metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(di­methyl sulfoxide-κO)tetra­kis­(μ2-3,4,5-tri­meth­­oxy­benzoato-κ2O:O′)dizinc

aIKFT, KIT-Campus Nord, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
*Correspondence e-mail: olaf.walter@kit.edu

(Received 10 May 2013; accepted 17 August 2013; online 23 August 2013)

The colourless title complex, [Zn2(C10H11O5)4(C2H6OS)2], crystallizes with one half-mol­ecule in the asymmetric unit, the other half of the mol­ecule being generated by a crystallographic inversion center. The structure shows a μ2-O:O′-bridging mode of the four 3,4,5-tri­meth­oxy­benzoate ligands finally stabilizing the two ZnII atoms in the dinuclear complex in a distorted square-pyramidal environment. The fifth coord­in­ation site in the apical position of the pyramid is occupied by a coordinating dimethyl sulfoxide solvent mol­ecule equally disordered over two positions.

Related literature

For the structures of (μ2-benzoato-κO,O′)(di­methyl­sulfoxide-κO)dizinc complxes with no more additional ligands, see: Pham et al. (2008[Pham, B. T. N., Lund, L. M. & Song, D. (2008). Inorg. Chem. 47, 6329-6335.]); Reger et al. (2011[Reger, D. L., Debreczeni, A. & Smith, M. D. (2011). Inorg. Chem. 50, 11754-11764.]); Tao (2002[Tao, J. (2002). Inorg. Chem. Commun. 5, 975-978.]); Yang et al. (2005[Yang, S.-Y., Long, L.-S., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2005). Acta Cryst. E61, m1671-m1673.]); Zevaco et al. (2007[Zevaco, T. A., Männle, D., Walter, O. & Dinjus, E. (2007). Appl. Organomet. Chem. 21, 970-977.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C10H11O5)4(C2H6OS)2]

  • Mr = 1131.75

  • Monoclinic, C 2/c

  • a = 18.854 (2) Å

  • b = 13.937 (2) Å

  • c = 19.249 (2) Å

  • β = 90.082 (3)°

  • V = 5058.0 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.11 mm−1

  • T = 200 K

  • 0.6 × 0.4 × 0.4 mm

Data collection
  • Siemens SMART CCD 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.555, Tmax = 1

  • 29984 measured reflections

  • 6234 independent reflections

  • 4049 reflections with I > 2σ(I)

  • Rint = 0.121

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.164

  • S = 1.03

  • 6234 reflections

  • 378 parameters

  • 19 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.79 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XPMA (Zsolnai, 1996[Zsolnai, L. (1996). XPMA. University of Heidelberg, Germany.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In bis(dimethyl sulfoxide-κO)tetrakis(µ2-3,4,5-trimethoxybenzoato-κ2O:O')dizinc the two Zn(ii) ions are embedded in a distorted square pyramidale environment. Four 3,4,5-trimethoxybenzoato-ligands are forming four µ2-O,O'-bridges between the two Zn-atoms. The coordination number is completed by a dmso solvent molecule in apical position. The Zn—O bond distances are determined in the range between 2.019 (3) Å and 2.042 (3) Å for the carboxylato-O atoms whereas the Zn—O bond distance to the coordinated solvent molecule is significantly shorter with 1.966 (3) Å. These findings are in accordance with the literature data for the so-called paddle-wheel structures formed by complexes of the type bis(dimethylsulfoxide-κO)tetrakis(µ2-carboxylato-O,O')dizinc. In Pham et al. (2008) the Zn—O bond distances to carboxylato-O atoms are determined to in the mean 2.046 (3) Å whereas the Zn—O (dmso) bond distance is significantly shorter with 1.984 (3) Å. In Reger et al. (2011) Zn—O bond distances between 2.032 (2) and 2.051 (2) Å or of 197.2 (2) and 197.4 (2) Å are reported. In Tao et al. (2002) and Yang et al. (2005) these findings are confirmed furthermore: the corresponding Zn—O distances to the coordinated dmso are significantly shorter with 1.982 (3) Å or with 1.970 (2) and 1.981 (2) Å than those for the corresponding Zn—O bond lengths concerning the carboxylato groups (2.012 (2)–2.064 (3) Å). Changes in the coordination number of the central Zn(ii) ion like e.g. in Zevaco et al. (2007) influences significantly the Zn—O bond distances: for the Zn atom in a distorted tetrahedral environment Zn—O (carboxylato) bond lengths are found to be shorter with 1.933 (2) Å whereas they are determined to 2.073 (2) - 2.122 (2) Å for a Zn-atom in distorted octahedral coordination geometry. The structural features of bis(dimethyl sulfoxide-κO)tetrakis(µ2-3,4,5-trimethoxybenzoato-κ2O:O')dizinc with the two Zn(ii) ions in a distorted square-pyramidal environment with their here reported bond lengths fit well within the in the literature reported related complexes.

Related literature top

For the structures of (µ2-benzoato-κO,O')(dimethylsulfoxide-κO)dizinc(II) complexes with no more additional ligands, see: Pham et al. (2008); Reger et al. (2011); Tao (2002); Yang et al. (2005); Zevaco et al. (2007).

Experimental top

bis(dimethyl sulfoxide-κO)tetrakis(µ2-3,4,5-trimethoxybenzoato-κ2O:O')dizinc is obtained from the reaction of 2.0 g (24.6 mmol) zinc oxide and 10.43 g (49.2 mmol) of 3,4,5-trimethoxybenzoic acid in water under refluxing for 4 h. The solvent is evaporated until formation of a white powder which was filtered off and dissolved in 150 ml DMSO at ca 120° C. The solution was filtered and allowed to cool down to RT. The solvent was evaporated slowly. Single crystals of bis(dimethyl sulfoxide-κO)tetrakis(µ2-3,4,5-trimethoxybenzoato-κ2O:O')dizinc are isolated in 70% yield.

Refinement top

The positions of all H atoms are calculated on geometrical positions according to the hybridization of the atoms they are bound to. The isotropic U values of the hydrogen atoms are refined group wise except for the H atoms which are located at the following disordered C atoms: C8, C8X, C18, C18X, C21X. Rint is with 0.12 relatively high as additional disorder of parts of the molecule plus some flexibility in the 12 methoxy substituents contribute to a decrease in reflection intensity for higher 2Θ-angles.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: XPMA (Zsolnai, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of bis(dimethyl sulfoxide-κO)tetrakis(µ2-3,4,5-trimethoxybenzoato-κ2O:O')dizinc; ellipsoids at 50% probability level (Symmetry codes: -x + 0.5, -y + 1.5,-z + 1).
Bis(dimethyl sulfoxide-κO)tetrakis(µ2-3,4,5-trimethoxybenzoato-κ2O:O')dizinc top
Crystal data top
[Zn2(C10H11O5)4(C2H6OS)2]F(000) = 2352
Mr = 1131.75Dx = 1.486 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 18.854 (2) ÅCell parameters from 6943 reflections
b = 13.937 (2) Åθ = 2.4–26.0°
c = 19.249 (2) ŵ = 1.11 mm1
β = 90.082 (3)°T = 200 K
V = 5058.0 (11) Å3Quader, colourless
Z = 40.6 × 0.4 × 0.4 mm
Data collection top
Siemens SMART CCD 1000
diffractometer
6234 independent reflections
Radiation source: fine-focus sealed tube4049 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.121
Detector resolution: 8 pixels mm-1θmax = 28.4°, θmin = 1.8°
ω scanh = 2525
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
k = 1818
Tmin = 0.555, Tmax = 1l = 2524
29984 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0719P)2 + 9.9666P]
where P = (Fo2 + 2Fc2)/3
6234 reflections(Δ/σ)max < 0.001
378 parametersΔρmax = 0.64 e Å3
19 restraintsΔρmin = 0.79 e Å3
Crystal data top
[Zn2(C10H11O5)4(C2H6OS)2]V = 5058.0 (11) Å3
Mr = 1131.75Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.854 (2) ŵ = 1.11 mm1
b = 13.937 (2) ÅT = 200 K
c = 19.249 (2) Å0.6 × 0.4 × 0.4 mm
β = 90.082 (3)°
Data collection top
Siemens SMART CCD 1000
diffractometer
6234 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
4049 reflections with I > 2σ(I)
Tmin = 0.555, Tmax = 1Rint = 0.121
29984 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06519 restraints
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.64 e Å3
6234 reflectionsΔρmin = 0.79 e Å3
378 parameters
Special details top

Experimental. Spectroscopic data: 1H{31P} NMR (dmso D6): δ = 7.18, s, 1H, CH(arom); 3.72, s, 6H, OCH3; 3.62, s, 3H, OCH3; 13C{1H} NMR (dmso D3): δ = 172.0; 152.7; 140.4; 130.4; 107.1; 60.6; 56.2; IR [cm-1]: 2995 (m); 2940 (m); 2837 (m); 1622 (m); 1577 (s); 1520 (s); 1464 (m); 1396 (versus); 1228 (s); 1127 (versus); 1000 (m); 786 (s); 759 (w); 733 (m)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. XRD measurements were performed on a Siemens SMART CCD 1000 diffractometer with monochromated Mo Kα-irradiation collecting a full sphere of data in the θ–range from 1.82 to 28.36°. 1674 frames were collected with an irradiation time of 10 s per frame and ω–scan technique with Δω = 0.45°. The data were integrated with SAINT and corrected to Lorentz and polarization effects and a numerical adsorption correction with SADABS was applied. The structure was solved by direct methods and refined to an optimum R1 value with SHELXL. Visualization for evaluation was performed with XPMA and figures were created with ORTEP. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. [tetrakis(µ2-3,4,5-trimethoxybenzoato-O,O')-bis(dimethylsulfoxide-O)-di-\ zinc(ii)] shows in its structure a 1:1 disorder at the following positions: C8, C18, C21, c22. The first two mentioned C atoms make part of two methoxy substituents whereas the last two mentioned C atoms represent a disorder in the coordinated dmso solvent molecule. Refinement of the disordered parts of the molecules has been performed using the 'same distance' restraint in order to resolve the disorders in a chemically correct manner. The data of the structure have been deposited at the CCDC with the reference number 865280.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.24683 (2)0.64467 (3)0.49759 (2)0.02114 (14)
O10.28914 (16)0.6564 (2)0.59493 (14)0.0376 (7)
O20.29608 (16)0.8154 (2)0.59516 (14)0.0397 (7)
O30.4123 (3)0.8959 (3)0.82388 (19)0.0800 (14)
O40.4061 (2)0.7307 (3)0.89858 (18)0.0728 (13)
O50.35347 (18)0.5704 (2)0.84426 (15)0.0482 (8)
O60.14999 (15)0.6644 (2)0.53982 (17)0.0421 (8)
O70.15605 (15)0.8236 (2)0.54213 (16)0.0390 (7)
O80.0668 (3)0.9179 (3)0.6706 (3)0.121 (2)
O90.14597 (19)0.7596 (3)0.6733 (2)0.0750 (13)
O100.09936 (16)0.5933 (2)0.62088 (17)0.0476 (8)
O110.24529 (16)0.5055 (2)0.48119 (17)0.0442 (8)
C10.30386 (19)0.7354 (3)0.6224 (2)0.0265 (8)
C20.3325 (2)0.7336 (3)0.6957 (2)0.0298 (9)
C30.3596 (2)0.8172 (3)0.7236 (2)0.0400 (11)
H30.36030.87340.69750.033 (8)*
C40.3856 (3)0.8163 (4)0.7910 (2)0.0520 (13)
C50.3835 (3)0.7325 (3)0.8304 (2)0.0468 (12)
C60.3549 (2)0.6487 (3)0.8021 (2)0.0352 (9)
C70.3299 (2)0.6497 (3)0.73393 (19)0.0290 (8)
H70.31150.59410.71420.033 (8)*
C80.416 (2)0.9766 (12)0.7778 (13)0.18 (2)0.5
H8A0.44540.96050.73860.150*0.5
H8B0.43681.03020.80200.150*0.5
H8C0.36960.99320.76210.150*0.5
C8X0.3946 (18)0.9896 (9)0.7979 (12)0.103 (9)0.5
H8D0.41731.03760.82590.150*0.5
H8E0.34410.99840.79960.150*0.5
H8F0.41040.99540.75070.150*0.5
C90.4808 (4)0.7422 (4)0.9088 (3)0.084 (2)
H9A0.50570.71950.86860.18 (2)*
H9B0.49550.70600.94880.18 (2)*
H9C0.49140.80890.91600.18 (2)*
C100.3126 (3)0.4904 (3)0.8213 (3)0.0568 (14)
H10A0.26430.51000.81440.050 (8)*
H10B0.31430.44060.85560.050 (8)*
H10C0.33160.46680.77830.050 (8)*
C110.1254 (2)0.7454 (3)0.55252 (19)0.0285 (8)
C120.0531 (2)0.7492 (3)0.5848 (2)0.0311 (8)
C130.0284 (3)0.8346 (3)0.6115 (3)0.0543 (14)
H130.05550.89020.60810.055 (10)*
C140.0370 (3)0.8365 (4)0.6436 (4)0.0678 (18)
C150.0792 (2)0.7542 (4)0.6456 (3)0.0510 (13)
C160.0545 (2)0.6694 (3)0.6170 (2)0.0346 (10)
C170.0122 (2)0.6669 (3)0.5871 (2)0.0303 (9)
H170.02960.60990.56850.055 (10)*
C180.0156 (8)0.9929 (11)0.6886 (11)0.105 (7)0.5
H18A0.02630.96400.70760.150*0.5
H18B0.03621.03540.72220.150*0.5
H18C0.00341.02850.64760.150*0.5
C18X0.0416 (9)1.0071 (7)0.6374 (11)0.125 (10)0.5
H18D0.06471.06120.65830.150*0.5
H18E0.05251.00530.58870.150*0.5
H18F0.00871.01270.64360.150*0.5
C190.1488 (4)0.7388 (4)0.7465 (3)0.083 (2)
H19A0.14220.67120.75370.16 (2)*
H19B0.19410.75770.76460.16 (2)*
H19C0.11200.77360.77010.16 (2)*
C200.0818 (3)0.5103 (3)0.5803 (3)0.0539 (13)
H20A0.07600.52860.53260.080 (11)*
H20B0.11930.46390.58390.080 (11)*
H20C0.03840.48280.59730.080 (11)*
S10.28196 (19)0.41693 (19)0.50269 (16)0.0463 (8)0.5
C210.2543 (11)0.4155 (12)0.5903 (6)0.063 (4)0.5
H21A0.20500.39830.59250.41 (13)*0.5
H21B0.26090.47790.61020.41 (13)*0.5
H21C0.28180.36940.61570.41 (13)*0.5
C220.3713 (4)0.4506 (6)0.5154 (4)0.036 (2)0.5
H22A0.39450.45600.47120.048 (15)*0.5
H22B0.39490.40290.54300.048 (15)*0.5
H22C0.37310.51130.53890.048 (15)*0.5
S1X0.28535 (16)0.4397 (2)0.5380 (2)0.0522 (8)0.5
C21X0.2680 (8)0.3248 (7)0.5050 (8)0.106 (6)0.5
H21D0.29480.31520.46320.200*0.5
H21E0.21830.31890.49480.200*0.5
H21F0.28140.27750.53870.200*0.5
C22X0.2319 (13)0.4262 (19)0.6110 (9)0.108 (8)0.5
H22D0.23290.48430.63790.200*0.5
H22E0.24930.37400.63880.200*0.5
H22F0.18410.41290.59670.200*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0257 (2)0.0168 (2)0.0209 (2)0.00103 (18)0.00125 (15)0.00041 (18)
O10.0544 (19)0.0325 (16)0.0259 (14)0.0037 (13)0.0117 (13)0.0000 (12)
O20.0537 (19)0.0335 (16)0.0318 (16)0.0030 (14)0.0144 (14)0.0102 (13)
O30.135 (4)0.051 (2)0.053 (2)0.034 (2)0.049 (2)0.0011 (19)
O40.106 (3)0.081 (3)0.0316 (19)0.026 (2)0.030 (2)0.0061 (17)
O50.070 (2)0.0471 (19)0.0270 (16)0.0041 (16)0.0104 (15)0.0134 (14)
O60.0342 (16)0.0344 (17)0.058 (2)0.0025 (13)0.0159 (15)0.0036 (14)
O70.0322 (16)0.0381 (16)0.0469 (18)0.0089 (13)0.0113 (14)0.0097 (14)
O80.084 (3)0.058 (3)0.221 (6)0.008 (2)0.099 (4)0.045 (3)
O90.0320 (18)0.093 (3)0.100 (3)0.0028 (19)0.027 (2)0.003 (2)
O100.0393 (17)0.052 (2)0.051 (2)0.0156 (15)0.0073 (15)0.0000 (16)
O110.0460 (18)0.0218 (15)0.065 (2)0.0007 (13)0.0023 (16)0.0019 (14)
C10.0228 (18)0.032 (2)0.0244 (19)0.0026 (15)0.0003 (14)0.0024 (16)
C20.029 (2)0.038 (2)0.0218 (19)0.0023 (16)0.0043 (15)0.0040 (16)
C30.054 (3)0.037 (2)0.029 (2)0.010 (2)0.013 (2)0.0055 (19)
C40.075 (4)0.040 (3)0.041 (3)0.017 (2)0.027 (3)0.002 (2)
C50.065 (3)0.051 (3)0.024 (2)0.010 (2)0.015 (2)0.0036 (19)
C60.042 (2)0.039 (2)0.024 (2)0.002 (2)0.0019 (17)0.0061 (18)
C70.033 (2)0.031 (2)0.0226 (18)0.0009 (17)0.0007 (15)0.0025 (17)
C80.40 (5)0.070 (13)0.057 (15)0.13 (2)0.075 (19)0.016 (10)
C8X0.21 (2)0.045 (9)0.053 (12)0.041 (10)0.088 (15)0.001 (7)
C90.107 (6)0.076 (5)0.067 (4)0.008 (4)0.060 (4)0.001 (3)
C100.090 (4)0.043 (3)0.038 (3)0.019 (3)0.003 (3)0.017 (2)
C110.0263 (18)0.034 (2)0.0251 (19)0.0007 (18)0.0027 (15)0.0019 (18)
C120.0296 (19)0.037 (2)0.0272 (19)0.0007 (19)0.0032 (15)0.0012 (18)
C130.037 (3)0.043 (3)0.083 (4)0.009 (2)0.024 (3)0.013 (3)
C140.047 (3)0.052 (3)0.105 (5)0.004 (2)0.037 (3)0.019 (3)
C150.028 (2)0.061 (3)0.064 (3)0.001 (2)0.015 (2)0.004 (3)
C160.024 (2)0.046 (3)0.034 (2)0.0021 (17)0.0006 (17)0.0056 (19)
C170.028 (2)0.037 (2)0.026 (2)0.0003 (16)0.0024 (16)0.0027 (17)
C180.073 (11)0.087 (12)0.153 (18)0.007 (9)0.007 (11)0.064 (12)
C18X0.098 (13)0.027 (6)0.25 (3)0.001 (7)0.113 (16)0.038 (11)
C190.080 (5)0.068 (4)0.101 (6)0.004 (3)0.057 (4)0.003 (4)
C200.049 (3)0.052 (3)0.061 (3)0.022 (2)0.004 (3)0.002 (3)
S10.0740 (19)0.0196 (13)0.0452 (17)0.0047 (12)0.0011 (15)0.0029 (11)
C210.092 (11)0.051 (7)0.047 (9)0.008 (7)0.032 (7)0.033 (7)
C220.047 (5)0.038 (5)0.024 (4)0.020 (4)0.007 (4)0.001 (3)
S1X0.0506 (15)0.0197 (13)0.086 (3)0.0076 (11)0.0008 (19)0.0125 (16)
C21X0.148 (15)0.018 (5)0.152 (15)0.011 (7)0.004 (12)0.004 (7)
C22X0.14 (2)0.142 (17)0.047 (10)0.008 (14)0.040 (10)0.048 (10)
Geometric parameters (Å, º) top
Zn1—O111.966 (3)C9—H9A0.9600
Zn1—O62.019 (3)C9—H9B0.9600
Zn1—O7i2.034 (3)C9—H9C0.9600
Zn1—O2i2.037 (3)C10—H10A0.9600
Zn1—O12.042 (3)C10—H10B0.9600
Zn1—Zn1i2.9399 (9)C10—H10C0.9600
O1—C11.252 (4)C11—C121.501 (5)
O2—C11.240 (4)C12—C131.378 (6)
O2—Zn1i2.037 (3)C12—C171.382 (5)
O3—C41.372 (6)C13—C141.380 (6)
O3—C81.435 (9)C13—H130.9300
O3—C8X1.439 (9)C14—C151.396 (7)
O4—C51.380 (5)C15—C161.384 (6)
O4—C91.431 (6)C16—C171.386 (5)
O5—C61.360 (5)C17—H170.9300
O5—C101.425 (5)C18—H18A0.9600
O6—C111.244 (5)C18—H18B0.9600
O7—C111.249 (5)C18—H18C0.9600
O7—Zn1i2.034 (3)C18X—H18D0.9600
O8—C141.368 (6)C18X—H18E0.9600
O8—C181.464 (8)C18X—H18F0.9600
O8—C18X1.476 (8)C19—H19A0.9600
O9—C151.371 (5)C19—H19B0.9600
O9—C191.439 (6)C19—H19C0.9600
O10—C161.358 (5)C20—H20A0.9600
O10—C201.435 (5)C20—H20B0.9600
O11—S11.474 (4)C20—H20C0.9600
O11—S1X1.614 (4)S1—C211.765 (9)
C1—C21.511 (5)S1—C221.766 (7)
C2—C31.381 (6)C21—H21A0.9600
C2—C71.382 (5)C21—H21B0.9600
C3—C41.388 (6)C21—H21C0.9600
C3—H30.9300C22—H22A0.9600
C4—C51.392 (6)C22—H22B0.9600
C5—C61.397 (6)C22—H22C0.9600
C6—C71.394 (5)S1X—C22X1.741 (9)
C7—H70.9300S1X—C21X1.753 (8)
C8—H8A0.9600C21X—H21D0.9600
C8—H8B0.9600C21X—H21E0.9600
C8—H8C0.9600C21X—H21F0.9600
C8X—H8D0.9600C22X—H22D0.9600
C8X—H8E0.9600C22X—H22E0.9600
C8X—H8F0.9600C22X—H22F0.9600
O11—Zn1—O6100.72 (12)O6—C11—C12116.9 (4)
O11—Zn1—O7i99.65 (12)O7—C11—C12117.1 (4)
O6—Zn1—O7i159.55 (13)C13—C12—C17121.1 (4)
O11—Zn1—O2i97.09 (13)C13—C12—C11119.5 (4)
O6—Zn1—O2i87.56 (13)C17—C12—C11119.3 (4)
O7i—Zn1—O2i88.14 (13)C12—C13—C14119.1 (4)
O11—Zn1—O1103.43 (12)C12—C13—H13120.5
O6—Zn1—O188.39 (13)C14—C13—H13120.5
O7i—Zn1—O188.67 (12)O8—C14—C13123.6 (5)
O2i—Zn1—O1159.48 (12)O8—C14—C15115.9 (4)
O11—Zn1—Zn1i172.42 (10)C13—C14—C15120.4 (5)
O6—Zn1—Zn1i83.57 (8)O9—C15—C16120.7 (4)
O7i—Zn1—Zn1i75.99 (9)O9—C15—C14119.3 (4)
O2i—Zn1—Zn1i76.73 (9)C16—C15—C14119.9 (4)
O1—Zn1—Zn1i82.82 (8)O10—C16—C15115.8 (4)
C1—O1—Zn1123.0 (3)O10—C16—C17124.7 (4)
C1—O2—Zn1i131.5 (3)C15—C16—C17119.5 (4)
C4—O3—C8111.7 (11)C12—C17—C16119.9 (4)
C4—O3—C8X119.2 (9)C12—C17—H17120.0
C5—O4—C9115.6 (5)C16—C17—H17120.0
C6—O5—C10116.9 (3)O8—C18—H18A109.5
C11—O6—Zn1122.7 (3)O8—C18—H18B109.5
C11—O7—Zn1i131.8 (3)H18A—C18—H18B109.5
C14—O8—C18114.3 (8)O8—C18—H18C109.5
C14—O8—C18X113.6 (7)H18A—C18—H18C109.5
C15—O9—C19113.9 (5)H18B—C18—H18C109.5
C16—O10—C20117.1 (3)O8—C18X—H18D109.5
S1—O11—Zn1140.8 (2)O8—C18X—H18E109.5
S1X—O11—Zn1116.4 (2)H18D—C18X—H18E109.5
O2—C1—O1125.8 (4)O8—C18X—H18F109.5
O2—C1—C2116.9 (3)H18D—C18X—H18F109.5
O1—C1—C2117.3 (3)H18E—C18X—H18F109.5
C3—C2—C7121.4 (4)O9—C19—H19A109.5
C3—C2—C1118.7 (3)O9—C19—H19B109.5
C7—C2—C1119.9 (3)H19A—C19—H19B109.5
C2—C3—C4119.0 (4)O9—C19—H19C109.5
C2—C3—H3120.5H19A—C19—H19C109.5
C4—C3—H3120.5H19B—C19—H19C109.5
O3—C4—C3123.6 (4)O10—C20—H20A109.5
O3—C4—C5116.0 (4)O10—C20—H20B109.5
C3—C4—C5120.4 (4)H20A—C20—H20B109.5
O4—C5—C4121.6 (4)O10—C20—H20C109.5
O4—C5—C6118.3 (4)H20A—C20—H20C109.5
C4—C5—C6120.0 (4)H20B—C20—H20C109.5
O5—C6—C7124.3 (4)O11—S1—C2198.0 (6)
O5—C6—C5116.5 (4)O11—S1—C22105.3 (3)
C7—C6—C5119.2 (4)C21—S1—C2298.9 (7)
C2—C7—C6119.8 (4)S1—C21—H21A109.5
C2—C7—H7120.1S1—C21—H21B109.5
C6—C7—H7120.1H21A—C21—H21B109.5
O3—C8—H8A109.5S1—C21—H21C109.5
O3—C8—H8B109.5H21A—C21—H21C109.5
H8A—C8—H8B109.5H21B—C21—H21C109.5
O3—C8—H8C109.5S1—C22—H22A109.5
H8A—C8—H8C109.5S1—C22—H22B109.5
H8B—C8—H8C109.5H22A—C22—H22B109.5
O3—C8X—H8D109.5S1—C22—H22C109.5
O3—C8X—H8E109.5H22A—C22—H22C109.5
H8D—C8X—H8E109.5H22B—C22—H22C109.5
O3—C8X—H8F109.5O11—S1X—C22X109.7 (9)
H8D—C8X—H8F109.5O11—S1X—C21X100.7 (5)
H8E—C8X—H8F109.5C22X—S1X—C21X95.0 (10)
O4—C9—H9A109.5S1X—C21X—H21D109.5
O4—C9—H9B109.5S1X—C21X—H21E109.5
H9A—C9—H9B109.5H21D—C21X—H21E109.5
O4—C9—H9C109.5S1X—C21X—H21F109.5
H9A—C9—H9C109.5H21D—C21X—H21F109.5
H9B—C9—H9C109.5H21E—C21X—H21F109.5
O5—C10—H10A109.5S1X—C22X—H22D109.5
O5—C10—H10B109.5S1X—C22X—H22E109.5
H10A—C10—H10B109.5H22D—C22X—H22E109.5
O5—C10—H10C109.5S1X—C22X—H22F109.5
H10A—C10—H10C109.5H22D—C22X—H22F109.5
H10B—C10—H10C109.5H22E—C22X—H22F109.5
O6—C11—O7126.0 (4)
Symmetry code: (i) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formula[Zn2(C10H11O5)4(C2H6OS)2]
Mr1131.75
Crystal system, space groupMonoclinic, C2/c
Temperature (K)200
a, b, c (Å)18.854 (2), 13.937 (2), 19.249 (2)
β (°) 90.082 (3)
V3)5058.0 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.11
Crystal size (mm)0.6 × 0.4 × 0.4
Data collection
DiffractometerSiemens SMART CCD 1000
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.555, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
29984, 6234, 4049
Rint0.121
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.164, 1.03
No. of reflections6234
No. of parameters378
No. of restraints19
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.64, 0.79

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008), XPMA (Zsolnai, 1996) and ORTEP-3 for Windows (Farrugia, 2012), publCIF (Westrip, 2010).

 

Acknowledgements

The authors gratefully acknowledge financial support for their work from the Karlsruhe Institute for Technology.

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPham, B. T. N., Lund, L. M. & Song, D. (2008). Inorg. Chem. 47, 6329–6335.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationReger, D. L., Debreczeni, A. & Smith, M. D. (2011). Inorg. Chem. 50, 11754–11764.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTao, J. (2002). Inorg. Chem. Commun. 5, 975–978.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, S.-Y., Long, L.-S., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2005). Acta Cryst. E61, m1671–m1673.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZevaco, T. A., Männle, D., Walter, O. & Dinjus, E. (2007). Appl. Organomet. Chem. 21, 970–977.  Web of Science CSD CrossRef CAS Google Scholar
First citationZsolnai, L. (1996). XPMA. University of Heidelberg, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds