metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages m483-m484

Bis(di­methyl­formamide)­penta­kis­(μ-N,2-dioxido­benzene-1-carb­ox­imidato)tetra­kis­(1-methyl­imidazole)di-μ-propionato-penta­manganese(III)manganese(II)–di­methyl­formamide–methanol (1/0.24/1.36)

aDepartment of Chemistry, Shippensburg University, 1871 Old Main Dr., Shippensburg, PA 17257, USA, bDepartment of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109, USA, and cDepartment of Chemistry, Youngstown State University, 1 University Plaza, Youngstown, OH 44555, USA
*Correspondence e-mail: cmzaleski@ship.edu

(Received 8 July 2013; accepted 30 July 2013; online 10 August 2013)

The title compound [Mn6(C7H4NO3)5(C3H5O2)2(C4H6N2)4.17(C3H7NO)1.83]·0.24C3H7NO·1.36CH3OH or Mn(II)(C3H5O2)2[15-MCMn(III)N(shi)-5](Me—Im)4.17(DMF)1.83·0.24DMF·1.36MeOH (where MC is metallacrown, shi3− is salicyl­hydroximate, Me—Im is 1-methyl­imidazole, DMF is N,N-di­methyl­formamide, and MeOH is methanol), contains an MnII ion in the central cavity and five MnIII ions in the MC ring. The central MnII ion is seven coordinate and has a geometry best described as distorted face-capped trigonal prismatic with Φ angles of 6.13, 10.36, and 11.73° and an estimated average s/h ratio of 1.03±0.11. Four of the ring MnIII ions are six coordinate with distorted octa­hedral geometries. Two of the MnIII ions have Λ absolute stereoconfiguration, while the other two MnIII ions have a planar configuration. The fifth MnIII ion is five coordinate and has a distorted square pyramidal geometry with τ = 0.20. Three of the MnIII ions bind one 1-methyl­imidazole ligand. Two of the ring MnIII ions have a 1-methyl­imidazole and a DMF disordered over a coordination site. For one of the ring MnIII ions, the occupancy ratio of the ligands refines to 0.51 (1):0.49 (1) in favor of the DMF. For the other ring MnIII ion, the occupancy ratio of the ligands refines to 0.68 (1):0.32 (1) in favor of the 1-methyl­imidazole. Two propionate anions serve to bridge the central MnII ion between two different MnIII ions. The methyl groups of the bridging propionate anions are disordered over two positions. The methyl group disorder also induces disorder in the H atoms of the adjacent methyl­ene C atom to the same degree. For one of the propionate anions, the occupancy ratio refines to 0.752 (8):0.248 (8) and for the second, the occupancy ratio refines to 0.604 (6):0.396 (6). In addition, the disorder of the methyl group of the latter propionate anion is correlated with a partially occupied [0.604 (6)] methanol mol­ecule. Furthermore, a methanol mol­ecule and a DMF mol­ecule are positionally disordered in the lattice. The occupancy refines to 0.757 (7):0.243 (7) in favor of the methanol mol­ecule. Correlated to the occupancy of the methanol and DMF mol­ecules is a disordered benzene ring of one salicyl­hydroximate ligand. The benzene ring is disordered over two positions with an occupancy ratio of 0.757 (7):0.243 (7). Lastly, the two lattice methanol mol­ecules are hydrogen bonded to the 15-MC-5 mol­ecule. For the partially occupied methanol mol­ecule associated with the disordered propionate anion, the hydroxyl group of the methanol is hydrogen bonded to a carboxyl­ate O atom of the propionate anion. For the partially occupied methanol mol­ecule associated with the partially occupied lattice DMF mol­ecule, the hydroxyl group of the methanol is hydrogen bonded to the phenolate O atom of a salicyl­hydroximate ligand and to the carbonyl O atom of a coordinated DMF mol­ecule.

Related literature

For related Mn(II)[15-MCMn(III)N(shi)-5)] structures and synthetic procedures, see: Kessissoglou et al. (1994[Kessissoglou, D. P., Kampf, J. & Pecoraro, V. L. (1994). Polyhedron, 13, 1379-1391.]); Dendrinou-Samara et al. (2001[Dendrinou-Samara, C., Psomas, G., Iordanidis, L., Tangoulis, V. & Kessissoglou, D. P. (2001). Chem. Eur. J. 7, 5041-5051.], 2002[Dendrinou-Samara, C., Alevizopoulou, L., Iordanidis, L., Samaras, E. & Kessissoglou, D. P. (2002). J. Inorg. Biochem. 89, 89-96.], 2005[Dendrinou-Samara, C., Papadopoulos, A. N., Malamatari, D. A., Tarushi, A., Raptopoulou, C. P., Terzis, A., Samaras, E. & Kessissoglou, D. P. (2005). J. Inorg. Biochem. 99, 864-875.]); Emerich et al. (2010[Emerich, B., Smith, M., Zeller, M. & Zaleski, C. M. (2010). J. Chem. Crystallogr. 40, 769-777.]); Tigyer et al. (2011[Tigyer, B. R., Zeller, M. & Zaleski, C. M. (2011). Acta Cryst. E67, m1041-m1042.], 2012[Tigyer, B. R., Zeller, M. & Zaleski, C. M. (2012). Acta Cryst. E68, m1521-m1522.], 2013[Tigyer, B. R., Zeller, M. & Zaleski, C. M. (2013). Acta Cryst. E69, m393-m394.]). For explanations of how to calculate the s/h ratio, bond-valence-sum values and the τ parameter, see: Stiefel & Brown (1972[Stiefel, E. I. & Brown, G. F. (1972). Inorg. Chem. 11, 434-436.]), Liu & Thorp (1993[Liu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102-4105.]) and Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. G. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]), respectively.

[Scheme 1]

Experimental

Crystal data
  • [Mn6(C7H4NO3)5(C3H5O2)2(C4H6N2)4.17(C3H7NO)1.83]·0.24C3H7NO·1.36CH4O

  • Mr = 1763.91

  • Triclinic, [P \overline 1]

  • a = 12.6138 (2) Å

  • b = 14.8745 (3) Å

  • c = 20.7862 (15) Å

  • α = 97.909 (7)°

  • β = 105.209 (7)°

  • γ = 99.034 (7)°

  • V = 3650.7 (3) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 8.93 mm−1

  • T = 85 K

  • 0.07 × 0.02 × 0.02 mm

Data collection
  • Rigaku Saturn 944+ CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.179, Tmax = 0.233

  • 106589 measured reflections

  • 13145 independent reflections

  • 10454 reflections with I > 2σ(I)

  • Rint = 0.106

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.164

  • S = 1.09

  • 13145 reflections

  • 1153 parameters

  • 225 restraints

  • H-atom parameters constrained

  • Δρmax = 1.04 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O21—H21⋯O17 0.84 2.12 2.948 (6) 170
O22—H22⋯O7 0.84 2.26 3.077 (7) 163
O22—H22⋯O20 0.84 2.37 2.887 (6) 120

Data collection: CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The first manganese 15-MCMn(III)N(shi)-5 complex reported by Kessissoglou, Kampf, and Pecoraro contained six pyridine molecules bound to the ring MnIII ions and two acetate anions that bridged the central MnII ion to two ring MnIII ions (Kessissoglou et al., 1994). Both the pyridine molecules and acetate anions serve as potential places where substitution on the 15-MCMn(III)N(shi)-5 framework may occur. Initially the peripheral pyridine molecules were conserved and the bridging carboxylate anions were varied. X-ray crystal structures with 2,4-dichlorophenoxyacetate (Dendrinou-Samara et al., 2001), 2,4,5-trichlorophenoxyacetate (Dendrinou-Samara et al., 2002), and formate (Dendrinou-Samara et al., 2005) have been reported. However, recently we have shown that the pyridine molecules can be substituted with imidazole and its derivatives while acetate anions are used as the bridging anions (Emerich et al., 2010; Tigyer et al. 2011, 2013) or both the pyridine molecules and acetate anions can be substituted with imidazole molecules and bridging formate anions (Tigyer et al. 2012). Herein we report the synthesis, IR data, and single-crystal X-ray structure of the title compound [Mn6(C7H4NO3)5(C3H5O2)2(C4H6N2)4.17(C3H7NO)1.83]·0.24C3H7NO·1.36CH3OH, 1, abbreviated as Mn(II)(C3H5O2)2[15-MCMn(III)N(shi)-5](Me—Im)4.17(DMF)1.83·0.24DMF·1.36MeOH (where MC is metallacrown, shi3- is salicylhydroximate, Me—Im is 1-methylimidazole, DMF is N,N-dimethylformamide, and MeOH is methanol). In 1 propionate serves as the bridging carboxylate anion and 1-methylimidazole is bound to the ring MnIII ions instead of pyridine.

The overall metallacrown structure of 1 is nonplanar, which is typical of manganese-based 15-MC-5 complexes (Fig. 1). The MC framework is built from five shi3- ligands and five MnIII ions which form a –[MnIII—N—O]- repeat unit. Located in the central cavity of the MC is a MnII ion. This MnII is bound to five oxime O atoms of the shi3- and is also connected to the MC framework via two bridging propionate anions. Charge neutrality is maintained for the MC by the five MnIII cations, one MnII cation, and the five shi3- and two propionate anions.

The central manganese ion (Mn1) is seven coordinate with a geometry best described as distorted face-capped trigonal prismatic (Fig. 2). The coordination of Mn1 is completed by five oxime oxygen atoms of the shi3- ligands and two carboxylate oxygen atoms of two different propionate anions. The two propionate anions bridge the central Mn1 to Mn3 and Mn5 of the MC ring. The geometry assignment is supported by both the azimuthal angle, Φ, and the calculated s/h ratio (Stiefel & Brown, 1972). These parameters are used to distinguish between octahedral and trigonal prismatic geometry. In an ideal octahedron, the angle between the atoms on opposite triganular faces is Φ = 60°, and the s/h ratio is 1.22. In an ideal trigonal prism, the azimuthal angle is 0°, and the s/h ratio is 1.00. To calculate these parameters the centroids of opposite triangular faces made by the donor oxygen atoms (O6, O9, and O16; O12, O15, and O18) were defined using the program Mercury (Fig. 3; Macrae et al., 2006). The azimuthal angles were measured between atoms on opposite faces through the centroids. To calculate the s/h ratio, the distance between the centroids was defined as h, and the distances between atoms on the same triangular face were defined as s. For Mn1 the Φ angles are 6.13°, 10.36°, and 11.73°, and the estimated average s/h ratio is 1.03±0.11. Thus, both the Φ angle and s/h ratio support a distorted faced-capped trigonal prismatic geometry. Mn1 is assigned a 2+ oxidation state, which is supported by a Bond Valence Sum (BVS) value of 1.93 (Liu & Thorp, 1993) and an average Mn—O bond distance of 2.24 Å.

The five ring Mn ions possess various coordination numbers and configuration modes (Fig. 4 and 5). Mn2 has a coordination number of five and possesses a distorted square pyramidal geometry (Fig. 4a). To evaluate the geometry about Mn2 the τ parameter was calculated (Addison et al., 1984). For an ideal square pyramidal geometry τ = 0, while for an ideal trigonal bipyramidal geometry τ = 1. For Mn2 the τ parameter is 0.20. Mn3 - Mn6 are six-coordinate with distorted octahedral geometry, but the configuration of the coordination about each Mn is different. Mn3 has a propeller configuration of two chelate rings of different shi3- ligands with Λ absolute stereochemistry (Fig. 4b). In addition, Mn3 binds one 1-methylimidazole ligand. Mn4 has a planar configuration, where two chelate rings of different shi3- ligands are located trans to each other (Fig. 4c and 4d). Along the axial axis Mn4 also binds a DMF molecule, and located in a trans position is either a 1-methylimidazole or a DMF. For the ligands bound to Mn4, the occupancy ratio refines to 0.51 (1) to 0.49 (1) in favor of the DMF molecule. Mn5 also has a planar configuration of two trans chelate rings of different shi3- ligands (Fig. 5a and 5b). Along the axial axis is an carboxylate oxygen atom of a propionate ligand and located in a trans position is either a 1-methylimidazole or a DMF. For the ligands bound Mn5, the occupancy ratio refines to 0.68 (1) to 0.32 (1) in favor of the 1-methylimidazole molecule. Mn6 has a propeller configuration of two chelate rings of different shi3- ligands with Λ absolute stereochemistry (Fig. 5c). In addition, Mn6 binds one 1-methylimidazole ligand. Mn2, Mn3, Mn4, Mn5, and Mn6 are assigned a 3+ oxidation state based on BVS values of 2.97, 3.12, 3.11, 3.19, 3.09, respectively, and average bond Mn—N/O distances of 1.98, 2.03, 2.02, 2.03, 2.06 Å, respectively. In addition, the oxidation state assignment is further supported by the presence of a Jahn-Teller axis for Mn3 – Mn6, which is typical of high spin d4 cations.

Lastly, several more instances of disorder exist in the structure. The methyl groups of the bridging propionate anions are disordered over two positions. The methyl group disorder also induces disorder in the hydrogen atoms of the adjacent methylene carbon atom to the same degree. For the propionate anion that bridges Mn1 to Mn3, the occupancy ratio refines to 0.752 (8) to 0.248 (8). For the propionate anion that bridges Mn1 to Mn5, the occupancy ratio refines to 0.604 (6) to 0.396 (6). In addition, the disorder of the methyl group of the latter propionate anion is correlated with a partially occupied methanol molecule. The occupancy of the methanol molecule is 0.604 (6). Furthermore, a methanol molecule and a DMF molecule are positionally disordered in the lattice with an occupancy ratio of 0.757 (7) to 0.243 (7) in favor of the methanol molecule. Correlated to the occupancy of the methanol and DMF molecules is a disordered benzene ring (C15 to C20 and C15B to C20B) of one salicylhydroximate ligand. The benzene ring is disordered over two positions with an occupancy ratio of 0.757 (7) to 0.243 (7).

Related literature top

For related Mn(II)[15-MCMn(III)N(shi)-5)] structures and synthetic procedures, see: Kessissoglou et al. (1994); Dendrinou-Samara et al. (2001, 2002, 2005); Emerich et al. (2010); Tigyer et al. (2011, 2012, 2013). For explanations of how to calculate the s/h ratio, bond-valence-sum values and theτ parameter, see: Stiefel & Brown (1972), Liu & Thorp (1993) and Addison et al. (1984), respectively.

Experimental top

Manganese(II) chloride tetrahydrate (99%), salicylhydroxamic acid (H3shi, 99%), sodium propionate (99%), and 1-methylimidazole (99%) were purchased from Alfa Aesar. Sodium methoxide was purchased from Matheson Coleman and Bell. Methanol (HPLC grade) was purchased from Pharmco-AAPer. N,N-dimethylformamide (Certified ACS grade) was purchased from BDH chemicals. All reagents were used as received and without further purification.

Manganese(II) chloride tetrahydrate (0.75 mmol) was dissolved in 12.5 ml of methanol resulting in a light pink solution. Sodium methoxide (1.875 mmol) and H3shi (0.625 mmol) were then added to the manganese(II) chloride solution. Initially the solution turned a yellow color, but after stirring for 1 h the solution became dark brown. After 1 h of stirring, neat 1-methylimidazole (2.5 mmol) and a mixture of sodium propionate (0.75 mmol) in 12.5 ml of DMF were added to the dark brown solution. No color change was observed. After 5 minutes of stirring, the solution was filtered and the filtrate was left for slow evaporation of the solvent at room temperature. Dark brown-black crystals suitable for X-ray diffraction analysis were collected after 8 days. The percent yield was 5.0% based on manganese(II) chloride tetrahydrate. Elemental analysis for the dried material C65.264H74.971Mn6N15.417O22.430 [FW = 1763.91 g/mol] found % (calculated); C 44.18 (44.44); H 4.00 (4.28); N 12.46 (12.24).

Refinement top

For Mn4 and Mn5, a 1-methylimidazole molecule and a N,N-dimethylformamide (DMF) molecule are disordered over a coordination site. Overlapping atoms were constrained to have identical anisotropic displacement parameters (ADPs). The 1-methylimidazole molecules were restrained to have geometries similar to that of another non-disordered 1-methylimidazole. The DMF molecules were also restrained to have a geometry similar to that of another non-disordered DMF molecule. Carbon and nitrogen atoms of the 1-methylimidazole molecules and carbon, nitrogen, and oxygen atoms of the DMF molecules were restrained to have similar Uij components of the ADPs (e.s.d. = 0.01 Å2; SIMU restraint in Shexltl). For the ligands bound to Mn4, the occupancy ratio refined to 0.506 (12) to 0.494 (12) in favor of the DMF molecule. For the ligands bound Mn5, the occupancy ratio refined to 0.680 (12) to 0.320 (12) in favor of the 1-methylimidazole molecule.

The methyl groups of the bridging propionate ligands are disordered over two positions. The methyl group disorder also induces disorder in the hydrogen atoms of the adjacent methylene carbon atom to the same degree. The ADPs for each pair of methyl groups were constrained to be identical. For the propionate that bridges Mn1 to Mn3 the occupancy ratio refined to 0.752 (8) to 0.248 (8). For the propionate that bridges Mn1 to Mn5 the occupancy ratio refined to 0.604 (6) to 0.396 (6). In addition, the disorder of the methyl group of the latter propionate anion is correlated with a partially occupied methanol molecule. The occupancy of the methanol molecule is also 0.604 (6).

A methanol molecule and a DMF molecule are positional disordered in the lattice. Carbon, nitrogen, and oxygen atoms of the DMF molecule were restrained to have similar Uij components of the ADPs (e.s.d. = 0.01 Å2; SIMU restraint in Shexltl). The occupancy refined to 0.757 (7) to 0.243 (7) in favor of the methanol molecule.

Correlated to the occupancy of the methanol and DMF molecules is a disordered benzene ring (C15 to C20 and C15B to C20B) of one salicylhydroximate ligand. The benzene ring is disordered over two positions with an occupancy ratio of 0.757 (7) to 0.243 (7). Equivalent atoms of the benzene ring have nearly the same atom positions leading to highly correlated thermal parameters. To avoid correlation, the ADPs of every pair of overlapping atoms were constrained to be identical. For the disordered benzene ring carbon atoms that connect to the non-disordered portion of the salicylhydroximate ligand, carbon-carbon (C20—C21 and C20B—C21) and carbon-oxygen (C15—O7 and C15B—O7) bond distances were restrained to be similar (e.s.d. = 0.02 Å). To maintain the planarity of each disordered benzene ring, the chiral volumes of the carbon atoms (C15, C15B, C20, and C20B) that connect to the non-disordered portion of the salicylhydroximate ligand were restrained to zero (e.s.d. = 0.1 Å3).

All hydrogen atoms were placed in calculated positions and refined as riding on their carrier atoms with O—H distances of 0.84 Å for methanol oxygen atoms and C—H distances of 0.95 Å for sp2 carbon atoms, 0.99 Å for methylene carbon atoms, and 0.98 Å for methyl carbon atoms. The Uiso values for hydrogen atoms were set to a multiple of the value of the carrying carbon atom (1.2 times for sp2 hybridized carbon atoms and methylene carbon atoms or 1.5 times for methyl carbon atoms and methanol oxygen atoms).

One low angle reflection (0 1 0) was affected by the beam stop and omitted from the refinement.

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008) and SHELXLE (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Single-crystal X-ray structure of Mn(II)(C3H5O2)2[15-MCMn(III)N(shi)-5](Me—Im)4.17(DMF)1.83·0.24DMF·1.36MeOH (1). The thermal ellipsoid plot of 1 is at a 50% probability level. For Mn4 only the DMF is shown bound to the MnIII, since the DMF possesses a higher occupancy rate compared to the coordinated 1-methylimidazole (0.51 (1):0.49 (1)). For Mn5 only the 1-methylimidazole is shown bound to the MnIII, since the 1-methylimidazole possesses a higher occupancy rate compared to the coordinated DMF (0.68 (1):0.32 (1)). The disordered benzene ring is only shown at the higher occupancy factor. Hydrogen atoms and the lattice solvent molecules have been omitted for clarity. Color scheme for all figures: green - MnII and MnIII, red - oxygen, blue - nitrogen, and gray - carbon.
[Figure 2] Fig. 2. Side (a) and top (b) views of the first coordination sphere about Mn1 (2+ oxidation state) of 1. The thermal ellipsoid plots are at a 50% probability level.
[Figure 3] Fig. 3. Side (a) and top (b) views of the first coordination sphere about Mn1 of 1 demonstrating how the azimuthal angle (Φ) was defined and calculated using the program Mercury (Macrae et al., 2006). The thermal ellipsoid plots are at a 50% probability level.
[Figure 4] Fig. 4. First coordination sphere about the MnIII ions Mn2, Mn3, and Mn4 of 1. a) Mn2 with distorted square pyramidal geometry b) Mn3 with Λ configuration c) Mn4 with planar configuration and DMF bound (0.51 (1) occupancy) d) Mn4 with planar configuration and 1-methylimidazole bound (0.49 (1) occupancy). The thermal ellipsoid plots are at a 50% probability level. Hydrogen atoms have been omitted for clarity.
[Figure 5] Fig. 5. First coordination sphere about the MnIII ions Mn5 and Mn6 of 1. a) Mn5 with planar configuration and 1-methylimidazole bound (0.68 (1) occupancy) b) Mn5 with planar configuration and DMF bound (0.32 (1) occupancy) and c) Mn6 with Λ configuration. The thermal ellipsoid plots are at a 50% probability level. Hydrogen atoms have been omitted for clarity.
Bis(dimethylformamide)pentakis(µ-N,2-dioxidobenzene-1-carboximidato)tetrakis(1-methylimidazole)di-µ-propionato-pentamanganese(III)manganese(II)–dimethylformamide–methanol (1/0.24/1.36) top
Crystal data top
[Mn6(C7H4NO3)5(C3H5O2)2(C4H6N2)4.17(C3H7NO)1.83]·0.24C3H7NO·1.36CH4OZ = 2
Mr = 1763.91F(000) = 1807.8
Triclinic, P1Dx = 1.604 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 12.6138 (2) ÅCell parameters from 45007 reflections
b = 14.8745 (3) Åθ = 2.2–68.3°
c = 20.7862 (15) ŵ = 8.93 mm1
α = 97.909 (7)°T = 85 K
β = 105.209 (7)°Needle, brown
γ = 99.034 (7)°0.07 × 0.02 × 0.02 mm
V = 3650.7 (3) Å3
Data collection top
Rigaku Saturn 944+ CCD
diffractometer
10454 reflections with I > 2σ(I)
Radiation source: micro-focus rotating anodeRint = 0.106
ω scansθmax = 68.3°, θmin = 2.2°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 1515
Tmin = 0.179, Tmax = 0.233k = 1717
106589 measured reflectionsl = 2525
13145 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.164 w = 1/[σ2(Fo2) + (0.1023P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.003
13145 reflectionsΔρmax = 1.04 e Å3
1153 parametersΔρmin = 0.58 e Å3
225 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00166 (14)
Crystal data top
[Mn6(C7H4NO3)5(C3H5O2)2(C4H6N2)4.17(C3H7NO)1.83]·0.24C3H7NO·1.36CH4Oγ = 99.034 (7)°
Mr = 1763.91V = 3650.7 (3) Å3
Triclinic, P1Z = 2
a = 12.6138 (2) ÅCu Kα radiation
b = 14.8745 (3) ŵ = 8.93 mm1
c = 20.7862 (15) ÅT = 85 K
α = 97.909 (7)°0.07 × 0.02 × 0.02 mm
β = 105.209 (7)°
Data collection top
Rigaku Saturn 944+ CCD
diffractometer
13145 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
10454 reflections with I > 2σ(I)
Tmin = 0.179, Tmax = 0.233Rint = 0.106
106589 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.059225 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.09Δρmax = 1.04 e Å3
13145 reflectionsΔρmin = 0.58 e Å3
1153 parameters
Special details top

Experimental. FT–IR bands (KBr pellet, cm-1): 1654, 1598, 1571, 1541, 1499, 1467, 1436, 1420, 1388, 1321, 1259, 1244, 1146, 1101, 1032, 1024, 953, 926, 866, 836, 754, 679, 670, 648, 618, 596, 576, 538, 467

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.07000 (5)0.73648 (4)0.24929 (3)0.02589 (16)
Mn20.11769 (5)0.79206 (4)0.41954 (3)0.02689 (16)
Mn30.13864 (5)0.52190 (4)0.28707 (3)0.02769 (17)
Mn40.27830 (5)0.71726 (4)0.15708 (3)0.03072 (17)
Mn50.06535 (5)0.94096 (4)0.18825 (3)0.03079 (17)
Mn60.20256 (5)0.73342 (4)0.23549 (3)0.03058 (17)
O10.2247 (2)0.80548 (18)0.50183 (15)0.0350 (6)
O20.2761 (2)0.57455 (17)0.37874 (14)0.0298 (6)
O30.1073 (2)0.63805 (17)0.31920 (13)0.0272 (6)
O40.1788 (2)0.41077 (18)0.26075 (15)0.0359 (7)
O50.3234 (2)0.59673 (18)0.15415 (15)0.0343 (6)
O60.1851 (2)0.66244 (16)0.20613 (14)0.0296 (6)
O70.3659 (2)0.77049 (18)0.10658 (15)0.0358 (7)
O80.2015 (2)0.97961 (17)0.16313 (15)0.0341 (6)
O90.1062 (2)0.82092 (18)0.17407 (15)0.0328 (6)
O100.0368 (3)1.0586 (2)0.20814 (18)0.0486 (8)
O110.2213 (2)0.8757 (2)0.24916 (15)0.0374 (7)
O120.0858 (2)0.79252 (17)0.20389 (14)0.0301 (6)
O130.3130 (2)0.6622 (2)0.26136 (15)0.0398 (7)
O140.0355 (2)0.73088 (17)0.43793 (14)0.0294 (6)
O150.0091 (2)0.78722 (17)0.33613 (14)0.0288 (6)
O160.2080 (2)0.83738 (19)0.32964 (16)0.0383 (7)
O170.1796 (3)0.9699 (2)0.29502 (17)0.0479 (8)
O180.0884 (2)0.62742 (17)0.20646 (15)0.0334 (6)
O190.0280 (2)0.49444 (18)0.21104 (15)0.0343 (6)
N10.1634 (3)0.6774 (2)0.38746 (17)0.0286 (7)
N20.2095 (3)0.5772 (2)0.22215 (18)0.0299 (7)
N30.2138 (3)0.8296 (2)0.16412 (18)0.0321 (7)
N40.0672 (3)0.8893 (2)0.21208 (17)0.0309 (7)
N50.1029 (2)0.7460 (2)0.32834 (17)0.0293 (7)
N60.1097 (3)0.9275 (2)0.44749 (17)0.0308 (7)
N70.0641 (3)1.0626 (2)0.44134 (18)0.0353 (8)
N80.0546 (3)0.4610 (2)0.34773 (18)0.0304 (7)
N90.0657 (3)0.4385 (2)0.40582 (19)0.0380 (8)
C10.2989 (3)0.7533 (3)0.5255 (2)0.0313 (9)
C20.3615 (4)0.7793 (3)0.5931 (2)0.0398 (10)
H20.35150.83250.62000.048*
C30.4384 (4)0.7286 (3)0.6218 (3)0.0483 (11)
H30.48040.74700.66830.058*
C40.4547 (4)0.6507 (3)0.5829 (3)0.0456 (11)
H40.50730.61570.60260.055*
C50.3936 (3)0.6252 (3)0.5158 (2)0.0356 (9)
H50.40510.57230.48930.043*
C60.3149 (3)0.6748 (3)0.4852 (2)0.0290 (8)
C70.2508 (3)0.6403 (2)0.4139 (2)0.0277 (8)
C80.2608 (3)0.3953 (3)0.2335 (2)0.0322 (9)
C90.2950 (4)0.3100 (3)0.2378 (2)0.0361 (9)
H90.26220.26780.26090.043*
C100.3763 (4)0.2878 (3)0.2084 (2)0.0431 (11)
H100.39800.22980.21100.052*
C110.4268 (4)0.3487 (3)0.1753 (2)0.0400 (10)
H110.48320.33280.15580.048*
C120.3945 (3)0.4325 (3)0.1708 (2)0.0364 (9)
H120.42850.47390.14760.044*
C130.3118 (3)0.4580 (3)0.2001 (2)0.0299 (8)
C140.2813 (3)0.5478 (3)0.1920 (2)0.0287 (8)
C210.2552 (3)0.9130 (2)0.1573 (2)0.0304 (8)
C220.0456 (4)1.0874 (3)0.2287 (2)0.0417 (10)
C230.0429 (5)1.1827 (3)0.2382 (3)0.0498 (12)
H230.01661.22330.23040.060*
C240.1265 (5)1.2187 (3)0.2591 (3)0.0554 (14)
H240.12261.28370.26660.066*
C250.2155 (5)1.1598 (4)0.2689 (3)0.0626 (16)
H250.27381.18410.28160.075*
C260.2185 (4)1.0656 (3)0.2599 (3)0.0496 (12)
H260.27901.02570.26730.060*
C270.1346 (4)1.0276 (3)0.2402 (2)0.0385 (10)
C280.1435 (3)0.9263 (3)0.2338 (2)0.0334 (9)
C290.3222 (3)0.6498 (3)0.3222 (2)0.0333 (9)
C300.4272 (3)0.6082 (3)0.3263 (2)0.0362 (9)
H300.48820.58930.28600.043*
C310.4446 (3)0.5938 (3)0.3875 (2)0.0393 (10)
H310.51690.56580.38880.047*
C320.3566 (3)0.6203 (3)0.4467 (2)0.0385 (10)
H320.36800.61080.48890.046*
C330.2520 (3)0.6606 (3)0.4438 (2)0.0328 (9)
H330.19170.67780.48450.039*
C340.2320 (3)0.6769 (2)0.3831 (2)0.0299 (9)
C350.1174 (3)0.7194 (2)0.3844 (2)0.0273 (8)
C360.2347 (3)0.9241 (3)0.3333 (2)0.0313 (9)
C370.3362 (5)0.9792 (5)0.3857 (4)0.0814 (19)
H37A0.36680.93910.41720.098*0.604 (6)
H37B0.31471.03010.41230.098*0.604 (6)
H37C0.40440.96500.37480.098*0.396 (6)
H37D0.33730.96360.43060.098*0.396 (6)
C380.4254 (11)1.0193 (7)0.3574 (7)0.094 (3)0.604 (6)
H38A0.43160.97320.32080.141*0.604 (6)
H38B0.49711.03710.39320.141*0.604 (6)
H38C0.40631.07410.33940.141*0.604 (6)
C38B0.3341 (17)1.0933 (11)0.3875 (11)0.094 (3)0.396 (6)
H38D0.32821.10730.34210.141*0.396 (6)
H38E0.40341.13070.41970.141*0.396 (6)
H38F0.26951.10770.40170.141*0.396 (6)
C390.1033 (3)0.5398 (3)0.1960 (2)0.0336 (9)
C400.2234 (4)0.4873 (3)0.1624 (3)0.0538 (13)
H40A0.27300.51790.18410.065*0.752 (8)
H40B0.24410.49390.11420.065*0.752 (8)
H40C0.22630.43940.12360.065*0.248 (8)
H40D0.27160.53050.14540.065*0.248 (8)
C410.2477 (6)0.3871 (4)0.1648 (4)0.0576 (19)0.752 (8)
H41A0.32710.36100.14140.086*0.752 (8)
H41B0.23100.37910.21220.086*0.752 (8)
H41C0.20110.35500.14240.086*0.752 (8)
C41B0.2672 (17)0.4393 (14)0.2188 (13)0.0576 (19)0.248 (8)
H41D0.34120.39920.19710.086*0.248 (8)
H41E0.27250.48750.25440.086*0.248 (8)
H41F0.21420.40210.23900.086*0.248 (8)
C420.0481 (4)0.9756 (3)0.4090 (2)0.0360 (9)
H420.00060.95140.36460.043*
C430.1677 (4)0.9875 (3)0.5072 (2)0.0371 (10)
H430.21900.97270.54470.044*
C440.1393 (4)1.0716 (3)0.5037 (2)0.0388 (10)
H440.16641.12600.53790.047*
C450.0103 (5)1.1352 (3)0.4142 (3)0.0507 (12)
H45A0.05971.17190.39390.076*
H45B0.00411.17560.45100.076*
H45C0.06091.10680.37960.076*
C460.0308 (4)0.4887 (3)0.3642 (2)0.0407 (11)
H460.06310.53810.34850.049*
C470.0756 (4)0.3903 (3)0.3818 (3)0.0485 (12)
H470.13300.35640.38020.058*
C480.0019 (4)0.3762 (3)0.4182 (3)0.0486 (12)
H480.00190.33170.44660.058*
C490.1612 (4)0.4465 (3)0.4325 (3)0.0585 (15)
H49A0.19030.50110.42040.088*
H49B0.13670.45280.48200.088*
H49C0.22020.39080.41280.088*
N120.036 (3)0.914 (3)0.0791 (10)0.0446 (19)0.680 (12)
C540.0112 (16)0.8711 (18)0.0277 (9)0.0469 (18)0.680 (12)
H540.05410.84550.03160.056*0.680 (12)
N130.0886 (19)0.867 (3)0.0311 (9)0.0543 (14)0.680 (12)
C550.1294 (6)0.9483 (6)0.0511 (4)0.055 (2)0.680 (12)
H550.16420.98680.07590.066*0.680 (12)
C560.1641 (8)0.9190 (7)0.0158 (5)0.064 (2)0.680 (12)
H56A0.22770.93140.04690.077*0.680 (12)
C570.0855 (16)0.8253 (14)0.0982 (8)0.074 (5)0.680 (12)
H57A0.14610.77060.11680.110*0.680 (12)
H57B0.01310.80700.09460.110*0.680 (12)
H57C0.09510.87050.12830.110*0.680 (12)
O250.039 (4)0.924 (4)0.0807 (18)0.0446 (19)0.320 (12)
C54B0.018 (3)0.882 (4)0.0319 (18)0.0469 (18)0.320 (12)
H54B0.05070.86170.03950.056*0.320 (12)
N13B0.086 (4)0.864 (7)0.031 (2)0.0543 (14)0.320 (12)
C56B0.2020 (14)0.8773 (14)0.0439 (10)0.054 (5)0.320 (12)
H56B0.25340.82090.07200.081*0.320 (12)
H56C0.21060.92930.06780.081*0.320 (12)
H56D0.21950.89080.00080.081*0.320 (12)
C57B0.056 (3)0.814 (3)0.0871 (16)0.054 (7)0.320 (12)
H57D0.11330.75770.10850.080*0.320 (12)
H57E0.01690.79780.07020.080*0.320 (12)
H57F0.05270.85410.12060.080*0.320 (12)
N140.3112 (3)0.7020 (2)0.13996 (18)0.0325 (7)
C580.4179 (3)0.6591 (3)0.1215 (2)0.0320 (9)
H580.45720.63920.15200.038*
N150.4631 (3)0.6474 (2)0.05413 (18)0.0357 (8)
C590.2875 (3)0.7203 (3)0.0815 (2)0.0377 (10)
H590.21730.75150.07910.045*
C600.3807 (4)0.6866 (3)0.0275 (2)0.0414 (10)
H600.38780.68940.01880.050*
C610.5791 (3)0.6041 (3)0.0159 (2)0.0414 (10)
H61A0.61610.64980.00600.062*
H61B0.61910.58140.04690.062*
H61C0.57980.55210.01880.062*
O200.1453 (2)0.6549 (2)0.05646 (15)0.0403 (7)
C620.0426 (4)0.6409 (3)0.0485 (2)0.0366 (10)
H620.01730.65450.08730.044*
N160.0334 (3)0.6084 (2)0.01069 (19)0.0385 (8)
C630.0017 (4)0.5873 (3)0.0728 (3)0.0497 (12)
H63A0.02690.52090.09170.075*
H63B0.08010.60420.06260.075*
H63C0.03690.62280.10590.075*
C640.1529 (4)0.5894 (4)0.0171 (3)0.0538 (13)
H64A0.19030.62840.04630.081*
H64B0.16410.60290.02780.081*
H64C0.18490.52390.03730.081*
C150.4119 (8)0.8609 (4)0.1168 (5)0.0337 (13)0.757 (7)
C160.5128 (7)0.8860 (5)0.1005 (4)0.037 (2)0.757 (7)
H160.54700.83870.08410.044*0.757 (7)
C170.5629 (6)0.9772 (5)0.1078 (4)0.052 (3)0.757 (7)
H170.63170.99240.09730.062*0.757 (7)
C180.5129 (6)1.0478 (5)0.1307 (4)0.051 (2)0.757 (7)
H180.54641.11100.13480.061*0.757 (7)
C190.4149 (7)1.0248 (6)0.1473 (4)0.041 (2)0.757 (7)
H190.38191.07310.16360.049*0.757 (7)
C200.3621 (5)0.9329 (7)0.1411 (5)0.0326 (13)0.757 (7)
O220.2006 (5)0.7811 (4)0.0291 (3)0.0749 (18)0.757 (7)
H220.23290.77190.00950.112*0.757 (7)
C690.2756 (12)0.8416 (10)0.0506 (8)0.062 (4)0.757 (7)
H69A0.30100.90060.01830.093*0.757 (7)
H69B0.23790.85250.09560.093*0.757 (7)
H69C0.34050.81400.05290.093*0.757 (7)
C15B0.419 (2)0.8580 (12)0.1257 (14)0.0337 (13)0.243 (7)
C16B0.527 (3)0.8838 (17)0.1208 (18)0.037 (2)0.243 (7)
H16B0.56400.83770.10550.044*0.243 (7)
C17B0.581 (2)0.9745 (17)0.1378 (16)0.052 (3)0.243 (7)
H17B0.65310.99140.13150.062*0.243 (7)
C18B0.532 (2)1.0429 (15)0.1642 (14)0.051 (2)0.243 (7)
H18B0.57161.10530.17860.061*0.243 (7)
C19B0.425 (2)1.019 (2)0.1694 (18)0.041 (2)0.243 (7)
H19B0.39001.06580.18610.049*0.243 (7)
C20B0.3677 (14)0.928 (2)0.1504 (14)0.0326 (13)0.243 (7)
O230.4316 (18)0.7602 (14)0.0788 (10)0.090 (6)0.243 (7)
C670.213 (4)0.753 (3)0.077 (2)0.119 (10)0.243 (7)
H67A0.22020.72020.03850.179*0.243 (7)
H67B0.22820.71400.11450.179*0.243 (7)
H67C0.13750.76460.09170.179*0.243 (7)
N170.297 (5)0.843 (4)0.056 (3)0.100 (8)0.243 (7)
C660.272 (3)0.926 (2)0.0303 (17)0.104 (9)0.243 (7)
H66A0.21460.94300.06570.156*0.243 (7)
H66B0.34010.97500.01630.156*0.243 (7)
H66C0.24440.91890.00880.156*0.243 (7)
C680.407 (3)0.828 (2)0.0581 (17)0.095 (7)0.243 (7)
H680.46660.88050.04050.114*0.243 (7)
N100.4262 (18)0.772 (3)0.2570 (11)0.036 (2)0.494 (12)
C500.4184 (17)0.773 (2)0.3185 (10)0.032 (3)0.494 (12)
H500.35240.74640.32850.038*0.494 (12)
N110.5146 (15)0.8151 (13)0.3657 (8)0.034 (3)0.494 (12)
C510.5333 (6)0.8194 (6)0.2651 (4)0.034 (2)0.494 (12)
H510.56290.83200.22900.041*0.494 (12)
C520.5906 (9)0.8454 (8)0.3321 (6)0.035 (2)0.494 (12)
H520.66620.87730.35160.043*0.494 (12)
C530.524 (2)0.833 (2)0.4384 (10)0.052 (5)0.494 (12)
H53A0.45100.80890.44490.078*0.494 (12)
H53B0.54590.89950.45620.078*0.494 (12)
H53C0.58020.80130.46260.078*0.494 (12)
O240.4139 (14)0.773 (2)0.2456 (8)0.036 (2)0.506 (12)
C50B0.4263 (18)0.778 (2)0.3068 (10)0.038 (3)0.506 (12)
H50B0.37100.74130.32090.046*0.506 (12)
N11B0.5135 (16)0.8315 (13)0.3535 (8)0.041 (4)0.506 (12)
C52B0.6030 (11)0.8873 (11)0.3342 (8)0.057 (4)0.506 (12)
H52A0.58560.87640.28460.086*0.506 (12)
H52B0.67460.86950.35360.086*0.506 (12)
H52C0.60860.95310.35140.086*0.506 (12)
C53B0.538 (2)0.828 (2)0.4263 (9)0.047 (4)0.506 (12)
H53D0.48070.78020.43300.071*0.506 (12)
H53E0.53750.88810.45170.071*0.506 (12)
H53F0.61190.81220.44240.071*0.506 (12)
O210.2053 (6)1.1718 (4)0.3353 (3)0.0601 (19)0.604 (6)
H210.20171.11580.31990.090*0.604 (6)
C650.2869 (9)1.1988 (10)0.3911 (6)0.097 (5)0.604 (6)
H65A0.35211.17370.38580.146*0.604 (6)
H65B0.26341.17630.42840.146*0.604 (6)
H65C0.30691.26660.40130.146*0.604 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0258 (3)0.0298 (3)0.0229 (4)0.0102 (2)0.0071 (3)0.0024 (2)
Mn20.0272 (3)0.0296 (3)0.0235 (4)0.0094 (2)0.0063 (3)0.0016 (2)
Mn30.0291 (3)0.0275 (3)0.0282 (4)0.0096 (2)0.0098 (3)0.0037 (2)
Mn40.0316 (3)0.0298 (3)0.0354 (4)0.0108 (2)0.0152 (3)0.0057 (3)
Mn50.0330 (3)0.0314 (3)0.0312 (4)0.0130 (2)0.0107 (3)0.0066 (3)
Mn60.0252 (3)0.0416 (3)0.0248 (4)0.0100 (2)0.0065 (3)0.0034 (3)
O10.0362 (15)0.0359 (14)0.0288 (17)0.0118 (11)0.0023 (13)0.0010 (12)
O20.0268 (13)0.0324 (13)0.0309 (17)0.0112 (10)0.0084 (12)0.0027 (11)
O30.0282 (13)0.0343 (13)0.0156 (15)0.0079 (10)0.0007 (11)0.0017 (11)
O40.0394 (15)0.0314 (14)0.0394 (18)0.0108 (11)0.0143 (14)0.0053 (12)
O50.0354 (15)0.0350 (14)0.0373 (18)0.0113 (11)0.0172 (14)0.0052 (12)
O60.0328 (14)0.0267 (12)0.0351 (17)0.0152 (10)0.0137 (13)0.0069 (11)
O70.0347 (15)0.0323 (14)0.0428 (19)0.0091 (11)0.0156 (14)0.0038 (12)
O80.0380 (15)0.0310 (13)0.0377 (18)0.0147 (11)0.0128 (14)0.0089 (12)
O90.0269 (13)0.0358 (14)0.0384 (18)0.0103 (11)0.0113 (13)0.0081 (12)
O100.0526 (19)0.0389 (16)0.062 (2)0.0151 (14)0.0267 (18)0.0087 (15)
O110.0353 (15)0.0475 (16)0.0356 (18)0.0193 (13)0.0147 (14)0.0072 (13)
O120.0302 (13)0.0324 (13)0.0283 (16)0.0137 (11)0.0061 (12)0.0036 (11)
O130.0279 (14)0.0626 (19)0.0253 (17)0.0038 (13)0.0064 (13)0.0052 (14)
O140.0275 (14)0.0323 (13)0.0259 (16)0.0076 (10)0.0046 (13)0.0020 (11)
O150.0253 (13)0.0362 (14)0.0245 (16)0.0061 (10)0.0088 (12)0.0014 (11)
O160.0373 (15)0.0383 (15)0.0384 (19)0.0078 (12)0.0112 (14)0.0037 (13)
O170.062 (2)0.0409 (16)0.042 (2)0.0157 (15)0.0154 (17)0.0046 (14)
O180.0292 (14)0.0326 (14)0.0373 (18)0.0091 (11)0.0085 (13)0.0022 (12)
O190.0306 (14)0.0388 (14)0.0298 (17)0.0114 (12)0.0042 (13)0.0015 (12)
N10.0289 (16)0.0344 (16)0.0221 (19)0.0082 (13)0.0060 (14)0.0053 (13)
N20.0323 (17)0.0267 (15)0.032 (2)0.0154 (13)0.0066 (15)0.0032 (14)
N30.0251 (16)0.0373 (17)0.035 (2)0.0057 (13)0.0103 (15)0.0076 (15)
N40.0363 (18)0.0334 (16)0.026 (2)0.0175 (13)0.0083 (15)0.0040 (14)
N50.0250 (16)0.0370 (17)0.029 (2)0.0092 (13)0.0114 (15)0.0053 (14)
N60.0337 (17)0.0299 (16)0.026 (2)0.0067 (13)0.0056 (15)0.0013 (14)
N70.048 (2)0.0325 (17)0.027 (2)0.0153 (15)0.0118 (18)0.0038 (14)
N80.0310 (16)0.0267 (15)0.035 (2)0.0103 (12)0.0090 (16)0.0046 (14)
N90.044 (2)0.0353 (17)0.043 (2)0.0097 (15)0.0251 (18)0.0086 (16)
C10.0258 (19)0.037 (2)0.031 (3)0.0075 (15)0.0067 (18)0.0101 (17)
C20.040 (2)0.046 (2)0.026 (3)0.0094 (19)0.001 (2)0.0006 (19)
C30.046 (3)0.062 (3)0.028 (3)0.014 (2)0.005 (2)0.003 (2)
C40.039 (2)0.060 (3)0.040 (3)0.022 (2)0.008 (2)0.012 (2)
C50.033 (2)0.045 (2)0.033 (3)0.0152 (17)0.011 (2)0.0107 (19)
C60.0271 (19)0.037 (2)0.023 (2)0.0071 (15)0.0067 (17)0.0059 (16)
C70.0254 (18)0.0296 (18)0.032 (2)0.0093 (14)0.0100 (18)0.0101 (16)
C80.030 (2)0.0331 (19)0.031 (2)0.0135 (16)0.0039 (18)0.0001 (17)
C90.044 (2)0.033 (2)0.030 (3)0.0154 (17)0.007 (2)0.0022 (17)
C100.051 (3)0.039 (2)0.039 (3)0.023 (2)0.007 (2)0.0007 (19)
C110.040 (2)0.044 (2)0.037 (3)0.0252 (19)0.009 (2)0.0028 (19)
C120.037 (2)0.043 (2)0.030 (3)0.0160 (17)0.010 (2)0.0006 (18)
C130.0293 (19)0.0307 (19)0.026 (2)0.0126 (15)0.0023 (17)0.0031 (16)
C140.0270 (18)0.0346 (19)0.024 (2)0.0088 (15)0.0085 (17)0.0014 (16)
C210.033 (2)0.0288 (18)0.026 (2)0.0086 (15)0.0018 (18)0.0044 (16)
C220.056 (3)0.043 (2)0.034 (3)0.026 (2)0.016 (2)0.0101 (19)
C230.072 (3)0.039 (2)0.047 (3)0.028 (2)0.023 (3)0.009 (2)
C240.088 (4)0.045 (3)0.043 (3)0.037 (3)0.021 (3)0.008 (2)
C250.087 (4)0.063 (3)0.059 (4)0.051 (3)0.034 (3)0.015 (3)
C260.067 (3)0.051 (3)0.044 (3)0.033 (2)0.025 (3)0.011 (2)
C270.044 (2)0.046 (2)0.032 (3)0.0251 (19)0.013 (2)0.0092 (19)
C280.033 (2)0.042 (2)0.027 (2)0.0175 (17)0.0075 (19)0.0033 (18)
C290.030 (2)0.040 (2)0.031 (3)0.0105 (16)0.0093 (19)0.0042 (17)
C300.0232 (19)0.050 (2)0.031 (3)0.0053 (17)0.0033 (18)0.0036 (19)
C310.028 (2)0.047 (2)0.043 (3)0.0059 (17)0.013 (2)0.005 (2)
C320.039 (2)0.044 (2)0.038 (3)0.0110 (18)0.019 (2)0.0088 (19)
C330.033 (2)0.038 (2)0.031 (2)0.0113 (16)0.0126 (19)0.0063 (17)
C340.0259 (19)0.0311 (18)0.032 (2)0.0073 (15)0.0084 (18)0.0032 (16)
C350.0279 (19)0.0274 (17)0.024 (2)0.0089 (14)0.0048 (18)0.0015 (15)
C360.033 (2)0.0321 (19)0.029 (2)0.0063 (16)0.0108 (19)0.0037 (17)
C370.065 (4)0.076 (4)0.094 (6)0.013 (3)0.017 (4)0.002 (4)
C380.109 (8)0.063 (5)0.117 (10)0.003 (5)0.056 (7)0.010 (5)
C38B0.109 (8)0.063 (5)0.117 (10)0.003 (5)0.056 (7)0.010 (5)
C390.034 (2)0.039 (2)0.027 (2)0.0091 (17)0.0086 (19)0.0024 (17)
C400.040 (3)0.047 (3)0.065 (4)0.006 (2)0.002 (3)0.004 (2)
C410.045 (3)0.050 (4)0.079 (6)0.009 (3)0.022 (4)0.008 (3)
C41B0.045 (3)0.050 (4)0.079 (6)0.009 (3)0.022 (4)0.008 (3)
C420.042 (2)0.035 (2)0.030 (3)0.0137 (17)0.010 (2)0.0006 (17)
C430.041 (2)0.033 (2)0.033 (3)0.0086 (17)0.005 (2)0.0026 (17)
C440.050 (2)0.030 (2)0.031 (3)0.0064 (17)0.008 (2)0.0054 (17)
C450.080 (4)0.038 (2)0.043 (3)0.032 (2)0.021 (3)0.008 (2)
C460.045 (2)0.036 (2)0.053 (3)0.0163 (18)0.026 (2)0.016 (2)
C470.051 (3)0.045 (2)0.068 (4)0.023 (2)0.030 (3)0.031 (2)
C480.054 (3)0.041 (2)0.059 (4)0.014 (2)0.020 (3)0.026 (2)
C490.070 (3)0.047 (3)0.082 (4)0.017 (2)0.056 (3)0.017 (3)
N120.042 (2)0.063 (6)0.032 (2)0.017 (3)0.0092 (19)0.013 (2)
C540.048 (3)0.057 (6)0.033 (3)0.007 (2)0.008 (3)0.013 (3)
N130.061 (3)0.057 (4)0.033 (2)0.0002 (19)0.001 (2)0.012 (2)
C550.048 (4)0.081 (5)0.034 (4)0.026 (3)0.001 (3)0.013 (3)
C560.060 (5)0.066 (5)0.049 (5)0.009 (4)0.014 (4)0.015 (4)
C570.106 (11)0.062 (8)0.032 (6)0.002 (7)0.007 (7)0.010 (5)
O250.042 (2)0.063 (6)0.032 (2)0.017 (3)0.0092 (19)0.013 (2)
C54B0.048 (3)0.057 (6)0.033 (3)0.007 (2)0.008 (3)0.013 (3)
N13B0.061 (3)0.057 (4)0.033 (2)0.0002 (19)0.001 (2)0.012 (2)
C56B0.051 (9)0.064 (10)0.030 (9)0.005 (8)0.007 (8)0.004 (8)
C57B0.068 (12)0.043 (10)0.042 (14)0.019 (9)0.004 (10)0.003 (11)
N140.0327 (17)0.0396 (17)0.029 (2)0.0151 (14)0.0115 (16)0.0069 (15)
C580.031 (2)0.040 (2)0.021 (2)0.0088 (16)0.0023 (18)0.0015 (16)
N150.0272 (17)0.0452 (19)0.032 (2)0.0108 (14)0.0048 (16)0.0024 (15)
C590.033 (2)0.048 (2)0.034 (3)0.0161 (18)0.010 (2)0.0041 (19)
C600.041 (2)0.056 (3)0.030 (3)0.015 (2)0.013 (2)0.005 (2)
C610.034 (2)0.052 (3)0.030 (3)0.0087 (19)0.001 (2)0.003 (2)
O200.0372 (16)0.0440 (16)0.0338 (19)0.0003 (12)0.0084 (14)0.0005 (13)
C620.046 (2)0.034 (2)0.023 (2)0.0067 (17)0.003 (2)0.0067 (17)
N160.0385 (19)0.0399 (18)0.034 (2)0.0102 (15)0.0074 (18)0.0017 (16)
C630.055 (3)0.050 (3)0.046 (3)0.013 (2)0.019 (3)0.005 (2)
C640.041 (3)0.061 (3)0.055 (4)0.014 (2)0.013 (3)0.006 (2)
C150.032 (2)0.034 (2)0.035 (4)0.0094 (17)0.006 (2)0.0084 (19)
C160.026 (3)0.043 (2)0.041 (7)0.010 (2)0.003 (4)0.012 (3)
C170.030 (3)0.052 (3)0.074 (8)0.005 (2)0.015 (5)0.016 (4)
C180.041 (3)0.040 (3)0.073 (7)0.004 (2)0.018 (5)0.015 (4)
C190.037 (3)0.033 (2)0.054 (7)0.008 (2)0.012 (4)0.012 (3)
C200.025 (2)0.032 (2)0.041 (4)0.0091 (16)0.006 (2)0.011 (2)
O220.081 (4)0.079 (4)0.057 (4)0.009 (3)0.014 (3)0.026 (3)
C690.079 (8)0.054 (5)0.046 (6)0.007 (5)0.012 (5)0.021 (4)
C15B0.032 (2)0.034 (2)0.035 (4)0.0094 (17)0.006 (2)0.0084 (19)
C16B0.026 (3)0.043 (2)0.041 (7)0.010 (2)0.003 (4)0.012 (3)
C17B0.030 (3)0.052 (3)0.074 (8)0.005 (2)0.015 (5)0.016 (4)
C18B0.041 (3)0.040 (3)0.073 (7)0.004 (2)0.018 (5)0.015 (4)
C19B0.037 (3)0.033 (2)0.054 (7)0.008 (2)0.012 (4)0.012 (3)
C20B0.025 (2)0.032 (2)0.041 (4)0.0091 (16)0.006 (2)0.011 (2)
O230.120 (14)0.108 (13)0.082 (13)0.075 (11)0.054 (11)0.046 (10)
C670.14 (2)0.14 (2)0.10 (2)0.035 (17)0.053 (17)0.022 (18)
N170.130 (16)0.111 (16)0.089 (14)0.059 (12)0.055 (13)0.028 (12)
C660.13 (2)0.12 (2)0.085 (18)0.064 (16)0.053 (16)0.033 (15)
C680.125 (15)0.107 (15)0.086 (14)0.062 (12)0.052 (12)0.037 (12)
N100.029 (3)0.0409 (18)0.035 (5)0.012 (3)0.005 (3)0.004 (4)
C500.027 (5)0.033 (5)0.035 (6)0.009 (4)0.007 (4)0.002 (5)
N110.033 (4)0.036 (5)0.033 (6)0.003 (4)0.012 (4)0.005 (4)
C510.021 (4)0.047 (4)0.033 (4)0.005 (3)0.007 (3)0.006 (3)
C520.028 (5)0.047 (5)0.035 (5)0.007 (4)0.013 (4)0.010 (4)
C530.066 (10)0.056 (7)0.042 (9)0.009 (8)0.039 (7)0.005 (7)
O240.029 (3)0.0409 (18)0.035 (5)0.012 (3)0.005 (3)0.004 (4)
C50B0.034 (5)0.044 (5)0.039 (7)0.012 (4)0.010 (5)0.010 (6)
N11B0.041 (5)0.044 (7)0.033 (6)0.001 (5)0.011 (5)0.000 (5)
C52B0.042 (6)0.074 (9)0.048 (7)0.012 (7)0.014 (5)0.015 (7)
C53B0.047 (7)0.059 (8)0.039 (9)0.002 (6)0.034 (7)0.007 (7)
O210.081 (4)0.042 (3)0.057 (4)0.008 (3)0.023 (4)0.004 (3)
C650.070 (7)0.140 (11)0.055 (8)0.038 (7)0.016 (6)0.002 (7)
Geometric parameters (Å, º) top
Mn1—O32.218 (3)C40—H40A0.9900
Mn1—O152.225 (2)C40—H40B0.9900
Mn1—O92.228 (3)C40—H40C0.9900
Mn1—O162.244 (3)C40—H40D0.9900
Mn1—O62.245 (2)C41—H41A0.9800
Mn1—O182.251 (3)C41—H41B0.9800
Mn1—O122.281 (3)C41—H41C0.9800
Mn2—O11.843 (3)C41B—H41D0.9800
Mn2—O151.891 (3)C41B—H41E0.9800
Mn2—N11.971 (3)C41B—H41F0.9800
Mn2—N62.044 (3)C42—H420.9500
Mn2—O142.154 (2)C43—C441.361 (6)
Mn3—O41.856 (3)C43—H430.9500
Mn3—O31.903 (2)C44—H440.9500
Mn3—N22.000 (3)C45—H45A0.9800
Mn3—N82.061 (3)C45—H45B0.9800
Mn3—O22.163 (3)C45—H45C0.9800
Mn3—O192.212 (3)C46—H460.9500
Mn4—O71.874 (3)C47—C481.353 (6)
Mn4—O61.908 (3)C47—H470.9500
Mn4—O51.962 (3)C48—H480.9500
Mn4—N31.975 (3)C49—H49A0.9800
Mn4—O242.118 (14)C49—H49B0.9800
Mn4—O202.277 (3)C49—H49C0.9800
Mn4—N102.342 (19)N12—C541.302 (12)
Mn5—O101.854 (3)N12—C551.378 (17)
Mn5—O91.940 (3)C54—N131.336 (12)
Mn5—N41.941 (3)C54—H540.9500
Mn5—O81.948 (3)N13—C561.390 (15)
Mn5—O252.23 (3)N13—C571.459 (12)
Mn5—N122.238 (18)C55—C561.330 (11)
Mn5—O172.248 (4)C55—H550.9500
Mn6—O131.855 (3)C56—H56A0.9500
Mn6—O121.907 (3)C57—H57A0.9800
Mn6—N51.973 (3)C57—H57B0.9800
Mn6—N142.039 (4)C57—H57C0.9800
Mn6—O112.155 (3)O25—C54B1.225 (18)
Mn6—O182.414 (2)C54B—N13B1.318 (17)
O1—C11.346 (5)C54B—H54B0.9500
O2—C71.271 (4)N13B—C57B1.463 (17)
O3—N11.404 (4)N13B—C56B1.468 (19)
O4—C81.338 (4)C56B—H56B0.9800
O5—C141.299 (5)C56B—H56C0.9800
O6—N21.414 (4)C56B—H56D0.9800
O7—C15B1.320 (15)C57B—H57D0.9800
O7—C151.342 (6)C57B—H57E0.9800
O8—C211.294 (4)C57B—H57F0.9800
O9—N31.414 (4)N14—C581.326 (5)
O10—C221.330 (5)N14—C591.378 (5)
O11—C281.276 (5)C58—N151.342 (5)
O12—N41.401 (4)C58—H580.9500
O13—C291.334 (5)N15—C601.388 (5)
O14—C351.275 (5)N15—C611.463 (5)
O15—N51.406 (4)C59—C601.363 (6)
O16—C361.267 (5)C59—H590.9500
O17—C361.260 (5)C60—H600.9500
O18—C391.267 (5)C61—H61A0.9800
O19—C391.248 (5)C61—H61B0.9800
N1—C71.333 (5)C61—H61C0.9800
N2—C141.323 (4)O20—C621.242 (5)
N3—C211.310 (5)C62—N161.318 (5)
N4—C281.326 (5)C62—H620.9500
N5—C351.329 (5)N16—C641.456 (5)
N6—C421.327 (5)N16—C631.457 (6)
N6—C431.374 (5)C63—H63A0.9800
N7—C421.332 (5)C63—H63B0.9800
N7—C441.366 (6)C63—H63C0.9800
N7—C451.464 (5)C64—H64A0.9800
N8—C461.320 (5)C64—H64B0.9800
N8—C471.369 (5)C64—H64C0.9800
N9—C461.332 (5)C15—C161.410 (7)
N9—C481.361 (6)C15—C201.423 (7)
N9—C491.465 (5)C16—C171.374 (8)
C1—C21.385 (6)C16—H160.9500
C1—C61.415 (5)C17—C181.399 (8)
C2—C31.385 (6)C17—H170.9500
C2—H20.9500C18—C191.375 (8)
C3—C41.394 (7)C18—H180.9500
C3—H30.9500C19—C201.396 (7)
C4—C51.372 (7)C19—H190.9500
C4—H40.9500O22—C691.405 (12)
C5—C61.401 (6)O22—H220.8400
C5—H50.9500C69—H69A0.9800
C6—C71.464 (6)C69—H69B0.9800
C8—C91.409 (5)C69—H69C0.9800
C8—C131.410 (6)C15B—C16B1.398 (16)
C9—C101.384 (6)C15B—C20B1.411 (15)
C9—H90.9500C16B—C17B1.365 (17)
C10—C111.386 (7)C16B—H16B0.9500
C10—H100.9500C17B—C18B1.398 (17)
C11—C121.379 (6)C17B—H17B0.9500
C11—H110.9500C18B—C19B1.374 (17)
C12—C131.414 (5)C18B—H18B0.9500
C12—H120.9500C19B—C20B1.385 (16)
C13—C141.466 (5)C19B—H19B0.9500
C21—C20B1.449 (15)O23—C681.16 (3)
C21—C201.470 (7)C67—N171.51 (6)
C22—C231.398 (6)C67—H67A0.9800
C22—C271.412 (6)C67—H67B0.9800
C23—C241.392 (7)C67—H67C0.9800
C23—H230.9500N17—C661.39 (7)
C24—C251.389 (8)N17—C681.45 (7)
C24—H240.9500C66—H66A0.9800
C25—C261.381 (7)C66—H66B0.9800
C25—H250.9500C66—H66C0.9800
C26—C271.400 (6)C68—H680.9500
C26—H260.9500N10—C501.306 (15)
C27—C281.479 (6)N10—C511.377 (17)
C29—C301.400 (5)C50—N111.341 (14)
C29—C341.422 (6)C50—H500.9500
C30—C311.386 (6)N11—C521.382 (14)
C30—H300.9500N11—C531.468 (14)
C31—C321.383 (6)C51—C521.360 (12)
C31—H310.9500C51—H510.9500
C32—C331.381 (5)C52—H520.9500
C32—H320.9500C53—H53A0.9800
C33—C341.394 (6)C53—H53B0.9800
C33—H330.9500C53—H53C0.9800
C34—C351.476 (5)O24—C50B1.232 (14)
C36—C371.480 (8)C50B—N11B1.319 (14)
C37—C381.484 (12)C50B—H50B0.9500
C37—C38B1.697 (18)N11B—C52B1.470 (14)
C37—H37A0.9900N11B—C53B1.473 (15)
C37—H37B0.9900C52B—H52A0.9800
C37—H37C0.9900C52B—H52B0.9800
C37—H37D0.9900C52B—H52C0.9800
C38—H38A0.9800C53B—H53D0.9800
C38—H38B0.9800C53B—H53E0.9800
C38—H38C0.9800C53B—H53F0.9800
C38B—H38D0.9800O21—C651.297 (12)
C38B—H38E0.9800O21—H210.8400
C38B—H38F0.9800C65—H65A0.9800
C39—C401.522 (6)C65—H65B0.9800
C40—C411.485 (8)C65—H65C0.9800
C40—C41B1.62 (2)
O3—Mn1—O1575.85 (9)C36—C37—H37D110.0
O3—Mn1—O9153.71 (9)C38B—C37—H37D110.0
O15—Mn1—O9124.49 (10)H37C—C37—H37D108.4
O3—Mn1—O1684.18 (10)C37—C38—H38A109.5
O15—Mn1—O1669.48 (10)C37—C38—H38B109.5
O9—Mn1—O1688.10 (11)H38A—C38—H38B109.5
O3—Mn1—O678.37 (9)C37—C38—H38C109.5
O15—Mn1—O6151.07 (10)H38A—C38—H38C109.5
O9—Mn1—O677.34 (9)H38B—C38—H38C109.5
O16—Mn1—O695.15 (10)C37—C38B—H38D109.5
O3—Mn1—O1880.57 (10)C37—C38B—H38E109.5
O15—Mn1—O1889.92 (10)H38D—C38B—H38E109.5
O9—Mn1—O18112.94 (11)C37—C38B—H38F109.5
O16—Mn1—O18156.90 (11)H38D—C38B—H38F109.5
O6—Mn1—O1898.64 (9)H38E—C38B—H38F109.5
O3—Mn1—O12134.10 (9)O19—C39—O18125.3 (4)
O15—Mn1—O1274.00 (10)O19—C39—C40118.5 (4)
O9—Mn1—O1271.61 (9)O18—C39—C40116.2 (4)
O16—Mn1—O12115.64 (10)C41—C40—C39117.0 (5)
O6—Mn1—O12134.62 (10)C39—C40—C41B107.9 (9)
O18—Mn1—O1265.70 (9)C41—C40—H40A108.0
O1—Mn2—O15176.08 (11)C39—C40—H40A108.0
O1—Mn2—N189.39 (13)C41—C40—H40B108.0
O15—Mn2—N194.04 (12)C39—C40—H40B108.0
O1—Mn2—N687.19 (13)H40A—C40—H40B107.3
O15—Mn2—N689.00 (13)C39—C40—H40C110.1
N1—Mn2—N6164.16 (13)C41B—C40—H40C110.1
O1—Mn2—O14103.80 (12)C39—C40—H40D110.1
O15—Mn2—O1477.57 (10)C41B—C40—H40D110.1
N1—Mn2—O1498.70 (11)H40C—C40—H40D108.4
N6—Mn2—O1497.14 (11)C40—C41—H41A109.5
O4—Mn3—O3175.89 (13)C40—C41—H41B109.5
O4—Mn3—N289.08 (12)H41A—C41—H41B109.5
O3—Mn3—N291.15 (11)C40—C41—H41C109.5
O4—Mn3—N890.49 (12)H41A—C41—H41C109.5
O3—Mn3—N889.60 (11)H41B—C41—H41C109.5
N2—Mn3—N8175.57 (14)C40—C41B—H41D109.5
O4—Mn3—O298.36 (12)C40—C41B—H41E109.5
O3—Mn3—O277.54 (10)H41D—C41B—H41E109.5
N2—Mn3—O298.18 (12)C40—C41B—H41F109.5
N8—Mn3—O286.25 (12)H41D—C41B—H41F109.5
O4—Mn3—O1997.27 (12)H41E—C41B—H41F109.5
O3—Mn3—O1986.84 (10)N6—C42—N7110.7 (4)
N2—Mn3—O1990.31 (12)N6—C42—H42124.7
N8—Mn3—O1985.37 (12)N7—C42—H42124.7
O2—Mn3—O19162.30 (10)C44—C43—N6108.6 (4)
O7—Mn4—O6178.22 (13)C44—C43—H43125.7
O7—Mn4—O598.85 (11)N6—C43—H43125.7
O6—Mn4—O581.59 (10)C43—C44—N7106.5 (4)
O7—Mn4—N389.37 (12)C43—C44—H44126.8
O6—Mn4—N390.12 (11)N7—C44—H44126.8
O5—Mn4—N3171.42 (12)N7—C45—H45A109.5
O7—Mn4—O2488.3 (5)N7—C45—H45B109.5
O6—Mn4—O2493.5 (5)H45A—C45—H45B109.5
O5—Mn4—O2490.2 (10)N7—C45—H45C109.5
N3—Mn4—O2492.5 (10)H45A—C45—H45C109.5
O7—Mn4—O2087.11 (12)H45B—C45—H45C109.5
O6—Mn4—O2091.20 (11)N8—C46—N9111.2 (4)
O5—Mn4—O2087.30 (12)N8—C46—H46124.4
N3—Mn4—O2090.67 (13)N9—C46—H46124.4
O24—Mn4—O20174.4 (6)C48—C47—N8109.5 (4)
O7—Mn4—N1090.6 (6)C48—C47—H47125.3
O6—Mn4—N1091.2 (6)N8—C47—H47125.3
O5—Mn4—N1088.0 (12)C47—C48—N9106.2 (4)
N3—Mn4—N1094.5 (12)C47—C48—H48126.9
O20—Mn4—N10174.3 (10)N9—C48—H48126.9
O10—Mn5—O9175.19 (15)N9—C49—H49A109.5
O10—Mn5—N489.52 (13)N9—C49—H49B109.5
O9—Mn5—N492.24 (12)H49A—C49—H49B109.5
O10—Mn5—O896.51 (12)N9—C49—H49C109.5
O9—Mn5—O881.71 (10)H49A—C49—H49C109.5
N4—Mn5—O8173.95 (12)H49B—C49—H49C109.5
O10—Mn5—O2590.8 (12)C54—N12—C55105.3 (13)
O9—Mn5—O2593.7 (12)C54—N12—Mn5126.7 (12)
N4—Mn5—O2589.6 (18)C55—N12—Mn5127.6 (12)
O8—Mn5—O2590.8 (17)N12—C54—N13112.2 (12)
O10—Mn5—N1294.8 (7)N12—C54—H54123.9
O9—Mn5—N1289.7 (7)N13—C54—H54123.9
N4—Mn5—N1289.9 (10)C54—N13—C56106.0 (10)
O8—Mn5—N1290.1 (10)C54—N13—C57126.2 (12)
O10—Mn5—O1786.23 (14)C56—N13—C57127.4 (16)
O9—Mn5—O1789.16 (12)C56—C55—N12109.9 (10)
N4—Mn5—O1794.78 (13)C56—C55—H55125.1
O8—Mn5—O1785.14 (12)N12—C55—H55125.1
O25—Mn5—O17175 (2)C55—C56—N13106.3 (9)
N12—Mn5—O17175.2 (9)C55—C56—H56A126.8
O13—Mn6—O12172.90 (12)N13—C56—H56A126.8
O13—Mn6—N587.92 (13)N13—C57—H57A109.5
O12—Mn6—N593.24 (12)N13—C57—H57B109.5
O13—Mn6—N1486.67 (13)H57A—C57—H57B109.5
O12—Mn6—N1491.47 (12)N13—C57—H57C109.5
N5—Mn6—N14172.31 (13)H57A—C57—H57C109.5
O13—Mn6—O11109.23 (12)H57B—C57—H57C109.5
O12—Mn6—O1177.70 (10)C54B—O25—Mn5124 (2)
N5—Mn6—O1194.14 (12)O25—C54B—N13B124 (3)
N14—Mn6—O1192.80 (12)O25—C54B—H54B117.9
O13—Mn6—O18105.00 (12)N13B—C54B—H54B117.9
O12—Mn6—O1868.20 (9)C54B—N13B—C57B122 (2)
N5—Mn6—O1883.69 (11)C54B—N13B—C56B120 (2)
N14—Mn6—O1892.44 (11)C57B—N13B—C56B117 (2)
O11—Mn6—O18145.60 (10)N13B—C56B—H56B109.5
C1—O1—Mn2132.0 (3)N13B—C56B—H56C109.5
C7—O2—Mn3108.5 (2)H56B—C56B—H56C109.5
N1—O3—Mn3115.6 (2)N13B—C56B—H56D109.5
N1—O3—Mn1116.35 (19)H56B—C56B—H56D109.5
Mn3—O3—Mn1119.92 (12)H56C—C56B—H56D109.5
C8—O4—Mn3129.4 (2)N13B—C57B—H57D109.5
C14—O5—Mn4111.5 (2)N13B—C57B—H57E109.5
N2—O6—Mn4113.01 (19)H57D—C57B—H57E109.5
N2—O6—Mn1122.9 (2)N13B—C57B—H57F109.5
Mn4—O6—Mn1123.29 (12)H57D—C57B—H57F109.5
C15B—O7—Mn4120.4 (14)H57E—C57B—H57F109.5
C15—O7—Mn4125.1 (5)C58—N14—C59106.4 (4)
C21—O8—Mn5112.1 (2)C58—N14—Mn6127.1 (3)
N3—O9—Mn5111.1 (2)C59—N14—Mn6126.6 (3)
N3—O9—Mn1117.9 (2)N14—C58—N15110.9 (3)
Mn5—O9—Mn1111.83 (12)N14—C58—H58124.5
C22—O10—Mn5131.5 (3)N15—C58—H58124.5
C28—O11—Mn6110.0 (2)C58—N15—C60107.6 (3)
N4—O12—Mn6117.1 (2)C58—N15—C61126.2 (3)
N4—O12—Mn1114.1 (2)C60—N15—C61126.2 (4)
Mn6—O12—Mn1106.68 (12)C60—C59—N14109.3 (4)
C29—O13—Mn6131.9 (3)C60—C59—H59125.3
C35—O14—Mn2110.0 (2)N14—C59—H59125.3
N5—O15—Mn2118.4 (2)C59—C60—N15105.8 (4)
N5—O15—Mn1113.1 (2)C59—C60—H60127.1
Mn2—O15—Mn1110.61 (11)N15—C60—H60127.1
C36—O16—Mn1127.3 (3)N15—C61—H61A109.5
C36—O17—Mn5136.0 (3)N15—C61—H61B109.5
C39—O18—Mn1130.7 (2)H61A—C61—H61B109.5
C39—O18—Mn6132.4 (2)N15—C61—H61C109.5
Mn1—O18—Mn692.30 (9)H61A—C61—H61C109.5
C39—O19—Mn3134.6 (3)H61B—C61—H61C109.5
C7—N1—O3113.6 (3)C62—O20—Mn4124.6 (3)
C7—N1—Mn2131.5 (3)O20—C62—N16123.8 (4)
O3—N1—Mn2113.5 (2)O20—C62—H62118.1
C14—N2—O6112.2 (3)N16—C62—H62118.1
C14—N2—Mn3129.9 (3)C62—N16—C64121.8 (4)
O6—N2—Mn3117.9 (2)C62—N16—C63121.5 (4)
C21—N3—O9113.6 (3)C64—N16—C63116.6 (4)
C21—N3—Mn4128.4 (3)N16—C63—H63A109.5
O9—N3—Mn4118.0 (2)N16—C63—H63B109.5
C28—N4—O12113.9 (3)H63A—C63—H63B109.5
C28—N4—Mn5133.5 (3)N16—C63—H63C109.5
O12—N4—Mn5112.5 (2)H63A—C63—H63C109.5
C35—N5—O15112.7 (3)H63B—C63—H63C109.5
C35—N5—Mn6133.7 (3)N16—C64—H64A109.5
O15—N5—Mn6113.5 (2)N16—C64—H64B109.5
C42—N6—C43106.3 (3)H64A—C64—H64B109.5
C42—N6—Mn2125.5 (3)N16—C64—H64C109.5
C43—N6—Mn2128.1 (3)H64A—C64—H64C109.5
C42—N7—C44107.9 (3)H64B—C64—H64C109.5
C42—N7—C45125.6 (4)O7—C15—C16118.4 (7)
C44—N7—C45126.4 (4)O7—C15—C20123.4 (8)
C46—N8—C47105.6 (3)C16—C15—C20118.2 (5)
C46—N8—Mn3124.4 (3)C17—C16—C15121.5 (6)
C47—N8—Mn3129.9 (3)C17—C16—H16119.2
C46—N9—C48107.6 (3)C15—C16—H16119.2
C46—N9—C49126.7 (4)C16—C17—C18120.1 (6)
C48—N9—C49125.7 (4)C16—C17—H17119.9
O1—C1—C2117.0 (4)C18—C17—H17119.9
O1—C1—C6123.4 (4)C19—C18—C17119.3 (6)
C2—C1—C6119.6 (4)C19—C18—H18120.4
C3—C2—C1120.8 (4)C17—C18—H18120.4
C3—C2—H2119.6C18—C19—C20122.2 (6)
C1—C2—H2119.6C18—C19—H19118.9
C2—C3—C4120.4 (5)C20—C19—H19118.9
C2—C3—H3119.8C19—C20—C15118.7 (5)
C4—C3—H3119.8C19—C20—C21119.4 (7)
C5—C4—C3119.0 (4)C15—C20—C21121.8 (8)
C5—C4—H4120.5C69—O22—H22109.5
C3—C4—H4120.5O22—C69—H69A109.5
C4—C5—C6122.1 (4)O22—C69—H69B109.5
C4—C5—H5118.9H69A—C69—H69B109.5
C6—C5—H5118.9O22—C69—H69C109.5
C5—C6—C1118.1 (4)H69A—C69—H69C109.5
C5—C6—C7118.1 (3)H69B—C69—H69C109.5
C1—C6—C7123.7 (3)O7—C15B—C16B120 (2)
O2—C7—N1120.8 (4)O7—C15B—C20B122 (3)
O2—C7—C6120.6 (3)C16B—C15B—C20B118.3 (15)
N1—C7—C6118.6 (3)C17B—C16B—C15B120.7 (18)
O4—C8—C9116.9 (4)C17B—C16B—H16B119.7
O4—C8—C13123.8 (3)C15B—C16B—H16B119.7
C9—C8—C13119.2 (3)C16B—C17B—C18B120.7 (18)
C10—C9—C8120.1 (4)C16B—C17B—H17B119.7
C10—C9—H9120.0C18B—C17B—H17B119.7
C8—C9—H9120.0C19B—C18B—C17B119.6 (17)
C9—C10—C11121.2 (4)C19B—C18B—H18B120.2
C9—C10—H10119.4C17B—C18B—H18B120.2
C11—C10—H10119.4C18B—C19B—C20B120.4 (17)
C12—C11—C10119.4 (4)C18B—C19B—H19B119.8
C12—C11—H11120.3C20B—C19B—H19B119.8
C10—C11—H11120.3C19B—C20B—C15B120.3 (15)
C11—C12—C13121.2 (4)C19B—C20B—C21115 (2)
C11—C12—H12119.4C15B—C20B—C21125 (2)
C13—C12—H12119.4N17—C67—H67A109.5
C8—C13—C12118.8 (3)N17—C67—H67B109.5
C8—C13—C14123.6 (3)H67A—C67—H67B109.5
C12—C13—C14117.6 (4)N17—C67—H67C109.5
O5—C14—N2120.7 (3)H67A—C67—H67C109.5
O5—C14—C13119.5 (3)H67B—C67—H67C109.5
N2—C14—C13119.7 (3)C66—N17—C68126 (5)
O8—C21—N3120.7 (3)C66—N17—C67123 (5)
O8—C21—C20B122.7 (13)C68—N17—C67110 (4)
N3—C21—C20B116.3 (12)N17—C66—H66A109.5
O8—C21—C20118.3 (5)N17—C66—H66B109.5
N3—C21—C20121.0 (5)H66A—C66—H66B109.5
O10—C22—C23116.9 (4)N17—C66—H66C109.5
O10—C22—C27123.9 (4)H66A—C66—H66C109.5
C23—C22—C27119.2 (4)H66B—C66—H66C109.5
C24—C23—C22120.7 (5)O23—C68—N17129 (4)
C24—C23—H23119.7O23—C68—H68115.7
C22—C23—H23119.7N17—C68—H68115.7
C25—C24—C23120.2 (4)C50—N10—C51105.3 (14)
C25—C24—H24119.9C50—N10—Mn4125.4 (14)
C23—C24—H24119.9C51—N10—Mn4128.9 (14)
C26—C25—C24119.5 (4)N10—C50—N11112.0 (14)
C26—C25—H25120.3N10—C50—H50124.0
C24—C25—H25120.3N11—C50—H50124.0
C25—C26—C27121.6 (5)C50—N11—C52107.4 (12)
C25—C26—H26119.2C50—N11—C53122.2 (15)
C27—C26—H26119.2C52—N11—C53130.0 (15)
C26—C27—C22118.9 (4)C52—C51—N10110.3 (11)
C26—C27—C28117.6 (4)C52—C51—H51124.8
C22—C27—C28123.6 (3)N10—C51—H51124.8
O11—C28—N4120.7 (4)C51—C52—N11104.9 (10)
O11—C28—C27121.4 (3)C51—C52—H52127.5
N4—C28—C27117.8 (4)N11—C52—H52127.5
O13—C29—C30118.0 (4)N11—C53—H53A109.5
O13—C29—C34124.0 (3)N11—C53—H53B109.5
C30—C29—C34118.0 (4)H53A—C53—H53B109.5
C31—C30—C29121.8 (4)N11—C53—H53C109.5
C31—C30—H30119.1H53A—C53—H53C109.5
C29—C30—H30119.1H53B—C53—H53C109.5
C32—C31—C30119.9 (4)C50B—O24—Mn4134.1 (14)
C32—C31—H31120.0O24—C50B—N11B122.5 (16)
C30—C31—H31120.0O24—C50B—H50B118.7
C33—C32—C31119.2 (4)N11B—C50B—H50B118.7
C33—C32—H32120.4C50B—N11B—C52B120.7 (13)
C31—C32—H32120.4C50B—N11B—C53B123.0 (15)
C32—C33—C34122.2 (4)C52B—N11B—C53B115.4 (14)
C32—C33—H33118.9N11B—C52B—H52A109.5
C34—C33—H33118.9N11B—C52B—H52B109.5
C33—C34—C29118.7 (3)H52A—C52B—H52B109.5
C33—C34—C35118.8 (4)N11B—C52B—H52C109.5
C29—C34—C35122.5 (4)H52A—C52B—H52C109.5
O14—C35—N5121.3 (3)H52B—C52B—H52C109.5
O14—C35—C34120.8 (3)N11B—C53B—H53D109.5
N5—C35—C34117.9 (4)N11B—C53B—H53E109.5
O17—C36—O16124.6 (4)H53D—C53B—H53E109.5
O17—C36—C37115.1 (4)N11B—C53B—H53F109.5
O16—C36—C37120.2 (5)H53D—C53B—H53F109.5
C36—C37—C38113.5 (8)H53E—C53B—H53F109.5
C36—C37—C38B108.5 (9)C65—O21—H21109.5
C36—C37—H37A108.9O21—C65—H65A109.5
C38—C37—H37A108.9O21—C65—H65B109.5
C36—C37—H37B108.9H65A—C65—H65B109.5
C38—C37—H37B108.9O21—C65—H65C109.5
H37A—C37—H37B107.7H65A—C65—H65C109.5
C36—C37—H37C110.0H65B—C65—H65C109.5
C38B—C37—H37C110.0
N1—Mn2—O1—C10.7 (3)C30—C31—C32—C330.2 (6)
N6—Mn2—O1—C1165.2 (3)C31—C32—C33—C340.9 (6)
O14—Mn2—O1—C198.1 (3)C32—C33—C34—C290.9 (6)
N2—Mn3—O4—C823.8 (4)C32—C33—C34—C35179.4 (3)
N8—Mn3—O4—C8160.6 (4)O13—C29—C34—C33179.7 (3)
O2—Mn3—O4—C874.3 (4)C30—C29—C34—C330.2 (5)
O19—Mn3—O4—C8114.0 (3)O13—C29—C34—C351.8 (6)
O5—Mn4—O7—C15B138.2 (15)C30—C29—C34—C35178.6 (3)
N3—Mn4—O7—C15B44.2 (15)Mn2—O14—C35—N51.8 (4)
O24—Mn4—O7—C15B48.3 (18)Mn2—O14—C35—C34178.9 (3)
O20—Mn4—O7—C15B134.9 (15)O15—N5—C35—O140.6 (5)
N10—Mn4—O7—C15B50.2 (19)Mn6—N5—C35—O14175.1 (2)
O5—Mn4—O7—C15146.5 (5)O15—N5—C35—C34178.7 (3)
N3—Mn4—O7—C1535.9 (6)Mn6—N5—C35—C345.6 (5)
O24—Mn4—O7—C1556.6 (11)C33—C34—C35—O148.4 (5)
O20—Mn4—O7—C15126.6 (5)C29—C34—C35—O14170.1 (3)
N10—Mn4—O7—C1558.5 (13)C33—C34—C35—N5171.0 (3)
N4—Mn5—O10—C221.2 (4)C29—C34—C35—N510.6 (5)
O8—Mn5—O10—C22179.3 (4)Mn5—O17—C36—O1628.2 (6)
O25—Mn5—O10—C2288.4 (19)Mn5—O17—C36—C37152.5 (4)
N12—Mn5—O10—C2288.7 (11)Mn1—O16—C36—O177.5 (5)
O17—Mn5—O10—C2296.0 (4)Mn1—O16—C36—C37173.2 (4)
N5—Mn6—O13—C2914.7 (3)O17—C36—C37—C3867.1 (8)
N14—Mn6—O13—C29170.8 (4)O16—C36—C37—C38113.5 (7)
O11—Mn6—O13—C2979.0 (4)O17—C36—C37—C38B10.6 (9)
O18—Mn6—O13—C2997.6 (3)O16—C36—C37—C38B168.7 (7)
N1—Mn2—O15—N594.9 (2)Mn3—O19—C39—O1825.4 (6)
N6—Mn2—O15—N5100.7 (2)Mn3—O19—C39—C40154.5 (3)
O14—Mn2—O15—N53.1 (2)Mn1—O18—C39—O193.2 (6)
N1—Mn2—O15—Mn137.90 (13)Mn6—O18—C39—O19145.7 (3)
N6—Mn2—O15—Mn1126.53 (13)Mn1—O18—C39—C40176.9 (3)
O14—Mn2—O15—Mn1135.93 (13)Mn6—O18—C39—C4034.3 (6)
Mn3—O3—N1—C716.6 (3)O19—C39—C40—C4114.5 (7)
Mn1—O3—N1—C7132.1 (2)O18—C39—C40—C41165.5 (5)
Mn3—O3—N1—Mn2175.13 (12)O19—C39—C40—C41B70.6 (9)
Mn1—O3—N1—Mn236.2 (3)O18—C39—C40—C41B109.4 (9)
Mn4—O6—N2—C148.4 (4)C43—N6—C42—N70.1 (4)
Mn1—O6—N2—C14178.5 (2)Mn2—N6—C42—N7178.1 (3)
Mn4—O6—N2—Mn3169.47 (15)C44—N7—C42—N60.1 (5)
Mn1—O6—N2—Mn30.7 (4)C45—N7—C42—N6179.8 (4)
Mn5—O9—N3—C218.8 (4)C42—N6—C43—C440.3 (5)
Mn1—O9—N3—C21139.7 (3)Mn2—N6—C43—C44178.2 (3)
Mn5—O9—N3—Mn4174.49 (16)N6—C43—C44—N70.3 (5)
Mn1—O9—N3—Mn443.6 (3)C42—N7—C44—C430.2 (5)
Mn6—O12—N4—C287.6 (4)C45—N7—C44—C43179.6 (4)
Mn1—O12—N4—C28133.3 (3)C47—N8—C46—N91.0 (5)
Mn6—O12—N4—Mn5172.78 (14)Mn3—N8—C46—N9177.9 (3)
Mn1—O12—N4—Mn547.1 (3)C48—N9—C46—N81.4 (6)
Mn2—O15—N5—C353.2 (4)C49—N9—C46—N8177.3 (4)
Mn1—O15—N5—C35134.9 (2)C46—N8—C47—C480.3 (6)
Mn2—O15—N5—Mn6173.41 (13)Mn3—N8—C47—C48176.9 (3)
Mn1—O15—N5—Mn641.7 (3)N8—C47—C48—N90.5 (6)
Mn2—O1—C1—C2174.2 (3)C46—N9—C48—C471.1 (6)
Mn2—O1—C1—C65.7 (6)C49—N9—C48—C47177.6 (5)
O1—C1—C2—C3179.0 (4)C55—N12—C54—N136 (4)
C6—C1—C2—C30.8 (6)Mn5—N12—C54—N13180 (4)
C1—C2—C3—C40.4 (7)N12—C54—N13—C565 (5)
C2—C3—C4—C50.2 (7)N12—C54—N13—C57178 (4)
C3—C4—C5—C60.3 (7)C54—N12—C55—C564 (3)
C4—C5—C6—C10.1 (6)Mn5—N12—C55—C56178 (2)
C4—C5—C6—C7177.7 (4)N12—C55—C56—N131 (3)
O1—C1—C6—C5179.1 (3)C54—N13—C56—C552 (4)
C2—C1—C6—C50.7 (5)C57—N13—C56—C55175 (4)
O1—C1—C6—C71.6 (6)Mn5—O25—C54B—N13B172 (9)
C2—C1—C6—C7178.2 (3)O25—C54B—N13B—C57B179 (7)
Mn3—O2—C7—N112.3 (4)O25—C54B—N13B—C56B12 (14)
Mn3—O2—C7—C6165.6 (3)C59—N14—C58—N151.1 (4)
O3—N1—C7—O21.1 (5)Mn6—N14—C58—N15178.1 (2)
Mn2—N1—C7—O2166.7 (3)N14—C58—N15—C600.9 (4)
O3—N1—C7—C6179.1 (3)N14—C58—N15—C61179.1 (4)
Mn2—N1—C7—C615.4 (5)C58—N14—C59—C600.9 (4)
C5—C6—C7—O28.9 (5)Mn6—N14—C59—C60178.3 (3)
C1—C6—C7—O2173.6 (3)N14—C59—C60—N150.4 (5)
C5—C6—C7—N1169.1 (3)C58—N15—C60—C590.3 (4)
C1—C6—C7—N18.4 (5)C61—N15—C60—C59178.5 (4)
Mn3—O4—C8—C9160.8 (3)Mn4—O20—C62—N16177.0 (3)
Mn3—O4—C8—C1320.6 (6)O20—C62—N16—C64177.3 (4)
O4—C8—C9—C10177.5 (4)O20—C62—N16—C631.1 (6)
C13—C8—C9—C101.2 (6)C15B—O7—C15—C1692 (13)
C8—C9—C10—C111.0 (7)Mn4—O7—C15—C16150.3 (5)
C9—C10—C11—C120.8 (7)C15B—O7—C15—C2090 (13)
C10—C11—C12—C130.8 (7)Mn4—O7—C15—C2031.9 (9)
O4—C8—C13—C12177.4 (4)O7—C15—C16—C17178.1 (7)
C9—C8—C13—C121.2 (6)C20—C15—C16—C170.2 (10)
O4—C8—C13—C140.6 (6)C15—C16—C17—C181.1 (11)
C9—C8—C13—C14179.1 (4)C16—C17—C18—C191.6 (12)
C11—C12—C13—C81.0 (6)C17—C18—C19—C201.1 (12)
C11—C12—C13—C14179.1 (4)C18—C19—C20—C150.1 (10)
Mn4—O5—C14—N25.6 (5)C18—C19—C20—C21177.7 (7)
Mn4—O5—C14—C13175.8 (3)O7—C15—C20—C19177.5 (8)
O6—N2—C14—O51.6 (5)C16—C15—C20—C190.3 (9)
Mn3—N2—C14—O5175.9 (3)O7—C15—C20—C210.4 (10)
O6—N2—C14—C13176.9 (3)C16—C15—C20—C21178.1 (7)
Mn3—N2—C14—C135.6 (6)O8—C21—C20—C1914.3 (9)
C8—C13—C14—O5172.3 (4)N3—C21—C20—C19167.4 (6)
C12—C13—C14—O55.7 (6)C20B—C21—C20—C19109 (12)
C8—C13—C14—N26.2 (6)O8—C21—C20—C15163.5 (5)
C12—C13—C14—N2175.8 (4)N3—C21—C20—C1514.8 (9)
Mn5—O8—C21—N33.9 (5)C20B—C21—C20—C1573 (11)
Mn5—O8—C21—C20B169.4 (13)C15—O7—C15B—C16B94 (13)
Mn5—O8—C21—C20177.7 (5)Mn4—O7—C15B—C16B139.9 (18)
O9—N3—C21—O83.3 (6)C15—O7—C15B—C20B85 (13)
Mn4—N3—C21—O8179.6 (3)Mn4—O7—C15B—C20B41 (2)
O9—N3—C21—C20B177.0 (13)O7—C15B—C16B—C17B177 (3)
Mn4—N3—C21—C20B6.7 (14)C20B—C15B—C16B—C17B2 (4)
O9—N3—C21—C20175.0 (5)C15B—C16B—C17B—C18B4 (5)
Mn4—N3—C21—C201.3 (7)C16B—C17B—C18B—C19B4 (5)
Mn5—O10—C22—C23179.0 (4)C17B—C18B—C19B—C20B2 (4)
Mn5—O10—C22—C270.0 (7)C18B—C19B—C20B—C15B0 (3)
O10—C22—C23—C24179.4 (5)C18B—C19B—C20B—C21179 (3)
C27—C22—C23—C240.3 (8)O7—C15B—C20B—C19B179 (2)
C22—C23—C24—C251.8 (8)C16B—C15B—C20B—C19B0 (2)
C23—C24—C25—C262.1 (9)O7—C15B—C20B—C210 (2)
C24—C25—C26—C270.9 (8)C16B—C15B—C20B—C21179 (2)
C25—C26—C27—C220.6 (8)O8—C21—C20B—C19B17 (2)
C25—C26—C27—C28178.3 (5)N3—C21—C20B—C19B156.1 (16)
O10—C22—C27—C26178.1 (5)C20—C21—C20B—C19B78 (11)
C23—C22—C27—C260.9 (7)O8—C21—C20B—C15B161.7 (13)
O10—C22—C27—C283.1 (8)N3—C21—C20B—C15B25 (2)
C23—C22—C27—C28177.9 (4)C20—C21—C20B—C15B101 (12)
Mn6—O11—C28—N41.0 (5)C66—N17—C68—O23180 (4)
Mn6—O11—C28—C27178.5 (3)C67—N17—C68—O237 (7)
O12—N4—C28—O114.0 (6)C51—N10—C50—N112 (4)
Mn5—N4—C28—O11176.6 (3)Mn4—N10—C50—N11175 (3)
O12—N4—C28—C27176.5 (3)N10—C50—N11—C521 (3)
Mn5—N4—C28—C272.9 (6)N10—C50—N11—C53174 (3)
C26—C27—C28—O113.6 (7)C50—N10—C51—C522 (4)
C22—C27—C28—O11175.2 (4)Mn4—N10—C51—C52175 (2)
C26—C27—C28—N4176.8 (4)N10—C51—C52—N112 (2)
C22—C27—C28—N44.4 (7)C50—N11—C52—C510.6 (19)
Mn6—O13—C29—C30165.6 (3)C53—N11—C52—C51172 (2)
Mn6—O13—C29—C3413.9 (6)Mn4—O24—C50B—N11B167 (3)
O13—C29—C30—C31179.1 (4)O24—C50B—N11B—C52B2 (4)
C34—C29—C30—C310.5 (6)O24—C50B—N11B—C53B171 (3)
C29—C30—C31—C320.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O21—H21···O170.842.122.948 (6)170
O22—H22···O70.842.263.077 (7)163
O22—H22···O200.842.372.887 (6)120
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O21—H21···O170.842.122.948 (6)169.8
O22—H22···O70.842.263.077 (7)162.5
O22—H22···O200.842.372.887 (6)120.1
 

Acknowledgements

This work was funded by the Shippensburg University Foundation (grant No. UGR2012/13–06) to JCL and CMZ.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. G. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science
First citationDendrinou-Samara, C., Alevizopoulou, L., Iordanidis, L., Samaras, E. & Kessissoglou, D. P. (2002). J. Inorg. Biochem. 89, 89–96.  Web of Science PubMed CAS
First citationDendrinou-Samara, C., Papadopoulos, A. N., Malamatari, D. A., Tarushi, A., Raptopoulou, C. P., Terzis, A., Samaras, E. & Kessissoglou, D. P. (2005). J. Inorg. Biochem. 99, 864–875.  Web of Science PubMed CAS
First citationDendrinou-Samara, C., Psomas, G., Iordanidis, L., Tangoulis, V. & Kessissoglou, D. P. (2001). Chem. Eur. J. 7, 5041–5051.  CrossRef PubMed CAS
First citationEmerich, B., Smith, M., Zeller, M. & Zaleski, C. M. (2010). J. Chem. Crystallogr. 40, 769–777.  Web of Science CSD CrossRef CAS
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.
First citationKessissoglou, D. P., Kampf, J. & Pecoraro, V. L. (1994). Polyhedron, 13, 1379–1391.  CAS
First citationLiu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102–4105.  CrossRef CAS Web of Science
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals
First citationRigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationStiefel, E. I. & Brown, G. F. (1972). Inorg. Chem. 11, 434–436.  CrossRef CAS Web of Science
First citationTigyer, B. R., Zeller, M. & Zaleski, C. M. (2011). Acta Cryst. E67, m1041–m1042.  Web of Science CSD CrossRef CAS IUCr Journals
First citationTigyer, B. R., Zeller, M. & Zaleski, C. M. (2012). Acta Cryst. E68, m1521–m1522.  CSD CrossRef CAS IUCr Journals
First citationTigyer, B. R., Zeller, M. & Zaleski, C. M. (2013). Acta Cryst. E69, m393–m394.  CSD CrossRef CAS IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages m483-m484
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds