metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages m520-m521

Di­chlorido­[6,8,22,24,34,36-hexa­methyl-33,35-di­aza-3,11,19,27-tetra­azonia­penta­cyclo[27.3.1.15,9.113,17.121,25]hexa­triaconta-1(33),5,7,9(34),13,15,17(35),21,23,25(36),29,31-dodeca­ene-κ6N3,N11,N19,N27,N33,N35]dipalladium(II) bis­(per­chlor­ate) N,N-di­methyl­formamide disolvate methanol disolvate

aDepartment of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan, bDepartment of Chemistry, Graduate School of Science, Osaka University, Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan, and cPRESTO, Japan Science and Technology Agency (JST), Japan
*Correspondence e-mail: masuda.hideki@nitech.ac.jp

(Received 17 July 2013; accepted 12 August 2013; online 23 August 2013)

In the crystal structure of the title compound, [Pd2(C36H42N6)Cl2](ClO4)2·2C3H7NO·2CH3OH, the dinuclear PdII complex cation lies on an inversion center. Each PdII ion has a distorted square-planar coordination sphere, defined by three N atoms of the macrocyclic ligand and a chloride ion. The PdII complex cations and the methanol mol­ecules are linked through N—H⋯O and O—H⋯O hydrogen bonds, forming a zigzag chain along [101]. An intra­molecular N—H⋯Cl hydrogen bond is also observed.

Related literature

For palladium(II) complexes with 2,6-bis­(amino­meth­yl)pyridine, see: Arnáiz et al. (2002[Arnáiz, A., Cuevas, J. V., Herbosa, G. G., Carbayo, A., Casares, J. A. & Puebla, E. G. (2002). J. Chem. Soc. Dalton Trans. pp. 2581-2586.]). For dipalladium(II) complexes having a PdII–Cl unit, see: Suess & Peters (2010[Suess, D. L. M. & Peters, J. C. (2010). Chem. Commun. 46, 6554-6556.]); Goforth et al. (2013[Goforth, S. K., Walroth, R. C. & White, L. M. E. (2013). Inorg. Chem. 52, 5692-5701.]). For palladium(II) complexes containing a macrocyclic ligand, see: Parker (1985[Parker, D. (1985). J. Chem. Soc. Chem. Commun. pp. 1129-1131.]); Parker et al. (1985[Parker, D., Lehn, J. M. & Rimmer, J. (1985). J. Chem. Soc. Dalton Trans. pp. 1517-1521.]). For a similar macrocyclic ligand, see: Allmendinger et al. (2003[Allmendinger, M., Zell, P., Amin, A., Thewalt, U., Klinga, M. & Rieger, B. (2003). Heterocycles, 60, 1065-1081.]). For a similar cryptand ligand, see: Higa et al. (2010[Higa, T., Fukui, M., Fukui, K., Naganuma, Y., Kajita, Y., Inomata, T., Ozawa, T., Funahashi, Y. & Masuda, H. (2010). J. Inclusion Phenom. Macrocycl. Chem. 66, 171-177.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd2(C36H42N6)Cl2](ClO4)2·2C3H7NO·2CH4O

  • Mr = 1255.68

  • Monoclinic, P 21 /n

  • a = 10.917 (2) Å

  • b = 19.083 (4) Å

  • c = 12.705 (3) Å

  • β = 104.201 (2)°

  • V = 2566.0 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 173 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Mercury70 diffractometer

  • Absorption correction: numerical (NUMABS; Rigaku, 1999[Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.751, Tmax = 0.823

  • 19797 measured reflections

  • 5826 independent reflections

  • 4980 reflections with F2 > 2σ(F2)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.097

  • S = 1.08

  • 5826 reflections

  • 324 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.81 e Å−3

Table 1
Selected bond lengths (Å)

Pd1—Cl1 2.3084 (9)
Pd1—N1 2.062 (3)
Pd1—N2 1.942 (3)
Pd1—N3 2.087 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H18⋯O6i 0.84 2.33 2.757 (5) 112
N1—H12⋯O6 0.78 (4) 2.21 (4) 2.930 (5) 153 (4)
N3—H13⋯Cl1ii 0.71 (4) 2.67 (5) 3.332 (4) 156 (4)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z.

Data collection: CrystalClear (Rigaku, 2001[Rigaku (2001). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2001[Rigaku (2001). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

2,6-Pyridinedicarboxaldehyde and 2,4-bis-aminomethyl-1,3,5-trimethyl benzene were used for synthesis of an imine macrocycle, and the highly selective cyclization reaction resulted in a [2+2] stoichiometry, in a similar procedure to a previous study (Allmendinger et al., 2003). It can be facilely reduced by NaBH4 to give the corresponding amine analogue containing two 2,6-di(aminomethyl)pyridine units. The spacer unit can capture two transition metal ions inside the macrocyclic ligand molecule. Previously, similar macrocyclic ligands containing dinuclear palladium(II) complexes have been synthesized (Parker et al., 1985). Using the amine macrocyclic ligand, we have fortunately prepared a novel dinuclear palladium(II) complex, and succeeded in elucidating the crystal structure. The single-crystal X-ray diffraction analysis has revealed that the title compound, [PdII2(C36H42N6)Cl2](ClO4)2.2DMF.2CH3OH, has crystallized in the monoclinic space group P21/n, and the unit cell contains two palladium(II) ions and two chloride ions inside the macrocyclic ligand. The structure of the dinuclear palladium(II) complex with the macrocyclic ligand has a center of symmetry inside the ligand molecule. The two perchlorate anions, two crystalline DMF and two methanol molecules are located outside the ligand sphere (Fig. 2). The palladium(II) center has a four-coordinate square-planar geometry occupied by three N atoms of the macrocyclic ligand and one chloride ion (Fig. 1).

Related literature top

For palladium(II) complexes with 2,6-bis(aminomethyl)pyridine, see: Arnáiz et al. (2002). For dipalladium(II) complexes having a PdII–Cl unit, see: Suess & Peters (2010); Goforth et al. (2013). For palladium(II) complexes containing a macrocyclic ligand, see: Parker (1985); Parker et al. (1985). For a similar macrocyclic ligand, see: Allmendinger et al. (2003). For a similar cryptand ligand, see: Higa et al. (2010).

Experimental top

The macrocyclic ligand (C36H42N6.0.5H2O) was synthesized by the following method. 2,4-Bis(aminomethyl)-1,3,5-trimethylbenzene (2.67 g, 1.50 × 10 -2 mol) was dissolved in methanol (200 ml). To this solution, a methanol solution (200 ml) of 2,6-pyridinedicarboxaldehyde (2.05 g, 1.52 × 10 -2 mol) was added dropwise. The mixed solution immediately gave a white precipitate, which was collected by vacuum filtration, washed with water (100 ml), and dried under vacuum. The white precipitate was dissolved in dichloromethane (300 ml), and an ethanol solution (300 ml) of NaBH4 (2.59 g, 6.84 × 10 -2 mol) was added in portion. After the reaction mixture was stirred for 6 h, the solution was acidified with 0.1 N HCl aq. and alkalified with 1 N KOH aq. Evaporation of the resulting solution under reduced pressure gave a white precipitate of the macrocyclic ligand, which was filtered out, washed with water, and dried under vacuum (yield 3.74 g, 88%). Analysis, calculated for C36H42N6.0.5H2O: C 76.22, H 8.26, N 14.81; found: C 76.20, H 8.24, N 14.86. 1H NMR (300 MHz, CDCl3 versus TMS, δ, p.p.m.): 1.88 (s, 4H, NH), 2.36 (s, 12H, PhCH3), 2.37 (s, 6H, PhCH3), 3.74 (s, 8H, CH2), 3.95 (s, 8H, CH2), 6.86 (s, 2H, Ph), 7.14 (d, 4H, pyridine), 7.58 (t, 2H, pyridine).

The dipalladium(II) complex was synthesized by the following procedure. The macrocyclic ligand (56.7 mg, 1.00 × 10 -4 mol) was dissolved in methanol–chloroform (7 ml, 1:1 v/v). To this solution, a solution of (Et4N)2[PdIICl4] (105.4 mg, 2.00 × 10 -4 mol) in methanol–chloroform (7 ml, 1:1 v/v) was added. After the mixed solution was stirred for 6 h at room temperature, a saturated methanol solution (3 ml) of (n-Bu)4NClO4 was added to give a bright-yellow precipitate as a product. It was filtered out, washed with diethyl ether, and dried under vacuum condition. Single crystals suitable for X-ray crystallographic analysis were obtained by recrystallization from N,N-dimethylformamide–methanol–dimethyl ether.

Refinement top

H atoms attached to C atoms were positioned geometrically and treated as riding, with aromatic C—H = 0.95 Å, methyl C—H = 0.98 Å and methylenic C—H = 0.99 Å, and with Uiso(H) = 1.2Ueq(C). The hydroxyl H atom was positioned geometrically and treated as riding, with O—H = 0.84 Å and with Uiso(H) = 1.5Ueq(O). H atoms on N atoms were located in a difference Fourier map and isotropically refined.

Computing details top

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear (Rigaku, 2001); data reduction: CrystalClear (Rigaku, 2001); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2001); software used to prepare material for publication: CrystalStructure (Rigaku, 2001).

Figures top
[Figure 1] Fig. 1. The view of molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. H atoms are omitted for clarity.
Dichlorido[6,8,22,24,34,36-hexamethyl-33,35-diaza-3,11,19,27-tetraazoniapentacyclo[27.3.1.15,9.113,17.121,25]hexatriaconta-1(33),5,7,9(34),13,15,17 (35),21,23,25 (36),29,31-dodecaene-κ6N3,N11,N19,N27,N33,N35]dipalladium(II) bis(perchlorate) N,N-dimethylformamide disolvate methanol disolvate top
Crystal data top
[Pd2(C36H42N6)Cl2](ClO4)2·2C3H7NO·2CH4OF(000) = 1288.00
Mr = 1255.68Dx = 1.625 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ynCell parameters from 6824 reflections
a = 10.917 (2) Åθ = 3.0–27.5°
b = 19.083 (4) ŵ = 0.98 mm1
c = 12.705 (3) ÅT = 173 K
β = 104.201 (2)°Block, yellow
V = 2566.0 (8) Å30.20 × 0.20 × 0.20 mm
Z = 2
Data collection top
Rigaku Mercury70
diffractometer
4980 reflections with F2 > 2σ(F2)
Detector resolution: 7.314 pixels mm-1Rint = 0.029
ω scansθmax = 27.5°
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
h = 1313
Tmin = 0.751, Tmax = 0.823k = 2424
19797 measured reflectionsl = 1616
5826 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0439P)2 + 3.481P]
where P = (Fo2 + 2Fc2)/3
5826 reflections(Δ/σ)max = 0.001
324 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.81 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
[Pd2(C36H42N6)Cl2](ClO4)2·2C3H7NO·2CH4OV = 2566.0 (8) Å3
Mr = 1255.68Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.917 (2) ŵ = 0.98 mm1
b = 19.083 (4) ÅT = 173 K
c = 12.705 (3) Å0.20 × 0.20 × 0.20 mm
β = 104.201 (2)°
Data collection top
Rigaku Mercury70
diffractometer
5826 independent reflections
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
4980 reflections with F2 > 2σ(F2)
Tmin = 0.751, Tmax = 0.823Rint = 0.029
19797 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.80 e Å3
5826 reflectionsΔρmin = 0.81 e Å3
324 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.63072 (2)0.578980 (12)0.164247 (18)0.02062 (8)
Cl10.61781 (7)0.45840 (4)0.17120 (6)0.02688 (16)
Cl20.21267 (8)0.73945 (4)0.37351 (7)0.03456 (19)
O10.1928 (3)0.66584 (15)0.3537 (3)0.0598 (9)
O20.2752 (3)0.75349 (19)0.4847 (3)0.0614 (9)
O30.2891 (3)0.76593 (18)0.3048 (3)0.0579 (9)
O40.0927 (3)0.77435 (16)0.3469 (3)0.0582 (9)
O50.7672 (3)0.6378 (3)0.5140 (3)0.0713 (11)
O60.8813 (3)0.5059 (3)0.4312 (4)0.0974 (17)
N10.8226 (3)0.58758 (14)0.2298 (2)0.0236 (6)
N20.6424 (3)0.68049 (14)0.1703 (2)0.0244 (6)
N30.4436 (3)0.59993 (14)0.0836 (3)0.0233 (6)
N40.5730 (3)0.62401 (17)0.5422 (3)0.0401 (7)
C10.8448 (3)0.65695 (18)0.2889 (3)0.0324 (8)
C20.7484 (3)0.70951 (18)0.2337 (3)0.0284 (7)
C30.7542 (4)0.78140 (19)0.2459 (3)0.0370 (8)
C40.6500 (4)0.8209 (2)0.1954 (4)0.0432 (9)
C50.5432 (4)0.78952 (19)0.1295 (4)0.0394 (9)
C60.5423 (3)0.71802 (17)0.1165 (3)0.0287 (7)
C70.4453 (3)0.67333 (17)0.0408 (3)0.0287 (7)
C80.3352 (3)0.58744 (17)0.1373 (3)0.0254 (7)
C90.2169 (3)0.56955 (16)0.0501 (3)0.0239 (6)
C100.1281 (3)0.62113 (16)0.0033 (3)0.0266 (7)
C110.0349 (3)0.60461 (17)0.0898 (3)0.0290 (7)
C120.0270 (3)0.53965 (17)0.1397 (3)0.0253 (7)
C130.1117 (3)0.48650 (16)0.0896 (3)0.0227 (6)
C140.2032 (3)0.50048 (16)0.0067 (3)0.0223 (6)
C150.1251 (4)0.69419 (18)0.0475 (4)0.0397 (9)
C160.0711 (4)0.5274 (2)0.2446 (3)0.0351 (8)
C170.2865 (3)0.44240 (16)0.0660 (3)0.0263 (7)
C180.1021 (3)0.41548 (16)0.1441 (3)0.0250 (7)
C190.5132 (5)0.6064 (4)0.4304 (5)0.085 (2)
C200.4934 (5)0.6278 (3)0.6182 (4)0.0630 (13)
C210.6937 (4)0.6389 (2)0.5736 (4)0.0413 (9)
C220.8039 (7)0.4662 (4)0.4680 (5)0.093 (3)
H1A0.83930.65050.36490.0388*
H1B0.93060.67430.28990.0388*
H20.82820.80330.28810.0444*
H30.65140.87020.20590.0518*
H40.47240.81700.09420.0473*
H5A0.36070.69470.03170.0344*
H5B0.46460.67180.03130.0344*
H6A0.35650.54840.18990.0305*
H6B0.32050.63000.17690.0305*
H7A0.15850.72730.00250.0476*
H7B0.17700.69600.12230.0476*
H7C0.03790.70690.04650.0476*
H80.02560.63940.12040.0348*
H9A0.12680.48890.23490.0422*
H9B0.02900.51510.30190.0422*
H9C0.12110.57010.26500.0422*
H10A0.01230.40520.17840.0300*
H10B0.13370.37910.08860.0300*
H11A0.37430.45110.06370.0315*
H11B0.25860.39740.03110.0315*
H11C0.28080.44100.14180.0315*
H14A0.55330.56450.40930.1019*
H14B0.52270.64560.38310.1019*
H14C0.42320.59720.42320.1019*
H15A0.45660.58160.62440.0756*
H15B0.42550.66190.59200.0756*
H15C0.54420.64250.68950.0756*
H160.72680.65130.64750.0496*
H17A0.77120.49220.52170.1116*
H17B0.84880.42430.50200.1116*
H17C0.73340.45210.40770.1116*
H180.91790.53360.48030.1461*
H130.440 (4)0.5775 (19)0.038 (4)0.022 (10)*
H120.849 (4)0.5575 (19)0.271 (3)0.022 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01775 (13)0.02451 (13)0.01903 (12)0.00282 (9)0.00344 (8)0.00189 (8)
Cl10.0265 (4)0.0257 (4)0.0279 (4)0.0018 (3)0.0055 (3)0.0035 (3)
Cl20.0329 (5)0.0345 (5)0.0355 (5)0.0029 (4)0.0068 (4)0.0010 (4)
O10.066 (2)0.0311 (15)0.083 (3)0.0037 (14)0.0182 (18)0.0012 (15)
O20.059 (2)0.086 (3)0.0343 (16)0.0044 (18)0.0023 (14)0.0027 (16)
O30.0519 (18)0.077 (3)0.0452 (17)0.0205 (16)0.0132 (15)0.0059 (15)
O40.0382 (16)0.0521 (18)0.079 (3)0.0083 (14)0.0032 (16)0.0072 (16)
O50.0459 (19)0.112 (4)0.062 (3)0.0133 (19)0.0262 (17)0.007 (2)
O60.0401 (18)0.163 (5)0.082 (3)0.009 (3)0.0015 (18)0.086 (3)
N10.0194 (13)0.0306 (14)0.0187 (13)0.0018 (11)0.0007 (11)0.0003 (11)
N20.0196 (13)0.0286 (13)0.0250 (13)0.0061 (11)0.0055 (11)0.0062 (11)
N30.0190 (13)0.0278 (14)0.0232 (14)0.0022 (11)0.0052 (11)0.0038 (11)
N40.0410 (18)0.0494 (19)0.0326 (16)0.0038 (15)0.0140 (14)0.0011 (14)
C10.0262 (17)0.0418 (19)0.0271 (17)0.0081 (15)0.0025 (14)0.0123 (14)
C20.0264 (17)0.0359 (18)0.0240 (15)0.0092 (13)0.0084 (13)0.0120 (13)
C30.035 (2)0.040 (2)0.0367 (19)0.0128 (16)0.0101 (16)0.0175 (16)
C40.044 (3)0.0300 (18)0.058 (3)0.0068 (16)0.0178 (19)0.0173 (17)
C50.0286 (18)0.0324 (18)0.058 (3)0.0009 (15)0.0127 (17)0.0039 (17)
C60.0236 (16)0.0298 (16)0.0342 (18)0.0023 (13)0.0099 (14)0.0017 (13)
C70.0210 (15)0.0306 (16)0.0329 (17)0.0041 (13)0.0038 (13)0.0040 (13)
C80.0212 (15)0.0314 (16)0.0252 (15)0.0038 (12)0.0085 (13)0.0047 (12)
C90.0197 (15)0.0301 (16)0.0227 (15)0.0035 (12)0.0070 (12)0.0020 (12)
C100.0209 (15)0.0258 (15)0.0353 (17)0.0023 (12)0.0108 (13)0.0021 (13)
C110.0204 (16)0.0307 (16)0.0372 (18)0.0053 (13)0.0096 (14)0.0094 (14)
C120.0188 (15)0.0367 (17)0.0213 (15)0.0003 (13)0.0065 (12)0.0055 (13)
C130.0175 (14)0.0287 (15)0.0232 (15)0.0035 (12)0.0075 (12)0.0000 (12)
C140.0174 (14)0.0285 (15)0.0214 (14)0.0007 (12)0.0055 (12)0.0014 (12)
C150.0303 (19)0.0326 (19)0.056 (3)0.0001 (15)0.0108 (17)0.0067 (17)
C160.0252 (17)0.048 (2)0.0294 (18)0.0047 (15)0.0010 (14)0.0056 (15)
C170.0235 (16)0.0283 (16)0.0236 (15)0.0011 (13)0.0007 (13)0.0004 (12)
C180.0191 (15)0.0309 (16)0.0255 (15)0.0040 (12)0.0066 (12)0.0022 (12)
C190.051 (3)0.149 (6)0.051 (3)0.012 (4)0.006 (3)0.031 (4)
C200.065 (3)0.079 (4)0.056 (3)0.005 (3)0.036 (3)0.004 (3)
C210.043 (3)0.043 (2)0.038 (2)0.0097 (17)0.0100 (18)0.0043 (16)
C220.132 (6)0.102 (5)0.047 (3)0.069 (5)0.026 (4)0.016 (3)
Geometric parameters (Å, º) top
Pd1—Cl12.3084 (9)C14—C171.513 (4)
Pd1—N12.062 (3)O6—H180.840
Pd1—N21.942 (3)N1—H120.78 (4)
Pd1—N32.087 (3)N3—H130.72 (4)
Cl2—O11.434 (3)C1—H1A0.990
Cl2—O21.435 (3)C1—H1B0.990
Cl2—O31.440 (4)C3—H20.950
Cl2—O41.433 (3)C4—H30.950
O5—C211.231 (6)C5—H40.950
O6—C221.304 (9)C7—H5A0.990
N1—C11.512 (5)C7—H5B0.990
N1—C18i1.517 (5)C8—H6A0.990
N2—C21.356 (4)C8—H6B0.990
N2—C61.344 (4)C11—H80.950
N3—C71.504 (5)C15—H7A0.980
N3—C81.522 (5)C15—H7B0.980
N4—C191.449 (6)C15—H7C0.980
N4—C201.451 (7)C16—H9A0.980
N4—C211.311 (5)C16—H9B0.980
C1—C21.497 (5)C16—H9C0.980
C2—C31.380 (5)C17—H11A0.980
C3—C41.384 (5)C17—H11B0.980
C4—C51.394 (5)C17—H11C0.980
C5—C61.374 (5)C18—H10A0.990
C6—C71.508 (5)C18—H10B0.990
C8—C91.519 (4)C19—H14A0.980
C9—C101.407 (5)C19—H14B0.980
C9—C141.422 (5)C19—H14C0.980
C10—C111.394 (5)C20—H15A0.980
C10—C151.506 (5)C20—H15B0.980
C11—C121.385 (5)C20—H15C0.980
C12—C131.415 (5)C21—H160.950
C12—C161.509 (5)C22—H17A0.980
C13—C141.402 (4)C22—H17B0.980
C13—C181.514 (5)C22—H17C0.980
Cl1—Pd1—N197.43 (8)C2—C1—H1B109.609
Cl1—Pd1—N2175.60 (8)H1A—C1—H1B108.144
Cl1—Pd1—N398.52 (8)C2—C3—H2120.657
N1—Pd1—N281.63 (11)C4—C3—H2120.648
N1—Pd1—N3163.33 (11)C3—C4—H3119.486
N2—Pd1—N382.82 (10)C5—C4—H3119.487
O1—Cl2—O2111.8 (2)C4—C5—H4120.689
O1—Cl2—O3108.8 (3)C6—C5—H4120.678
O1—Cl2—O4108.88 (19)N3—C7—H5A109.342
O2—Cl2—O3108.95 (19)N3—C7—H5B109.355
O2—Cl2—O4109.4 (2)C6—C7—H5A109.338
O3—Cl2—O4109.0 (2)C6—C7—H5B109.347
Pd1—N1—C1107.07 (19)H5A—C7—H5B107.982
Pd1—N1—C18i112.50 (17)N3—C8—H6A109.912
C1—N1—C18i109.9 (3)N3—C8—H6B109.900
Pd1—N2—C2118.0 (2)C9—C8—H6A109.914
Pd1—N2—C6118.3 (2)C9—C8—H6B109.908
C2—N2—C6123.6 (3)H6A—C8—H6B108.320
Pd1—N3—C7104.97 (18)C10—C11—H8118.607
Pd1—N3—C8121.7 (2)C12—C11—H8118.614
C7—N3—C8112.8 (3)C10—C15—H7A109.473
C19—N4—C20117.7 (4)C10—C15—H7B109.469
C19—N4—C21121.8 (4)C10—C15—H7C109.471
C20—N4—C21120.5 (4)H7A—C15—H7B109.470
N1—C1—C2110.2 (3)H7A—C15—H7C109.468
N2—C2—C1113.8 (3)H7B—C15—H7C109.477
N2—C2—C3118.8 (3)C12—C16—H9A109.470
C1—C2—C3127.3 (3)C12—C16—H9B109.474
C2—C3—C4118.7 (4)C12—C16—H9C109.465
C3—C4—C5121.0 (4)H9A—C16—H9B109.474
C4—C5—C6118.6 (4)H9A—C16—H9C109.469
N2—C6—C5119.2 (3)H9B—C16—H9C109.475
N2—C6—C7112.3 (3)C14—C17—H11A109.468
C5—C6—C7128.4 (3)C14—C17—H11B109.469
N3—C7—C6111.4 (3)C14—C17—H11C109.466
N3—C8—C9108.9 (3)H11A—C17—H11B109.474
C8—C9—C10121.7 (3)H11A—C17—H11C109.470
C8—C9—C14118.7 (3)H11B—C17—H11C109.480
C10—C9—C14119.2 (3)N1i—C18—H10A109.221
C9—C10—C11118.9 (3)N1i—C18—H10B109.225
C9—C10—C15124.5 (3)C13—C18—H10A109.220
C11—C10—C15116.6 (3)C13—C18—H10B109.225
C10—C11—C12122.8 (3)H10A—C18—H10B107.917
C11—C12—C13118.4 (3)N4—C19—H14A109.480
C11—C12—C16119.6 (3)N4—C19—H14B109.469
C13—C12—C16122.0 (3)N4—C19—H14C109.473
C12—C13—C14120.2 (3)H14A—C19—H14B109.474
C12—C13—C18118.2 (3)H14A—C19—H14C109.472
C14—C13—C18121.6 (3)H14B—C19—H14C109.459
C9—C14—C13120.0 (3)N4—C20—H15A109.469
C9—C14—C17119.5 (3)N4—C20—H15B109.467
C13—C14—C17120.5 (3)N4—C20—H15C109.470
N1i—C18—C13111.9 (3)H15A—C20—H15B109.476
O5—C21—N4124.5 (4)H15A—C20—H15C109.470
C22—O6—H18109.469H15B—C20—H15C109.476
Pd1—N1—H12112 (3)O5—C21—H16117.729
C1—N1—H12109 (3)N4—C21—H16117.725
C18i—N1—H12106 (3)O6—C22—H17A109.471
Pd1—N3—H1398 (3)O6—C22—H17B109.478
C7—N3—H13106 (3)O6—C22—H17C109.472
C8—N3—H13112 (4)H17A—C22—H17B109.469
N1—C1—H1A109.621H17A—C22—H17C109.469
N1—C1—H1B109.615H17B—C22—H17C109.469
C2—C1—H1A109.615
Cl1—Pd1—N1—C1149.86 (13)N2—C2—C3—C41.9 (6)
Cl1—Pd1—N1—C18i89.28 (15)C1—C2—C3—C4174.0 (4)
Cl1—Pd1—N3—C7162.28 (13)C2—C3—C4—C52.9 (7)
Cl1—Pd1—N3—C868.21 (18)C3—C4—C5—C60.9 (7)
N1—Pd1—N2—C216.25 (19)C4—C5—C6—N22.1 (6)
N1—Pd1—N2—C6167.5 (2)C4—C5—C6—C7172.7 (4)
N2—Pd1—N1—C125.80 (15)N2—C6—C7—N331.1 (4)
N2—Pd1—N1—C18i95.06 (17)C5—C6—C7—N3153.8 (4)
N2—Pd1—N3—C721.95 (16)N3—C8—C9—C1094.4 (4)
N2—Pd1—N3—C8107.56 (19)N3—C8—C9—C1478.6 (4)
N3—Pd1—N2—C2169.8 (2)C8—C9—C10—C11167.8 (3)
N3—Pd1—N2—C66.50 (19)C8—C9—C10—C1512.7 (6)
Pd1—N1—C1—C231.6 (3)C8—C9—C14—C13165.3 (3)
Pd1—N1—C18i—C13i66.0 (3)C8—C9—C14—C1715.6 (5)
C1—N1—C18i—C13i174.8 (2)C10—C9—C14—C137.9 (5)
C18i—N1—C1—C290.9 (3)C10—C9—C14—C17171.2 (3)
Pd1—N2—C2—C11.5 (4)C14—C9—C10—C115.2 (5)
Pd1—N2—C2—C3174.9 (2)C14—C9—C10—C15174.3 (3)
Pd1—N2—C6—C5172.8 (2)C9—C10—C11—C121.0 (6)
Pd1—N2—C6—C711.6 (4)C15—C10—C11—C12179.5 (3)
C2—N2—C6—C53.2 (5)C10—C11—C12—C134.4 (6)
C2—N2—C6—C7172.3 (3)C10—C11—C12—C16175.8 (3)
C6—N2—C2—C1177.6 (3)C11—C12—C13—C141.6 (5)
C6—N2—C2—C31.2 (5)C11—C12—C13—C18179.7 (3)
Pd1—N3—C7—C633.6 (3)C16—C12—C13—C14178.6 (3)
Pd1—N3—C8—C9150.26 (17)C16—C12—C13—C180.1 (5)
C7—N3—C8—C983.7 (3)C12—C13—C14—C94.5 (5)
C8—N3—C7—C6101.0 (3)C12—C13—C14—C17174.6 (3)
C19—N4—C21—O51.8 (7)C12—C13—C18—N1i85.7 (4)
C20—N4—C21—O5179.0 (4)C14—C13—C18—N1i93.0 (4)
N1—C1—C2—N220.9 (4)C18—C13—C14—C9174.2 (3)
N1—C1—C2—C3163.0 (3)C18—C13—C14—C176.7 (5)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H18···O6ii0.842.332.757 (5)112
N1—H12···O60.78 (4)2.21 (4)2.930 (5)153 (4)
N3—H13···Cl1i0.71 (4)2.67 (5)3.332 (4)156 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z+1.
Selected bond lengths (Å) top
Pd1—Cl12.3084 (9)Pd1—N21.942 (3)
Pd1—N12.062 (3)Pd1—N32.087 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H18···O6i0.842.332.757 (5)112
N1—H12···O60.78 (4)2.21 (4)2.930 (5)153 (4)
N3—H13···Cl1ii0.71 (4)2.67 (5)3.332 (4)156 (4)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z.
 

Acknowledgements

This work was partially supported by Grants-in-Aid (No. 22550060 to YF and No. 22350028 to HM) for Scientific Research from the Ministry of Education, Science, Sports and Culture, Japan.

References

First citationAllmendinger, M., Zell, P., Amin, A., Thewalt, U., Klinga, M. & Rieger, B. (2003). Heterocycles, 60, 1065–1081.  CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationArnáiz, A., Cuevas, J. V., Herbosa, G. G., Carbayo, A., Casares, J. A. & Puebla, E. G. (2002). J. Chem. Soc. Dalton Trans. pp. 2581–2586.  Google Scholar
First citationGoforth, S. K., Walroth, R. C. & White, L. M. E. (2013). Inorg. Chem. 52, 5692–5701.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHiga, T., Fukui, M., Fukui, K., Naganuma, Y., Kajita, Y., Inomata, T., Ozawa, T., Funahashi, Y. & Masuda, H. (2010). J. Inclusion Phenom. Macrocycl. Chem. 66, 171–177.  Web of Science CSD CrossRef CAS Google Scholar
First citationParker, D. (1985). J. Chem. Soc. Chem. Commun. pp. 1129–1131.  CrossRef Web of Science Google Scholar
First citationParker, D., Lehn, J. M. & Rimmer, J. (1985). J. Chem. Soc. Dalton Trans. pp. 1517–1521.  CrossRef Web of Science Google Scholar
First citationRigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2001). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuess, D. L. M. & Peters, J. C. (2010). Chem. Commun. 46, 6554–6556.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages m520-m521
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds