metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dichlorido[6,8,22,24,34,36-hexamethyl-33,35-diaza-3,11,19,27-tetraazoniapentacyclo[27.3.1.1^{5,9}.1^{13,17}.1^{21,25}]hexatriaconta-1(33),5,7,9(34),13,15,17(35),-21,23,25(36),29,31-dodecaene- $\kappa^6 N^3$,- $N^{11}, N^{19}, N^{27}, N^{33}, N^{35}$]dipalladium(II) bis(perchlorate) N.N-dimethylformamide disolvate methanol disolvate

Kohei Oda,^a Yasuhiro Funahashi^{b,c} and Hideki Masuda^a*

^aDepartment of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan, ^bDepartment of Chemistry, Graduate School of Science, Osaka University, Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan, and ^cPRESTO, Japan Science and Technology Agency (JST), Japan

Correspondence e-mail: masuda.hideki@nitech.ac.jp

Received 17 July 2013; accepted 12 August 2013

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.005 Å; R factor = 0.038; wR factor = 0.097; data-to-parameter ratio = 18.0.

crystal structure of the title compound, In the $[Pd_2(C_{36}H_{42}N_6)Cl_2](ClO_4)_2 \cdot 2C_3H_7NO \cdot 2CH_3OH$, the dinuclear Pd^{II} complex cation lies on an inversion center. Each Pd^{II} ion has a distorted square-planar coordination sphere, defined by three N atoms of the macrocyclic ligand and a chloride ion. The Pd^{II} complex cations and the methanol molecules are linked through $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds, forming a zigzag chain along [101]. An intramolecular N- $H \cdot \cdot \cdot Cl$ hydrogen bond is also observed.

Related literature

For palladium(II) complexes with 2,6-bis(aminomethyl)pyridine, see: Arnáiz et al. (2002). For dipalladium(II) complexes having a Pd^{II}-Cl unit, see: Suess & Peters (2010); Goforth et al. (2013). For palladium(II) complexes containing a macrocyclic ligand, see: Parker (1985); Parker et al. (1985). For a similar macrocyclic ligand, see: Allmendinger et al. (2003). For a similar cryptand ligand, see: Higa et al. (2010).

 $\beta = 104.201 \ (2)^{\circ}$

Z = 2

V = 2566.0 (8) Å³

Mo $K\alpha$ radiation

 $0.20 \times 0.20 \times 0.20$ mm

19797 measured reflections

5826 independent reflections 4980 reflections with $F^2 > 2\sigma(F^2)$

 $\mu = 0.98 \text{ mm}^{-1}$

T = 173 K

 $R_{\rm int} = 0.029$

Experimental

Crystal data

[Pd₂(C₃₆H₄₂N₆)Cl₂](ClO₄)₂--2C₃H₇NO·2CH₄O $M_r = 1255.68$ Monoclinic, $P2_1/n$ a = 10.917 (2) Å b = 19.083 (4) Å c = 12.705 (3) Å

Data collection

Rigaku Mercury70 diffractometer Absorption correction: numerical (NUMABS; Rigaku, 1999) $T_{\min} = 0.751, T_{\max} = 0.823$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	H atoms treated by a mixture of
$wR(F^2) = 0.097$	independent and constrained
S = 1.08	refinement
5826 reflections	$\Delta \rho_{\rm max} = 0.80 \text{ e } \text{\AA}^{-3}$
324 parameters	$\Delta \rho_{\rm min} = -0.81 \text{ e } \text{\AA}^{-3}$

Table 1

Selecte	ed bo	nd le	ngths ((A)	
---------	-------	-------	---------	-----	--

Pd1-Cl1	2.3084 (9)	Pd1-N2	1.942 (3)
Pd1-N1	2.062 (3)	Pd1-N3	2.087 (3)

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O6-H18\cdots O6^{i}$ $N1-H12\cdots O6$ $N3-H13\cdots Cl1^{ii}$	0.84 0.78 (4) 0.71 (4)	2.33 2.21 (4) 2.67 (5)	2.757 (5) 2.930 (5) 3.332 (4)	112 153 (4) 156 (4)

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z.

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2001); software used to prepare material for publication: CrystalStructure.

This work was partially supported by Grants-in-Aid (No. 22550060 to YF and No. 22350028 to HM) for Scientific Research from the Ministry of Education, Science, Sports and Culture, Japan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5294).

References

- Allmendinger, M., Zell, P., Amin, A., Thewalt, U., Klinga, M. & Rieger, B. (2003). *Heterocycles*, **60**, 1065–1081.
- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Arnáiz, A., Cuevas, J. V., Herbosa, G. G., Carbayo, A., Casares, J. A. & Puebla, E. G. (2002). J. Chem. Soc. Dalton Trans. pp. 2581–2586.

- Goforth, S. K., Walroth, R. C. & White, L. M. E. (2013). *Inorg. Chem.* 52, 5692–5701.
- Higa, T., Fukui, M., Fukui, K., Naganuma, Y., Kajita, Y., Inomata, T., Ozawa, T., Funahashi, Y. & Masuda, H. (2010). J. Inclusion Phenom. Macrocycl. Chem. 66, 171–177.
- Parker, D. (1985). J. Chem. Soc. Chem. Commun. pp. 1129-1131.
- Parker, D., Lehn, J. M. & Rimmer, J. (1985). J. Chem. Soc. Dalton Trans. pp. 1517–1521.
- Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2001). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Suess, D. L. M. & Peters, J. C. (2010). Chem. Commun. 46, 6554-6556.

supporting information

Acta Cryst. (2013). E69, m520-m521 [doi:10.1107/S1600536813022666]

Dichlorido[6,8,22,24,34,36-hexamethyl-33,35-diaza-3,11,19,27tetraazoniapentacyclo-[27.3.1.1^{5,9}.1^{13,17}.1^{21,25}]hexatriaconta-1(33),5,7,9(34),13,15,17(35),21,23,25(36) ,29,31-dodecaene- $\kappa^6 N^3$, N^{11} , N^{19} , N^{27} , N^{33} , N^{35}]dipalladium(II) bis(perchlorate) *N*,*N*-dimethylformamide disolvate methanol disolvate

Kohei Oda, Yasuhiro Funahashi and Hideki Masuda

S1. Comment

2,6-Pyridinedicarboxaldehyde and 2,4-bis-aminomethyl-1,3,5-trimethyl benzene were used for synthesis of an imine macrocycle, and the highly selective cyclization reaction resulted in a [2+2] stoichiometry, in a similar procedure to a previous study (Allmendinger *et al.*, 2003). It can be facilely reduced by NaBH₄ to give the corresponding amine analogue containing two 2,6-di(aminomethyl)pyridine units. The spacer unit can capture two transition metal ions inside the macrocyclic ligand molecule. Previously, similar macrocyclic ligands containing dinuclear palladium(II) complexes have been synthesized (Parker *et al.*, 1985). Using the amine macrocyclic ligand, we have fortunately prepared a novel dinuclear palladium(II) complex, and succeeded in elucidating the crystal structure. The single-crystal X-ray diffraction analysis has revealed that the title compound, $[Pd^{II}_{2}(C_{36}H_{42}N_{6})Cl_{2}](ClO_{4})_{2}.2DMF.2CH_{3}OH$, has crystallized in the monoclinic space group *P*2₁/n, and the unit cell contains two palladium(II) ions and two chloride ions inside the macrocyclic ligand molecule. The two perchlorate anions, two crystalline DMF and two methanol molecules are located outside the ligand sphere (Fig. 2). The palladium(II) center has a four-coordinate square-planar geometry occupied by three N atoms of the macrocyclic ligand and one chloride ion (Fig. 1).

S2. Experimental

The macrocyclic ligand ($C_{36}H_{42}N_{6.0}.5H_{2}O$) was synthesized by the following method. 2,4-Bis(aminomethyl)-1,3,5-trimethylbenzene (2.67 g, 1.50 × 10 ⁻² mol) was dissolved in methanol (200 ml). To this solution, a methanol solution (200 ml) of 2,6-pyridinedicarboxaldehyde (2.05 g, 1.52 × 10 ⁻² mol) was added dropwise. The mixed solution immediately gave a white precipitate, which was collected by vacuum filtration, washed with water (100 ml), and dried under vacuum. The white precipitate was dissolved in dichloromethane (300 ml), and an ethanol solution (300 ml) of NaBH₄ (2.59 g, 6.84×10^{-2} mol) was added in portion. After the reaction mixture was stirred for 6 h, the solution was acidified with 0.1 N HCl aq. and alkalified with 1 N KOH aq. Evaporation of the resulting solution under reduced pressure gave a white precipitate of the macrocyclic ligand, which was filtered out, washed with water, and dried under vacuum (yield 3.74 g, 88%). Analysis, calculated for $C_{36}H_{42}N_6.0.5H_2O$: C 76.22, H 8.26, N 14.81; found: C 76.20, H 8.24, N 14.86. ¹H NMR (300 MHz, CDCl₃ *versus* TMS, δ , p.p.m.): 1.88 (*s*, 4H, NH), 2.36 (*s*, 12H, PhCH₃), 2.37 (*s*, 6H, PhCH₃), 3.74 (*s*, 8H, CH₂), 3.95 (*s*, 8H, CH₂), 6.86 (*s*, 2H, Ph), 7.14 (*d*, 4H, pyridine), 7.58 (*t*, 2H, pyridine). The dipalladium(II) complex was synthesized by the following procedure. The macrocyclic ligand (56.7 mg, 1.00×10^{-4} mol) was dissolved in methanol–chloroform (7 ml, 1:1 v/v). To this solution, a solution of $(Et_4N)_2[Pd^{II}Cl_4]$ (105.4 mg, 2.00×10^{-4} mol) in methanol–chloroform (7 ml, 1:1 v/v) was added. After the mixed solution was stirred for 6 h at room temperature, a saturated methanol solution (3 ml) of $(n-Bu)_4NCIO_4$ was added to give a bright-yellow precipitate as a product. It was filtered out, washed with diethyl ether, and dried under vacuum condition. Single crystals suitable for X-ray crystallographic analysis were obtained by recrystallization from *N*,*N*-dimethylformamide–methanol–dimethyl ether.

S3. Refinement

H atoms attached to C atoms were positioned geometrically and treated as riding, with aromatic C—H = 0.95 Å, methyl C—H = 0.98 Å and methylenic C—H = 0.99 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$. The hydroxyl H atom was positioned geometrically and treated as riding, with O—H = 0.84 Å and with $U_{iso}(H) = 1.5U_{eq}(O)$. H atoms on N atoms were located in a difference Fourier map and isotropically refined.

Figure 1

The view of molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A partial packing diagram of the title compound. H atoms are omitted for clarity.

Dichlorido[6,8,22,24,34,36-hexamethyl-33,35-diaza-3,11,19,27-

tetraazoniapentacyclo[27.3.1.1^{5,9}.1^{13,17}.1^{21,25}]hexatriaconta-1(33),5,7,9(34),13,15,17 (35),21,23,25 (36),29,31-dodecaene- $\kappa^6 N^3$, N^{11} , N^{19} , N^{27} , N^{33} , N^{35}]dipalladium(II) bis(perchlorate) *N*, *N*-dimethylformamide disolvate methanol disolvate

Crystal data

	E(000) 1000 00
$[Pd_2(C_{36}H_{42}N_6)Cl_2](ClO_4)_2 \cdot 2C_3H_7NO \cdot 2CH_4O$	F(000) = 1288.00
$M_r = 1255.68$	$D_{\rm x} = 1.625 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation, $\lambda = 0.71070$ Å
Hall symbol: -P 2yn	Cell parameters from 6824 reflections
a = 10.917 (2) Å	$\theta = 3.0-27.5^{\circ}$
b = 19.083 (4) Å	$\mu = 0.98 \ \mathrm{mm^{-1}}$
c = 12.705 (3) Å	T = 173 K
$\beta = 104.201 \ (2)^{\circ}$	Block, yellow
V = 2566.0 (8) Å ³	$0.20 \times 0.20 \times 0.20$ mm
7=2	

Data collection

Rigaku Mercury70 diffractometer Detector resolution: 7.314 pixels mm ⁻¹ ω scans Absorption correction: numerical (<i>NUMABS</i> ; Rigaku, 1999) $T_{\min} = 0.751, T_{\max} = 0.823$ 19797 measured reflections	5826 independent reflections 4980 reflections with $F^2 > 2\sigma(F^2)$ $R_{int} = 0.029$ $\theta_{max} = 27.5^{\circ}$ $h = -13 \rightarrow 13$ $k = -24 \rightarrow 24$ $l = -16 \rightarrow 16$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.097$ S = 1.08 5826 reflections 324 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0439P)^2 + 3.481P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.80$ e Å ⁻³ $\Delta\rho_{min} = -0.81$ e Å ⁻³

Special details

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Pd1	0.63072 (2)	0.578980 (12)	0.164247 (18)	0.02062 (8)
Cl1	0.61781 (7)	0.45840 (4)	0.17120 (6)	0.02688 (16)
Cl2	0.21267 (8)	0.73945 (4)	0.37351 (7)	0.03456 (19)
O1	0.1928 (3)	0.66584 (15)	0.3537 (3)	0.0598 (9)
O2	0.2752 (3)	0.75349 (19)	0.4847 (3)	0.0614 (9)
O3	0.2891 (3)	0.76593 (18)	0.3048 (3)	0.0579 (9)
O4	0.0927 (3)	0.77435 (16)	0.3469 (3)	0.0582 (9)
O5	0.7672 (3)	0.6378 (3)	0.5140 (3)	0.0713 (11)
O6	0.8813 (3)	0.5059 (3)	0.4312 (4)	0.0974 (17)
N1	0.8226 (3)	0.58758 (14)	0.2298 (2)	0.0236 (6)
N2	0.6424 (3)	0.68049 (14)	0.1703 (2)	0.0244 (6)
N3	0.4436 (3)	0.59993 (14)	0.0836 (3)	0.0233 (6)
N4	0.5730 (3)	0.62401 (17)	0.5422 (3)	0.0401 (7)
C1	0.8448 (3)	0.65695 (18)	0.2889 (3)	0.0324 (8)
C2	0.7484 (3)	0.70951 (18)	0.2337 (3)	0.0284 (7)
C3	0.7542 (4)	0.78140 (19)	0.2459 (3)	0.0370 (8)
C4	0.6500 (4)	0.8209 (2)	0.1954 (4)	0.0432 (9)
C5	0.5432 (4)	0.78952 (19)	0.1295 (4)	0.0394 (9)
C6	0.5423 (3)	0.71802 (17)	0.1165 (3)	0.0287 (7)
C7	0.4453 (3)	0.67333 (17)	0.0408 (3)	0.0287 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

C8	0.3352 (3)	0.58744 (17)	0.1373 (3)	0.0254 (7)
С9	0.2169 (3)	0.56955 (16)	0.0501 (3)	0.0239 (6)
C10	0.1281 (3)	0.62113 (16)	0.0033 (3)	0.0266 (7)
C11	0.0349 (3)	0.60461 (17)	-0.0898(3)	0.0290 (7)
C12	0.0270 (3)	0.53965 (17)	-0.1397 (3)	0.0253 (7)
C13	0.1117 (3)	0.48650 (16)	-0.0896(3)	0.0227 (6)
C14	0.2032 (3)	0.50048 (16)	0.0067 (3)	0.0223 (6)
C15	0.1251 (4)	0.69419 (18)	0.0475 (4)	0.0397(9)
C16	-0.0711(4)	0.5274 (2)	-0.2446(3)	0.0351 (8)
C17	0.2865(3)	0.44240(16)	0.0660 (3)	0.0263(7)
C18	0.1021(3)	0.41548(16)	-0.1441(3)	0.0250(7)
C19	0.1021(5) 0.5132(5)	0.6064 (4)	0.4304(5)	0.0250(1)
C20	0.5132(5) 0.4934(5)	0.6001(1)	0.1301(3) 0.6182(4)	0.003(2)
C21	0.4937(3)	0.6270(3)	0.5736(4)	0.0030(13)
C22	0.0937(4) 0.8039(7)	0.0509(2) 0.4662(4)	0.5750(4) 0.4680(5)	0.0413(3)
H1A	0.8393	0.4002 (4)	0.3649	0.0388*
H1R	0.0306	0.6743	0.2800	0.0388*
	0.9300	0.0743	0.2899	0.0388
П2 Ц2	0.6262	0.8033	0.2001	0.0444
	0.0314	0.8702	0.2039	0.0318
П4 115 л	0.4724	0.6170	0.0942	$0.04/3^{\circ}$
ПЈА	0.3007	0.0947	0.0317	0.0344
НЭВ	0.4040	0.0/18	-0.0313	0.0344*
HOA	0.3305	0.5484	0.1899	0.0305*
Нов	0.3205	0.6300	0.1/69	0.0305*
H/A	0.1585	0.7273	0.0025	0.0476*
H/B	0.1770	0.6960	0.1223	0.0476*
H7C	0.0379	0.7069	0.0465	0.0476*
H8	-0.0256	0.6394	-0.1204	0.0348*
H9A	-0.1268	0.4889	-0.2349	0.0422*
H9B	-0.0290	0.5151	-0.3019	0.0422*
H9C	-0.1211	0.5701	-0.2650	0.0422*
H10A	0.0123	0.4052	-0.1784	0.0300*
H10B	0.1337	0.3791	-0.0886	0.0300*
H11A	0.3743	0.4511	0.0637	0.0315*
H11B	0.2586	0.3974	0.0311	0.0315*
H11C	0.2808	0.4410	0.1418	0.0315*
H14A	0.5533	0.5645	0.4093	0.1019*
H14B	0.5227	0.6456	0.3831	0.1019*
H14C	0.4232	0.5972	0.4232	0.1019*
H15A	0.4566	0.5816	0.6244	0.0756*
H15B	0.4255	0.6619	0.5920	0.0756*
H15C	0.5442	0.6425	0.6895	0.0756*
H16	0.7268	0.6513	0.6475	0.0496*
H17A	0.7712	0.4922	0.5217	0.1116*
H17B	0.8488	0.4243	0.5020	0.1116*
H17C	0.7334	0.4521	0.4077	0.1116*
H18	0.9179	0.5336	0.4803	0.1461*
H13	0.440 (4)	0.5775 (19)	0.038 (4)	0.022 (10)*

					supporting	; information
H12	0.849 (4)	0.557	75 (19)	0.271 (3)	0.022 (9)*	
Atomic	displacement para	ameters $(Å^2)$				
	U^{11}	U ²²	<i>U</i> ³³	U^{12}	U^{13}	<i>U</i> ²³
Pd1	0.01775 (13)	0.02451 (13)	0.01903 (12)	-0.00282 (9)	0.00344 (8)	-0.00189 (8)
Cl1	0.0265 (4)	0.0257 (4)	0.0279 (4)	-0.0018 (3)	0.0055 (3)	0.0035 (3)
C12	0.0329 (5)	0.0345 (5)	0.0355 (5)	-0.0029 (4)	0.0068 (4)	0.0010 (4)
01	0.066 (2)	0.0311 (15)	0.083 (3)	-0.0037 (14)	0.0182 (18)	0.0012 (15)
O2	0.059 (2)	0.086 (3)	0.0343 (16)	-0.0044 (18)	0.0023 (14)	-0.0027 (16)
03	0.0519 (18)	0.077 (3)	0.0452 (17)	-0.0205 (16)	0.0132 (15)	0.0059 (15)
O4	0.0382 (16)	0.0521 (18)	0.079 (3)	0.0083 (14)	0.0032 (16)	-0.0072 (16)
05	0.0459 (19)	0.112 (4)	0.062 (3)	0.0133 (19)	0.0262 (17)	0.007 (2)
O6	0.0401 (18)	0.163 (5)	0.082 (3)	-0.009 (3)	0.0015 (18)	0.086 (3)
N1	0.0194 (13)	0.0306 (14)	0.0187 (13)	-0.0018 (11)	0.0007 (11)	0.0003 (11)
N2	0.0196 (13)	0.0286 (13)	0.0250 (13)	-0.0061 (11)	0.0055 (11)	-0.0062 (11)
N3	0.0190 (13)	0.0278 (14)	0.0232 (14)	-0.0022 (11)	0.0052 (11)	-0.0038 (11)
N4	0.0410 (18)	0.0494 (19)	0.0326 (16)	0.0038 (15)	0.0140 (14)	-0.0011 (14)
C1	0.0262 (17)	0.0418 (19)	0.0271 (17)	-0.0081 (15)	0.0025 (14)	-0.0123 (14)
C2	0.0264 (17)	0.0359 (18)	0.0240 (15)	-0.0092 (13)	0.0084 (13)	-0.0120 (13)
C3	0.035 (2)	0.040 (2)	0.0367 (19)	-0.0128 (16)	0.0101 (16)	-0.0175 (16)
C4	0.044 (3)	0.0300 (18)	0.058 (3)	-0.0068 (16)	0.0178 (19)	-0.0173 (17)
C5	0.0286 (18)	0.0324 (18)	0.058 (3)	0.0009 (15)	0.0127 (17)	-0.0039 (17)
C6	0.0236 (16)	0.0298 (16)	0.0342 (18)	-0.0023 (13)	0.0099 (14)	-0.0017 (13)
C7	0.0210 (15)	0.0306 (16)	0.0329 (17)	-0.0041 (13)	0.0038 (13)	0.0040 (13)
C8	0.0212 (15)	0.0314 (16)	0.0252 (15)	-0.0038 (12)	0.0085 (13)	-0.0047 (12)
C9	0.0197 (15)	0.0301 (16)	0.0227 (15)	-0.0035 (12)	0.0070 (12)	-0.0020 (12)
C10	0.0209 (15)	0.0258 (15)	0.0353 (17)	-0.0023 (12)	0.0108 (13)	-0.0021 (13)
C11	0.0204 (16)	0.0307 (16)	0.0372 (18)	0.0053 (13)	0.0096 (14)	0.0094 (14)
C12	0.0188 (15)	0.0367 (17)	0.0213 (15)	-0.0003 (13)	0.0065 (12)	0.0055 (13)
C13	0.0175 (14)	0.0287 (15)	0.0232 (15)	-0.0035 (12)	0.0075 (12)	0.0000 (12)
C14	0.0174 (14)	0.0285 (15)	0.0214 (14)	-0.0007 (12)	0.0055 (12)	0.0014 (12)
C15	0.0303 (19)	0.0326 (19)	0.056 (3)	0.0001 (15)	0.0108 (17)	-0.0067 (17)
C16	0.0252 (17)	0.048 (2)	0.0294 (18)	0.0047 (15)	0.0010 (14)	0.0056 (15)
C17	0.0235 (16)	0.0283 (16)	0.0236 (15)	0.0011 (13)	-0.0007 (13)	-0.0004 (12)
C18	0.0191 (15)	0.0309 (16)	0.0255 (15)	-0.0040 (12)	0.0066 (12)	-0.0022 (12)
C19	0.051 (3)	0.149 (6)	0.051 (3)	0.012 (4)	0.006 (3)	-0.031 (4)
C20	0.065 (3)	0.079 (4)	0.056 (3)	-0.005 (3)	0.036 (3)	0.004 (3)
C21	0.043 (3)	0.043 (2)	0.038 (2)	0.0097 (17)	0.0100 (18)	0.0043 (16)
C22	0.132 (6)	0.102 (5)	0.047 (3)	-0.069 (5)	0.026 (4)	-0.016 (3)

Geometric parameters (Å, °)

Pd1—Cl1	2.3084 (9)	C14—C17	1.513 (4)
Pd1—N1	2.062 (3)	O6—H18	0.840
Pd1—N2	1.942 (3)	N1—H12	0.78 (4)
Pd1—N3	2.087 (3)	N3—H13	0.72 (4)
Cl2—O1	1.434 (3)	C1—H1A	0.990

Cl2—O2	1.435 (3)	C1—H1B	0.990
Cl2—O3	1.440 (4)	C3—H2	0.950
Cl2—O4	1.433 (3)	C4—H3	0.950
O5—C21	1.231 (6)	С5—Н4	0.950
O6—C22	1.304 (9)	С7—Н5А	0.990
N1—C1	1.512 (5)	С7—Н5В	0.990
N1—C18 ⁱ	1.517 (5)	C8—H6A	0.990
N2—C2	1.356 (4)	C8—H6B	0.990
N2—C6	1.344 (4)	С11—Н8	0.950
N3—C7	1.504 (5)	С15—Н7А	0.980
N3—C8	1 522 (5)	C15—H7B	0.980
N4—C19	1 449 (6)	C15—H7C	0.980
N4-C20	1.119(0) 1.451(7)	C16—H9A	0.980
N4_C21	1.451(7) 1.311(5)	C16—H9B	0.980
C_1 C_2	1.311(5) 1.407(5)	C_{10} H_{9C}	0.980
$C_1 = C_2$	1.497(5)		0.980
$C_2 = C_3$	1.380(5)	C17—IIIIA C17—IIIIA	0.980
C_{3}	1.364 (3)		0.980
C4—C3	1.394 (5)		0.980
C_{3}	1.574 (5)	C18—HI0A	0.990
	1.508 (5)	CI8—HI0B	0.990
C8-C9	1.519 (4)	C19—H14A	0.980
C9—C10	1.407 (5)	C19—H14B	0.980
C9—C14	1.422 (5)	C19—H14C	0.980
C10—C11	1.394 (5)	C20—H15A	0.980
C10—C15	1.506 (5)	С20—Н15В	0.980
C11—C12	1.385 (5)	С20—Н15С	0.980
C12—C13	1.415 (5)	С21—Н16	0.950
C12—C16	1.509 (5)	С22—Н17А	0.980
C13—C14	1.402 (4)	C22—H17B	0.980
C13—C18	1.514 (5)	C22—H17C	0.980
Cl1—Pd1—N1	97.43 (8)	C2—C1—H1B	109.609
Cl1—Pd1—N2	175.60 (8)	H1A—C1—H1B	108.144
Cl1—Pd1—N3	98.52 (8)	С2—С3—Н2	120.657
N1—Pd1—N2	81.63 (11)	C4—C3—H2	120.648
N1—Pd1—N3	163.33 (11)	С3—С4—Н3	119.486
N2—Pd1—N3	82.82 (10)	С5—С4—Н3	119.487
O1—Cl2—O2	111.8 (2)	C4—C5—H4	120.689
O1—Cl2—O3	108.8 (3)	C6—C5—H4	120.678
O1—Cl2—O4	108.88 (19)	N3—C7—H5A	109.342
O2—Cl2—O3	108.95 (19)	N3—C7—H5B	109.355
O2—Cl2—O4	109.4 (2)	C6—C7—H5A	109.338
O3—C12—O4	109.0 (2)	С6—С7—Н5В	109.347
Pd1—N1—C1	107.07 (19)	H5A—C7—H5B	107.982
Pd1-N1-C18 ⁱ	112.50 (17)	N3—C8—H6A	109.912
C1—N1—C18 ⁱ	109.9 (3)	N3—C8—H6B	109.900
Pd1—N2—C2	118.0 (2)	С9—С8—Н6А	109.914
Pd1—N2—C6	118.3 (2)	C9—C8—H6B	109.908
	× /		

C2—N2—C6	123.6 (3)	Н6А—С8—Н6В	108.320
Pd1—N3—C7	104.97 (18)	С10—С11—Н8	118.607
Pd1—N3—C8	121.7 (2)	С12—С11—Н8	118.614
C7—N3—C8	112.8 (3)	С10—С15—Н7А	109.473
C19—N4—C20	117.7 (4)	C10—C15—H7B	109.469
C19—N4—C21	121.8 (4)	C10—C15—H7C	109.471
C20—N4—C21	120.5 (4)	H7A—C15—H7B	109.470
N1—C1—C2	110.2 (3)	H7A—C15—H7C	109.468
N2—C2—C1	113.8 (3)	H7B—C15—H7C	109.477
N2—C2—C3	118.8 (3)	С12—С16—Н9А	109.470
C1—C2—C3	127.3 (3)	С12—С16—Н9В	109.474
C2—C3—C4	118.7 (4)	С12—С16—Н9С	109.465
C3—C4—C5	121.0 (4)	H9A—C16—H9B	109.474
C4—C5—C6	118.6 (4)	H9A—C16—H9C	109.469
N2—C6—C5	119.2 (3)	H9B—C16—H9C	109.475
N2—C6—C7	112.3 (3)	C14—C17—H11A	109.468
C5—C6—C7	128.4 (3)	C14—C17—H11B	109.469
N3—C7—C6	111.4 (3)	C14—C17—H11C	109.466
N3—C8—C9	108.9 (3)	H11A—C17—H11B	109.474
C8—C9—C10	121.7 (3)	H11A—C17—H11C	109.470
C8—C9—C14	118.7 (3)	H11B—C17—H11C	109.480
C10—C9—C14	119.2 (3)	N1 ⁱ —C18—H10A	109.221
C9—C10—C11	118.9 (3)	N1 ⁱ —C18—H10B	109.225
C9—C10—C15	124.5 (3)	C13—C18—H10A	109.220
C11—C10—C15	116.6 (3)	C13—C18—H10B	109.225
C10-C11-C12	122.8 (3)	H10A—C18—H10B	107.917
C11—C12—C13	118.4 (3)	N4—C19—H14A	109.480
C11—C12—C16	119.6 (3)	N4—C19—H14B	109.469
C13—C12—C16	122.0 (3)	N4—C19—H14C	109.473
C12—C13—C14	120.2 (3)	H14A—C19—H14B	109.474
C12—C13—C18	118.2 (3)	H14A—C19—H14C	109.472
C14—C13—C18	121.6 (3)	H14B—C19—H14C	109.459
C9—C14—C13	120.0 (3)	N4—C20—H15A	109.469
C9—C14—C17	119.5 (3)	N4—C20—H15B	109.467
C13—C14—C17	120.5 (3)	N4—C20—H15C	109.470
N1 ⁱ —C18—C13	111.9 (3)	H15A—C20—H15B	109.476
O5—C21—N4	124.5 (4)	H15A—C20—H15C	109.470
C22—O6—H18	109.469	H15B—C20—H15C	109.476
Pd1—N1—H12	112 (3)	O5—C21—H16	117.729
C1—N1—H12	109 (3)	N4—C21—H16	117.725
C18 ⁱ —N1—H12	106 (3)	O6—C22—H17A	109.471
Pd1—N3—H13	98 (3)	O6—C22—H17B	109.478
C7—N3—H13	106 (3)	O6—C22—H17C	109.472
C8—N3—H13	112 (4)	H17A—C22—H17B	109.469
N1—C1—H1A	109.621	H17A—C22—H17C	109.469
N1—C1—H1B	109.615	H17B—C22—H17C	109.469
C2—C1—H1A	109.615		

Cl1—Pd1—N1—C1	-149.86 (13)	N2—C2—C3—C4	1.9 (6)
Cl1—Pd1—N1—C18 ⁱ	89.28 (15)	C1—C2—C3—C4	-174.0 (4)
Cl1—Pd1—N3—C7	-162.28 (13)	C2—C3—C4—C5	-2.9 (7)
Cl1—Pd1—N3—C8	68.21 (18)	C3—C4—C5—C6	0.9 (7)
N1—Pd1—N2—C2	-16.25 (19)	C4—C5—C6—N2	2.1 (6)
N1—Pd1—N2—C6	167.5 (2)	C4—C5—C6—C7	-172.7 (4)
N2—Pd1—N1—C1	25.80 (15)	N2—C6—C7—N3	31.1 (4)
N2—Pd1—N1—C18 ⁱ	-95.06 (17)	C5—C6—C7—N3	-153.8 (4)
N2—Pd1—N3—C7	21.95 (16)	N3—C8—C9—C10	-94.4 (4)
N2—Pd1—N3—C8	-107.56 (19)	N3—C8—C9—C14	78.6 (4)
N3—Pd1—N2—C2	169.8 (2)	C8—C9—C10—C11	167.8 (3)
N3—Pd1—N2—C6	-6.50 (19)	C8—C9—C10—C15	-12.7 (6)
Pd1—N1—C1—C2	-31.6 (3)	C8—C9—C14—C13	-165.3 (3)
$Pd1 - N1 - C18^{i} - C13^{i}$	-66.0 (3)	C8—C9—C14—C17	15.6 (5)
$C1-N1-C18^{i}-C13^{i}$	174.8 (2)	C10-C9-C14-C13	7.9 (5)
C18 ⁱ —N1—C1—C2	90.9 (3)	C10-C9-C14-C17	-171.2 (3)
Pd1—N2—C2—C1	1.5 (4)	C14—C9—C10—C11	-5.2 (5)
Pd1—N2—C2—C3	-174.9 (2)	C14—C9—C10—C15	174.3 (3)
Pd1—N2—C6—C5	172.8 (2)	C9—C10—C11—C12	-1.0 (6)
Pd1—N2—C6—C7	-11.6 (4)	C15-C10-C11-C12	179.5 (3)
C2—N2—C6—C5	-3.2 (5)	C10-C11-C12-C13	4.4 (6)
C2—N2—C6—C7	172.3 (3)	C10-C11-C12-C16	-175.8 (3)
C6—N2—C2—C1	177.6 (3)	C11—C12—C13—C14	-1.6 (5)
C6—N2—C2—C3	1.2 (5)	C11—C12—C13—C18	179.7 (3)
Pd1—N3—C7—C6	-33.6 (3)	C16—C12—C13—C14	178.6 (3)
Pd1—N3—C8—C9	-150.26 (17)	C16—C12—C13—C18	-0.1 (5)
C7—N3—C8—C9	83.7 (3)	C12—C13—C14—C9	-4.5 (5)
C8—N3—C7—C6	101.0 (3)	C12—C13—C14—C17	174.6 (3)
C19—N4—C21—O5	-1.8 (7)	C12-C13-C18-N1 ⁱ	85.7 (4)
C20—N4—C21—O5	-179.0 (4)	C14—C13—C18—N1 ⁱ	-93.0 (4)
N1-C1-C2-N2	20.9 (4)	C18—C13—C14—C9	174.2 (3)
N1—C1—C2—C3	-163.0 (3)	C18—C13—C14—C17	-6.7 (5)

Symmetry code: (i) -x+1, -y+1, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	D—H···A
O6—H18…O6 ⁱⁱ	0.84	2.33	2.757 (5)	112
N1—H12···O6	0.78 (4)	2.21 (4)	2.930 (5)	153 (4)
N3—H13····Cl1 ⁱ	0.71 (4)	2.67 (5)	3.332 (4)	156 (4)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*+2, -*y*+1, -*z*+1.