organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-N-(2,6-Diiso­propyl­phen­yl)-4-nitro­benzimidoyl chloride

aDepartment of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, and bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales
*Correspondence e-mail: gelhiti@ksu.edu.sa, kariukib@cardiff.ac.uk

(Received 16 July 2013; accepted 26 July 2013; online 7 August 2013)

In the title compound, C19H21ClN2O2, the aromatic rings are approximately perpendicular to each other, subtending a dihedral angle of 87.7 (1)°. In the crystal, the 4-nitro­phenyl groups of pairs of neighbouring mol­ecules are parallel and oriented head-to-tail with a ring centroid–centroid distance of 3.9247 (12) Å, leading to a ππ inter­action between the pair. The faces of each phenyl ring of the 2,6-diiso­propyl­phenyl group inter­act with two different groups, viz. a chloro group of an adjacent mol­ecule on one side and the edge of the 4-nitro­phenyl ring of a second mol­ecule on the other side.

Related literature

For the synthesis and applications of imidoyl chlorides, see: Pelter et al. (1975[Pelter, A., Smith, K., Hutchings, M. G. & Rowe, K. (1975). J. Chem. Soc. Perkin Trans. 1, pp. 129-138.]); Manley & Bilodeau (2002[Manley, P. J. & Bilodeau, M. T. (2002). Org. Lett. 4, 3127-3129.]); Cunico & Pandey (2005[Cunico, R. F. & Pandey, R. K. (2005). J. Org. Chem. 70, 5344-5346.]); Raussukana et al. (2006[Raussukana, Y. V., Khomenko, E. A., Onys'ko, P. P. & Sinitsa, A. D. (2006). Synthesis, pp. 3195-3198.]); Zheng & Alper (2008[Zheng, Z. & Alper, H. (2008). Org. Lett. 10, 4903-4906.]); Kuszpit et al. (2011[Kuszpit, M. R., Wulff, W. D. & Tepe, J. J. (2011). J. Org. Chem. 76, 2913-2919.]). For a related structure of an imidoyl chloride, see: Seidelmann et al. (1998[Seidelmann, O., Beyer, L., Lessmann, F. & Richter, R. (1998). Inorg. Chem. Commun. 1, 472-474.]).

[Scheme 1]

Experimental

Crystal data
  • C19H21ClN2O2

  • Mr = 344.83

  • Triclinic, [P \overline 1]

  • a = 8.2988 (4) Å

  • b = 10.4667 (3) Å

  • c = 10.9665 (3) Å

  • α = 75.568 (2)°

  • β = 85.411 (2)°

  • γ = 74.145 (2)°

  • V = 887.33 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 150 K

  • 0.35 × 0.20 × 0.15 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.924, Tmax = 0.967

  • 6021 measured reflections

  • 4232 independent reflections

  • 3108 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.173

  • S = 1.06

  • 4232 reflections

  • 222 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cg2i 0.95 2.67 3.511 (2) 147
C16—H16BCg1ii 0.98 2.79 3.663 (3) 149
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x+1, y, z.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP99 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The title compound I, a useful synthetic intermediate, was synthesized in good yield by the reaction of N-(2,6-diisopropylphenyl)-4-nitrobenzamide with phosphorus pentachloride. Imidoyl chlorides are useful reactive intermediates in syntheses of ketones from trialkylcyanoborates (Pelter et al., 1975), of highly substituted 2-imidazolines via a ring-expansion reaction with aziridines (Kuszpit et al., 2011), and by in situ reaction with pyridine-1-oxides to give 2-aminopyridine amides (Manley et al., 2002). They have also been used as precursors to α-iminoamides (Cunico et al., 2005), isoquinolin-1(2H)-ones via a palladium-catalyzed reaction with diethyl(2-iodoaryl)malonates (Zheng et al., 2008), and 1,3-oxathiolanones and benzoxathianones by reaction with mercaptocarboxylic acids (Raussukana et al., 2006). The X-ray crystal structure of N-(diethylaminothiocarbonyl)ferrocenecarbimidoyl chloride has been reported (Seidelmann et al., 1998).

In the molecule (Fig. 1), the aromatic rings of the 2,6-diisopropylphenyl and 4-nitrophenyl groups are approximately perpendicular to each other; the dihedral angle between the least-squares planes through the rings is 87.7 (1)°. The molecule has no strong hydrogen bond donor and the crystal structure is shown in Figure 2. The 4-nitrophenyl groups of neighboring molecules are parallel and oriented head-to-tail with a ring centroid-centroid distance of 3.9247 (12) Å, leading to a ππ interaction (Fig. 3). One face of the phenyl ring of the 2,6-diisopropylphenyl group interacts with the chloro group of an adjacent molecule (C7—Cl1···Cg2) and the other face of the same ring interacts with the edge of the 4-nitrophenyl ring of a second molecule (C6—H6···Cg2; Fig. 4); Cg2 is the centroid of the C8–C13 ring. Another interaction, C16—H16B···Cg1, is also observed; Cg1 is the centroid of the C1–C6 ring.

Related literature top

For the synthesis and applications of imidoyl chlorides, see: Pelter et al. (1975); Manley & Bilodeau (2002); Cunico & Pandey (2005); Raussukana et al. (2006); Zheng & Alper (2008); Kuszpit et al. (2011). For a related structure of an imidoyl chloride, see: Seidelmann et al. (1998).

Experimental top

Synthesis of N-(2,6-diisopropylphenyl)-4-nitrobenzimidoyl chloride (I)

An oven dried two necked 100 ml flask equipped with a magnetic stirrer, septum-capped reflux condenser and septum was flushed with N2 and phosphorus pentachloride (4.42 g, 21 mmol) and dry toluene (40 ml) were added. The mixture was stirred for 5 min then N-(2,6-diisopropylphenyl)-4-nitrobenzamide (6.90 g, 21 mmol) was quickly added to the flask under a fast stream of N2, and the septum replaced by a stopper. The mixture was heated to reflux for 2 h, whereupon it became homogeneous and gas evolution was observed. Phosphorus oxychloride and toluene were removed under reduced pressure and the crude product was quickly extracted with hot diethyl ether (3 × 80 ml). The diethyl ether washings were evaporated under a fast stream of N2 overnight, during which process bright yellow prisms of N-(2,6-diisopropylphenyl)-4-nitrobenzimidoyl chloride (6.93 g, 95%) separated; m.p. 144–146 °C. HREI+–MS m/z: calcd for C19H21N2O2 35Cl 344.1292, found 344.1301.

Refinement top

H atoms were positioned geometrically (C—H = 0.95–1.00 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C), allowing for free rotation of the methyl groups about the C—C bond.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP99 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A packing view of the title compound along the a axis.
[Figure 3] Fig. 3. A pair of molecules showing the ring centroid-centroid distance for parallel 4-nitrobenzyl groups.
[Figure 4] Fig. 4. A segment showing edge-to-face and chloro-to-face contacts in the crystal structure.
(Z)-N-(2,6-Diisopropylphenyl)-4-nitrobenzimidoyl chloride top
Crystal data top
C19H21ClN2O2Z = 2
Mr = 344.83F(000) = 364
Triclinic, P1Dx = 1.291 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2988 (4) ÅCell parameters from 3108 reflections
b = 10.4667 (3) Åθ = 2.8–28.3°
c = 10.9665 (3) ŵ = 0.23 mm1
α = 75.568 (2)°T = 150 K
β = 85.411 (2)°Block, yellow
γ = 74.145 (2)°0.35 × 0.20 × 0.15 mm
V = 887.33 (6) Å3
Data collection top
Nonius KappaCCD
diffractometer
4232 independent reflections
Radiation source: fine-focus sealed tube3108 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω and ϕ scansθmax = 28.3°, θmin = 2.8°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1110
Tmin = 0.924, Tmax = 0.967k = 1313
6021 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.173 w = 1/[σ2(Fo2) + (0.0765P)2 + 0.589P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.005
4232 reflectionsΔρmax = 0.32 e Å3
222 parametersΔρmin = 0.41 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.094 (10)
Crystal data top
C19H21ClN2O2γ = 74.145 (2)°
Mr = 344.83V = 887.33 (6) Å3
Triclinic, P1Z = 2
a = 8.2988 (4) ÅMo Kα radiation
b = 10.4667 (3) ŵ = 0.23 mm1
c = 10.9665 (3) ÅT = 150 K
α = 75.568 (2)°0.35 × 0.20 × 0.15 mm
β = 85.411 (2)°
Data collection top
Nonius KappaCCD
diffractometer
4232 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
3108 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.967Rint = 0.034
6021 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.06Δρmax = 0.32 e Å3
4232 reflectionsΔρmin = 0.41 e Å3
222 parameters
Special details top

Experimental. 1H (400 MHz; CDCl3) δ: 8.25 (2 H, d, J = 8.4 Hz), 8.17 (2 H, d, J = 8.4 Hz), 7.05–7.12 (2 H, m), 6.97–7.04 (1 H, m), 2.66 (2 H, app. sept, J = 6.9 Hz), 1.11 (6 H, d, J = 6.6 Hz), 1.05 (6 H, d, J = 6.6 Hz) – the two 6 H doublets coalesced at 50 °C; 13C (125 MHz; CDCl3) δ: 149.9 (s), 143.4 (s), 141.8 (s), 140.1 (s), 136.3 (s), 130.3 (d), 125.5 (d), 123.7 (d), 123.3 (d), 28.8 (d), 23.3 (q), 22.8 (q); vmax (thin film/cm-1): 3017, 2966, 2929, 2871, 1662, 1605, 1529, 1349, 1216, 1168, 1461.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2830 (3)0.0882 (2)1.0555 (2)0.0319 (5)
C20.2874 (3)0.0814 (2)0.9309 (2)0.0343 (5)
H20.24960.01320.90750.041*
C30.3483 (3)0.1763 (2)0.8410 (2)0.0299 (5)
H30.35510.17200.75520.036*
C40.3996 (2)0.27816 (19)0.87595 (19)0.0234 (4)
C50.3944 (3)0.2816 (2)1.0028 (2)0.0277 (5)
H50.43100.35001.02690.033*
C60.3360 (3)0.1857 (2)1.0938 (2)0.0320 (5)
H60.33260.18731.18030.038*
C70.4587 (3)0.3856 (2)0.78235 (18)0.0237 (4)
C80.5521 (3)0.5859 (2)0.72503 (18)0.0239 (4)
C90.7254 (3)0.5618 (2)0.70425 (19)0.0259 (4)
C100.7851 (3)0.6667 (2)0.6259 (2)0.0306 (5)
H100.90220.65270.61040.037*
C110.6771 (3)0.7907 (2)0.5702 (2)0.0317 (5)
H110.72010.86140.51800.038*
C120.5055 (3)0.8114 (2)0.5911 (2)0.0306 (5)
H120.43210.89610.55130.037*
C130.4386 (3)0.7111 (2)0.6689 (2)0.0267 (5)
C140.8468 (3)0.4269 (2)0.7645 (2)0.0307 (5)
H140.77920.36330.81000.037*
C150.9545 (3)0.3613 (3)0.6651 (3)0.0427 (6)
H15A0.88190.35440.60220.064*
H15B1.02140.26970.70570.064*
H15C1.02930.41780.62390.064*
C160.9550 (3)0.4460 (3)0.8613 (2)0.0406 (6)
H16A1.02820.50320.81850.061*
H16B1.02350.35660.90540.061*
H16C0.88270.49050.92220.061*
C170.2510 (3)0.7304 (2)0.6917 (2)0.0308 (5)
H170.22500.64500.68380.037*
C180.2005 (3)0.7468 (3)0.8252 (3)0.0446 (6)
H18A0.26800.66930.88610.067*
H18B0.08160.74970.83970.067*
H18C0.21950.83200.83530.067*
C190.1440 (3)0.8492 (3)0.5950 (3)0.0438 (6)
H19A0.16140.93560.60320.066*
H19B0.02550.85100.61010.066*
H19C0.17660.83700.50990.066*
N10.2200 (3)0.0141 (2)1.1512 (2)0.0457 (6)
N20.4892 (2)0.48451 (17)0.81255 (16)0.0246 (4)
O10.1607 (3)0.0925 (2)1.1148 (2)0.0716 (7)
O20.2325 (3)0.0162 (2)1.2616 (2)0.0651 (6)
Cl10.48157 (10)0.36574 (7)0.62743 (5)0.0461 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0304 (11)0.0202 (10)0.0391 (12)0.0059 (8)0.0081 (9)0.0008 (9)
C20.0350 (12)0.0224 (10)0.0473 (14)0.0115 (9)0.0001 (10)0.0074 (9)
C30.0334 (11)0.0270 (11)0.0312 (11)0.0100 (9)0.0017 (9)0.0085 (9)
C40.0235 (10)0.0192 (9)0.0265 (10)0.0061 (7)0.0001 (8)0.0031 (8)
C50.0318 (11)0.0257 (10)0.0269 (10)0.0105 (8)0.0008 (9)0.0056 (8)
C60.0360 (12)0.0272 (11)0.0284 (11)0.0063 (9)0.0046 (9)0.0023 (9)
C70.0267 (10)0.0229 (9)0.0205 (9)0.0056 (8)0.0003 (8)0.0043 (7)
C80.0308 (11)0.0219 (9)0.0210 (9)0.0102 (8)0.0014 (8)0.0056 (7)
C90.0302 (11)0.0233 (10)0.0249 (10)0.0092 (8)0.0009 (8)0.0050 (8)
C100.0328 (11)0.0293 (11)0.0304 (11)0.0125 (9)0.0025 (9)0.0045 (9)
C110.0396 (12)0.0267 (11)0.0296 (11)0.0154 (9)0.0027 (9)0.0017 (8)
C120.0359 (12)0.0241 (10)0.0296 (11)0.0086 (9)0.0027 (9)0.0010 (8)
C130.0312 (11)0.0247 (10)0.0260 (10)0.0095 (8)0.0000 (8)0.0070 (8)
C140.0301 (11)0.0264 (11)0.0326 (11)0.0076 (9)0.0018 (9)0.0018 (9)
C150.0432 (14)0.0384 (13)0.0435 (14)0.0016 (11)0.0010 (11)0.0143 (11)
C160.0391 (13)0.0400 (13)0.0367 (13)0.0010 (10)0.0049 (11)0.0070 (10)
C170.0302 (11)0.0239 (10)0.0377 (12)0.0081 (8)0.0002 (9)0.0051 (9)
C180.0389 (14)0.0480 (15)0.0462 (15)0.0086 (11)0.0087 (11)0.0156 (12)
C190.0318 (12)0.0367 (13)0.0554 (16)0.0076 (10)0.0063 (11)0.0028 (11)
N10.0472 (13)0.0264 (10)0.0566 (15)0.0112 (9)0.0153 (11)0.0006 (10)
N20.0272 (9)0.0228 (8)0.0239 (8)0.0092 (7)0.0009 (7)0.0035 (7)
O10.0921 (18)0.0478 (12)0.0828 (17)0.0473 (12)0.0134 (14)0.0024 (11)
O20.0942 (17)0.0485 (12)0.0469 (12)0.0290 (12)0.0254 (12)0.0019 (9)
Cl10.0793 (5)0.0479 (4)0.0234 (3)0.0365 (3)0.0067 (3)0.0110 (2)
Geometric parameters (Å, º) top
C1—C61.379 (3)C12—C131.391 (3)
C1—C21.382 (3)C12—H120.9500
C1—N11.477 (3)C13—C171.522 (3)
C2—C31.386 (3)C14—C161.526 (3)
C2—H20.9500C14—C151.529 (3)
C3—C41.393 (3)C14—H141.0000
C3—H30.9500C15—H15A0.9800
C4—C51.397 (3)C15—H15B0.9800
C4—C71.485 (3)C15—H15C0.9800
C5—C61.388 (3)C16—H16A0.9800
C5—H50.9500C16—H16B0.9800
C6—H60.9500C16—H16C0.9800
C7—N21.254 (3)C17—C181.529 (4)
C7—Cl11.752 (2)C17—C191.533 (3)
C8—C91.400 (3)C17—H171.0000
C8—C131.414 (3)C18—H18A0.9800
C8—N21.427 (3)C18—H18B0.9800
C9—C101.396 (3)C18—H18C0.9800
C9—C141.520 (3)C19—H19A0.9800
C10—C111.385 (3)C19—H19B0.9800
C10—H100.9500C19—H19C0.9800
C11—C121.390 (3)N1—O21.218 (3)
C11—H110.9500N1—O11.221 (3)
C6—C1—C2122.8 (2)C9—C14—C15111.36 (19)
C6—C1—N1118.8 (2)C16—C14—C15111.3 (2)
C2—C1—N1118.4 (2)C9—C14—H14107.7
C1—C2—C3118.5 (2)C16—C14—H14107.7
C1—C2—H2120.7C15—C14—H14107.7
C3—C2—H2120.7C14—C15—H15A109.5
C2—C3—C4120.3 (2)C14—C15—H15B109.5
C2—C3—H3119.9H15A—C15—H15B109.5
C4—C3—H3119.9C14—C15—H15C109.5
C3—C4—C5119.64 (19)H15A—C15—H15C109.5
C3—C4—C7122.22 (19)H15B—C15—H15C109.5
C5—C4—C7118.14 (18)C14—C16—H16A109.5
C6—C5—C4120.5 (2)C14—C16—H16B109.5
C6—C5—H5119.7H16A—C16—H16B109.5
C4—C5—H5119.7C14—C16—H16C109.5
C1—C6—C5118.2 (2)H16A—C16—H16C109.5
C1—C6—H6120.9H16B—C16—H16C109.5
C5—C6—H6120.9C13—C17—C18111.42 (19)
N2—C7—C4121.94 (18)C13—C17—C19113.50 (19)
N2—C7—Cl1122.36 (16)C18—C17—C19110.2 (2)
C4—C7—Cl1115.70 (15)C13—C17—H17107.1
C9—C8—C13122.16 (19)C18—C17—H17107.1
C9—C8—N2118.85 (17)C19—C17—H17107.1
C13—C8—N2118.84 (18)C17—C18—H18A109.5
C10—C9—C8117.86 (19)C17—C18—H18B109.5
C10—C9—C14120.20 (19)H18A—C18—H18B109.5
C8—C9—C14121.94 (18)C17—C18—H18C109.5
C11—C10—C9121.3 (2)H18A—C18—H18C109.5
C11—C10—H10119.3H18B—C18—H18C109.5
C9—C10—H10119.3C17—C19—H19A109.5
C10—C11—C12119.7 (2)C17—C19—H19B109.5
C10—C11—H11120.2H19A—C19—H19B109.5
C12—C11—H11120.2C17—C19—H19C109.5
C11—C12—C13121.6 (2)H19A—C19—H19C109.5
C11—C12—H12119.2H19B—C19—H19C109.5
C13—C12—H12119.2O2—N1—O1124.1 (2)
C12—C13—C8117.3 (2)O2—N1—C1118.0 (2)
C12—C13—C17122.60 (19)O1—N1—C1117.9 (2)
C8—C13—C17120.03 (18)C7—N2—C8122.75 (18)
C9—C14—C16110.82 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···Cg2i0.952.673.511 (2)147
C16—H16B···Cg1ii0.982.793.663 (3)149
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···Cg2i0.952.673.511 (2)147
C16—H16B···Cg1ii0.982.793.663 (3)149
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z.
 

Acknowledgements

The authors would like to extend their appreciation to the Deanship of Scientific Research at King Saud University for its funding for this research through the research group project RGP-VPP-239.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCunico, R. F. & Pandey, R. K. (2005). J. Org. Chem. 70, 5344–5346.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKuszpit, M. R., Wulff, W. D. & Tepe, J. J. (2011). J. Org. Chem. 76, 2913–2919.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationManley, P. J. & Bilodeau, M. T. (2002). Org. Lett. 4, 3127–3129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPelter, A., Smith, K., Hutchings, M. G. & Rowe, K. (1975). J. Chem. Soc. Perkin Trans. 1, pp. 129–138.  CrossRef Web of Science Google Scholar
First citationRaussukana, Y. V., Khomenko, E. A., Onys'ko, P. P. & Sinitsa, A. D. (2006). Synthesis, pp. 3195–3198.  Google Scholar
First citationSeidelmann, O., Beyer, L., Lessmann, F. & Richter, R. (1998). Inorg. Chem. Commun. 1, 472–474.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, Z. & Alper, H. (2008). Org. Lett. 10, 4903–4906.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds