159 (3)0.0762 (5)
H140.46711.25570.67380.091*
C150.6135 (3)1.2009 (2)0.8642 (3)0.0798 (6)
H150.66861.29910.92360.096*
C160.6534 (3)1.0830 (2)0.9259 (2)0.0854 (6)
H160.73601.10111.02730.102*
C170.5712 (2)0.93636 (19)0.8379 (2)0.0709 (5)
H170.59940.85650.88030.085*
N10.21567 (15)0.47062 (13)0.79022 (14)0.0546 (3)
N20.26911 (15)0.64676 (12)0.66155 (14)0.0504 (3)
O10.46264 (14)0.51931 (12)0.75495 (15)0.0703 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0468 (7)0.0456 (7)0.0449 (7)0.0041 (6)0.0168 (6)0.0037 (5)
C20.0565 (9)0.0695 (10)0.0581 (9)0.0033 (7)0.0286 (7)0.0032 (7)
C30.0530 (9)0.0892 (13)0.0808 (12)0.0110 (9)0.0317 (9)0.0143 (10)
C40.0553 (10)0.0799 (12)0.0836 (12)0.0281 (9)0.0168 (9)0.0067 (10)
C50.0600 (9)0.0563 (9)0.0633 (9)0.0209 (7)0.0168 (7)0.0043 (7)
C60.0462 (7)0.0418 (6)0.0467 (7)0.0087 (5)0.0164 (6)0.0024 (5)
C70.0488 (8)0.0387 (6)0.0586 (8)0.0074 (6)0.0193 (6)0.0016 (6)
C80.0755 (11)0.0578 (9)0.0593 (9)0.0110 (8)0.0165 (8)0.0192 (7)
C90.0935 (13)0.0534 (9)0.0736 (11)0.0171 (9)0.0287 (10)0.0196 (8)
C100.120 (2)0.0697 (13)0.162 (2)0.0150 (13)0.0698 (18)0.0428 (15)
C110.0682 (9)0.0451 (7)0.0594 (8)0.0098 (7)0.0352 (7)0.0057 (6)
C120.0544 (8)0.0424 (7)0.0567 (8)0.0078 (6)0.0322 (7)0.0066 (6)
C130.0704 (10)0.0526 (8)0.0670 (9)0.0180 (7)0.0316 (8)0.0126 (7)
C140.0904 (13)0.0455 (8)0.1024 (15)0.0198 (8)0.0541 (12)0.0139 (9)
C150.0848 (13)0.0490 (9)0.0948 (14)0.0039 (8)0.0512 (11)0.0105 (9)
C160.0789 (12)0.0732 (12)0.0676 (11)0.0026 (9)0.0191 (9)0.0043 (9)
C170.0726 (11)0.0556 (9)0.0693 (10)0.0109 (8)0.0237 (9)0.0128 (8)
N10.0539 (7)0.0447 (6)0.0559 (7)0.0095 (5)0.0199 (5)0.0109 (5)
N20.0508 (6)0.0381 (5)0.0604 (7)0.0103 (5)0.0262 (5)0.0074 (5)
O10.0533 (6)0.0580 (6)0.0960 (9)0.0210 (5)0.0287 (6)0.0116 (6)
Geometric parameters (Å, º) top
C1—C21.378 (2)C9—C101.274 (3)
C1—N11.3824 (19)C9—H90.9300
C1—C61.396 (2)C10—H10A0.9300
C2—C31.371 (3)C10—H10B0.9300
C2—H20.9300C11—N21.4503 (18)
C3—C41.381 (3)C11—C121.5109 (19)
C3—H30.9300C11—H11A0.9700
C4—C51.396 (3)C11—H11B0.9700
C4—H40.9300C12—C131.376 (2)
C5—C61.373 (2)C12—C171.377 (2)
C5—H50.9300C13—C141.385 (2)
C6—N21.3853 (18)C13—H130.9300
C7—O11.2181 (17)C14—C151.359 (3)
C7—N11.3771 (19)C14—H140.9300
C7—N21.3773 (18)C15—C161.364 (3)
C8—N11.4572 (19)C15—H150.9300
C8—C91.478 (2)C16—C171.386 (2)
C8—H8A0.9700C16—H160.9300
C8—H8B0.9700C17—H170.9300
C2—C1—N1131.78 (15)H10A—C10—H10B120.0
C2—C1—C6121.12 (15)N2—C11—C12112.61 (11)
N1—C1—C6107.10 (12)N2—C11—H11A109.1
C3—C2—C1117.73 (17)C12—C11—H11A109.1
C3—C2—H2121.1N2—C11—H11B109.1
C1—C2—H2121.1C12—C11—H11B109.1
C2—C3—C4121.36 (17)H11A—C11—H11B107.8
C2—C3—H3119.3C13—C12—C17118.60 (14)
C4—C3—H3119.3C13—C12—C11120.70 (14)
C3—C4—C5121.50 (17)C17—C12—C11120.70 (14)
C3—C4—H4119.2C12—C13—C14120.70 (17)
C5—C4—H4119.2C12—C13—H13119.6
C6—C5—C4116.84 (17)C14—C13—H13119.6
C6—C5—H5121.6C15—C14—C13120.04 (17)
C4—C5—H5121.6C15—C14—H14120.0
C5—C6—N2131.80 (14)C13—C14—H14120.0
C5—C6—C1121.45 (14)C14—C15—C16120.13 (16)
N2—C6—C1106.75 (12)C14—C15—H15119.9
O1—C7—N1126.96 (14)C16—C15—H15119.9
O1—C7—N2126.92 (14)C15—C16—C17120.12 (18)
N1—C7—N2106.13 (12)C15—C16—H16119.9
N1—C8—C9114.03 (14)C17—C16—H16119.9
N1—C8—H8A108.7C12—C17—C16120.40 (17)
C9—C8—H8A108.7C12—C17—H17119.8
N1—C8—H8B108.7C16—C17—H17119.8
C9—C8—H8B108.7C7—N1—C1109.97 (12)
H8A—C8—H8B107.6C7—N1—C8122.70 (14)
C10—C9—C8125.3 (2)C1—N1—C8127.18 (14)
C10—C9—H9117.4C7—N2—C6110.04 (12)
C8—C9—H9117.4C7—N2—C11123.15 (12)
C9—C10—H10A120.0C6—N2—C11126.76 (12)
C9—C10—H10B120.0
N1—C1—C2—C3179.88 (14)C15—C16—C17—C120.5 (3)
C6—C1—C2—C30.6 (2)O1—C7—N1—C1178.76 (14)
C1—C2—C3—C40.4 (2)N2—C7—N1—C10.76 (15)
C2—C3—C4—C50.1 (3)O1—C7—N1—C82.9 (2)
C3—C4—C5—C60.6 (2)N2—C7—N1—C8176.64 (12)
C4—C5—C6—N2179.56 (14)C2—C1—N1—C7179.26 (14)
C4—C5—C6—C10.5 (2)C6—C1—N1—C70.34 (15)
C2—C1—C6—C50.1 (2)C2—C1—N1—C83.6 (2)
N1—C1—C6—C5179.75 (12)C6—C1—N1—C8175.99 (13)
C2—C1—C6—N2179.87 (12)C9—C8—N1—C7109.85 (18)
N1—C1—C6—N20.22 (14)C9—C8—N1—C175.0 (2)
N1—C8—C9—C10121.4 (2)O1—C7—N2—C6178.62 (14)
N2—C11—C12—C13122.16 (15)N1—C7—N2—C60.90 (15)
N2—C11—C12—C1758.5 (2)O1—C7—N2—C111.0 (2)
C17—C12—C13—C140.7 (2)N1—C7—N2—C11178.55 (11)
C11—C12—C13—C14179.94 (15)C5—C6—N2—C7179.26 (14)
C12—C13—C14—C150.0 (3)C1—C6—N2—C70.70 (14)
C13—C14—C15—C160.5 (3)C5—C6—N2—C111.7 (2)
C14—C15—C16—C170.3 (3)C1—C6—N2—C11178.24 (12)
C13—C12—C17—C160.9 (3)C12—C11—N2—C7102.99 (15)
C11—C12—C17—C16179.72 (16)C12—C11—N2—C674.25 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.483.405 (2)173
C14—H14···O1ii0.932.563.330 (2)141
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.483.405 (2)172.9
C14—H14···O1ii0.932.563.330 (2)140.7
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z.
 

References

First citationBai, Y., Lu, J., Shi, Z. & Yang, B. (2001). Synlett, 12, 544–546.  Google Scholar
First citationBelaziz, D., Kandri Rodi, Y., Kandri Rodi, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o641–o642.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBelaziz, D., Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Saadi, M. & El Ammari, L. (2012). Acta Cryst. E68, o3212.  CSD CrossRef IUCr Journals Google Scholar
First citationBouwman, E., Driessen, W. L. & Reedjik, J. (1990). Coord. Chem. Rev. 104, 143–172.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGravatt, G. L., Baguley, B. C., Wilson, W. R. & Denny, W. A. (1994). J. Med. Chem. 37, 4338–4345.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOgino, Y., Ohtake, N., Nagae, Y., Matsuda, K., Moriya, M., Suga, T., Ishikawa, M., Kanesaka, M., Mitobe, Y., Ito, J., Kanno, T., Ishiara, A., Iwaasa, H., Ohe, T., Kanatani, A. & Fukami, T. (2008). Bioorg. Med. Chem. Lett. 18, 5010–5014.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShah, D. I., Sharma, M., Bansal, Y., Bansal, G. & Singh, M. (2008). Eur. J. Med. Chem. 43, 1808–1812.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoderlind, K. J., Gorodetsky, B., Singh, A. K., Bachur, N. R., Miller, G. G. & Lown, J. W. (1999). Anticancer Drug Des. 14, 19–36.  Web of Science PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, G.-D., Gandhi, V. B., Gong, J., Thomas, S., Luo, Y., Liu, X., Shi, Y., Klinghofer, V., Johnson, E. F., Frost, D., Donawho, C., Jarvis, K., Bouska, J., Marsh, K. C., Rosenberg, S. H., Giranda, V. L. & Penning, T. D. (2008). Bioorg. Med. Chem. Lett. 18, 3955–3958.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1477-o1478
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds