[Journal logo]

Volume 69 
Part 9 
Pages m483-m484  
September 2013  

Received 8 July 2013
Accepted 30 July 2013
Online 10 August 2013

Key indicators
Single-crystal X-ray study
T = 85 K
Mean [sigma](C-C) = 0.007 Å
Disorder in main residue
R = 0.059
wR = 0.164
Data-to-parameter ratio = 11.4
Details
Open access

Bis(dimethylformamide)pentakis([mu]-N,2-dioxidobenzene-1-carboximidato)tetrakis(1-methylimidazole)di-[mu]-propionato-pentamanganese(III)manganese(II)-dimethylformamide-methanol (1/0.24/1.36)

aDepartment of Chemistry, Shippensburg University, 1871 Old Main Dr., Shippensburg, PA 17257, USA,bDepartment of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109, USA, and cDepartment of Chemistry, Youngstown State University, 1 University Plaza, Youngstown, OH 44555, USA
Correspondence e-mail: cmzaleski@ship.edu

The title compound [Mn6(C7H4NO3)5(C3H5O2)2(C4H6N2)4.17(C3H7NO)1.83]·0.24C3H7NO·1.36CH3OH or Mn(II)(C3H5O2)2[15-MCMn(III)N(shi)-5](Me-Im)4.17(DMF)1.83·0.24DMF·1.36MeOH (where MC is metallacrown, shi3- is salicylhydroximate, Me-Im is 1-methylimidazole, DMF is N,N-dimethylformamide, and MeOH is methanol), contains an MnII ion in the central cavity and five MnIII ions in the MC ring. The central MnII ion is seven coordinate and has a geometry best described as distorted face-capped trigonal prismatic with [Phi] angles of 6.13, 10.36, and 11.73° and an estimated average s/h ratio of 1.03±0.11. Four of the ring MnIII ions are six coordinate with distorted octahedral geometries. Two of the MnIII ions have [Lambda] absolute stereoconfiguration, while the other two MnIII ions have a planar configuration. The fifth MnIII ion is five coordinate and has a distorted square pyramidal geometry with [tau] = 0.20. Three of the MnIII ions bind one 1-methylimidazole ligand. Two of the ring MnIII ions have a 1-methylimidazole and a DMF disordered over a coordination site. For one of the ring MnIII ions, the occupancy ratio of the ligands refines to 0.51 (1):0.49 (1) in favor of the DMF. For the other ring MnIII ion, the occupancy ratio of the ligands refines to 0.68 (1):0.32 (1) in favor of the 1-methylimidazole. Two propionate anions serve to bridge the central MnII ion between two different MnIII ions. The methyl groups of the bridging propionate anions are disordered over two positions. The methyl group disorder also induces disorder in the H atoms of the adjacent methylene C atom to the same degree. For one of the propionate anions, the occupancy ratio refines to 0.752 (8):0.248 (8) and for the second, the occupancy ratio refines to 0.604 (6):0.396 (6). In addition, the disorder of the methyl group of the latter propionate anion is correlated with a partially occupied [0.604 (6)] methanol molecule. Furthermore, a methanol molecule and a DMF molecule are positionally disordered in the lattice. The occupancy refines to 0.757 (7):0.243 (7) in favor of the methanol molecule. Correlated to the occupancy of the methanol and DMF molecules is a disordered benzene ring of one salicylhydroximate ligand. The benzene ring is disordered over two positions with an occupancy ratio of 0.757 (7):0.243 (7). Lastly, the two lattice methanol molecules are hydrogen bonded to the 15-MC-5 molecule. For the partially occupied methanol molecule associated with the disordered propionate anion, the hydroxyl group of the methanol is hydrogen bonded to a carboxylate O atom of the propionate anion. For the partially occupied methanol molecule associated with the partially occupied lattice DMF molecule, the hydroxyl group of the methanol is hydrogen bonded to the phenolate O atom of a salicylhydroximate ligand and to the carbonyl O atom of a coordinated DMF molecule.

Related literature

For related Mn(II)[15-MCMn(III)N(shi)-5)] structures and synthetic procedures, see: Kessissoglou et al. (1994[Kessissoglou, D. P., Kampf, J. & Pecoraro, V. L. (1994). Polyhedron, 13, 1379-1391.]); Dendrinou-Samara et al. (2001[Dendrinou-Samara, C., Psomas, G., Iordanidis, L., Tangoulis, V. & Kessissoglou, D. P. (2001). Chem. Eur. J. 7, 5041-5051.], 2002[Dendrinou-Samara, C., Alevizopoulou, L., Iordanidis, L., Samaras, E. & Kessissoglou, D. P. (2002). J. Inorg. Biochem. 89, 89-96.], 2005[Dendrinou-Samara, C., Papadopoulos, A. N., Malamatari, D. A., Tarushi, A., Raptopoulou, C. P., Terzis, A., Samaras, E. & Kessissoglou, D. P. (2005). J. Inorg. Biochem. 99, 864-875.]); Emerich et al. (2010[Emerich, B., Smith, M., Zeller, M. & Zaleski, C. M. (2010). J. Chem. Crystallogr. 40, 769-777.]); Tigyer et al. (2011[Tigyer, B. R., Zeller, M. & Zaleski, C. M. (2011). Acta Cryst. E67, m1041-m1042.], 2012[Tigyer, B. R., Zeller, M. & Zaleski, C. M. (2012). Acta Cryst. E68, m1521-m1522.], 2013[Tigyer, B. R., Zeller, M. & Zaleski, C. M. (2013). Acta Cryst. E69, m393-m394.]). For explanations of how to calculate the s/h ratio, bond-valence-sum values and the [tau] parameter, see: Stiefel & Brown (1972[Stiefel, E. I. & Brown, G. F. (1972). Inorg. Chem. 11, 434-436.]), Liu & Thorp (1993[Liu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102-4105.]) and Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. G. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]), respectively.

[Scheme 1]

Experimental

Crystal data
  • [Mn6(C7H4NO3)5(C3H5O2)2(C4H6N2)4.17(C3H7NO)1.83]·0.24C3H7NO·1.36CH4O

  • Mr = 1763.91

  • Triclinic, [P \overline 1]

  • a = 12.6138 (2) Å

  • b = 14.8745 (3) Å

  • c = 20.7862 (15) Å

  • [alpha] = 97.909 (7)°

  • [beta] = 105.209 (7)°

  • [gamma] = 99.034 (7)°

  • V = 3650.7 (3) Å3

  • Z = 2

  • Cu K[alpha] radiation

  • [mu] = 8.93 mm-1

  • T = 85 K

  • 0.07 × 0.02 × 0.02 mm

Data collection
  • Rigaku Saturn 944+ CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.179, Tmax = 0.233

  • 106589 measured reflections

  • 13145 independent reflections

  • 10454 reflections with I > 2[sigma](I)

  • Rint = 0.106

Refinement
  • R[F2 > 2[sigma](F2)] = 0.059

  • wR(F2) = 0.164

  • S = 1.09

  • 13145 reflections

  • 1153 parameters

  • 225 restraints

  • H-atom parameters constrained

  • [Delta][rho]max = 1.04 e Å-3

  • [Delta][rho]min = -0.58 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
O21-H21...O17 0.84 2.12 2.948 (6) 170
O22-H22...O7 0.84 2.26 3.077 (7) 163
O22-H22...O20 0.84 2.37 2.887 (6) 120

Data collection: CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2172 ).


Acknowledgements

This work was funded by the Shippensburg University Foundation (grant No. UGR2012/13-06) to JCL and CMZ.

References

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. G. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.  [CSD] [CrossRef]
Dendrinou-Samara, C., Alevizopoulou, L., Iordanidis, L., Samaras, E. & Kessissoglou, D. P. (2002). J. Inorg. Biochem. 89, 89-96.  [ISI] [PubMed] [ChemPort]
Dendrinou-Samara, C., Papadopoulos, A. N., Malamatari, D. A., Tarushi, A., Raptopoulou, C. P., Terzis, A., Samaras, E. & Kessissoglou, D. P. (2005). J. Inorg. Biochem. 99, 864-875.  [ISI] [PubMed] [ChemPort]
Dendrinou-Samara, C., Psomas, G., Iordanidis, L., Tangoulis, V. & Kessissoglou, D. P. (2001). Chem. Eur. J. 7, 5041-5051.  [CrossRef] [PubMed] [ChemPort]
Emerich, B., Smith, M., Zeller, M. & Zaleski, C. M. (2010). J. Chem. Crystallogr. 40, 769-777.  [ISI] [CSD] [CrossRef] [ChemPort]
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.  [ISI] [CrossRef] [details]
Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.
Kessissoglou, D. P., Kampf, J. & Pecoraro, V. L. (1994). Polyhedron, 13, 1379-1391.  [ChemPort]
Liu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102-4105.  [CrossRef] [ChemPort] [ISI]
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.  [ISI] [CrossRef] [ChemPort] [details]
Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [details]
Stiefel, E. I. & Brown, G. F. (1972). Inorg. Chem. 11, 434-436.  [CrossRef] [ChemPort] [ISI]
Tigyer, B. R., Zeller, M. & Zaleski, C. M. (2011). Acta Cryst. E67, m1041-m1042.  [CSD] [CrossRef] [ChemPort] [details]
Tigyer, B. R., Zeller, M. & Zaleski, C. M. (2012). Acta Cryst. E68, m1521-m1522.  [CSD] [CrossRef] [ChemPort] [details]
Tigyer, B. R., Zeller, M. & Zaleski, C. M. (2013). Acta Cryst. E69, m393-m394.  [CrossRef] [ChemPort] [details]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [ISI] [CrossRef] [ChemPort] [details]


Acta Cryst (2013). E69, m483-m484   [ doi:10.1107/S1600536813021314 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.