organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E,Z)-1-(4-Chloro­phen­yl)-5-phenyl-5-(phenyl­sulfan­yl)penta-2,4-dien-1-one

aNesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 119991 Moscow, Russian Federation, and bDepartment of Chemical and Chemical Technology, Togliatti State University, 445667 Togliatti, Russian Federation
*Correspondence e-mail: vologzhanina@mail.ru

(Received 26 July 2013; accepted 17 August 2013; online 31 August 2013)

The penta-2,4-dien-1-one fragment of the title compound, C23H17ClOS, is twisted by 20.0 (3)°, as measured by the dihedral angle between the planes of the carbonyl group and its attached C atom and the distant C=C double bond and its attached C atom. The 4-chloro­phenyl group forms a dihedral angle of 4.0 (3)° with the adjacent carbonyl group. Conjugation between the phenyl ring and the C=C double bond is absent; the dihedral angle between the phenyl ring and the C—C=C fragment is 34.3 (2)°. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, forming chains parallel to the b-axis direction.

Related literature

For the biological activity of chalcones, and their aryl­thio-containing derivatives, see: Chate et al. (2012[Chate, A. V., Joshi, R. S., Mandhane, P. G., Mohekar, S. R. & Gill, C. H. (2012). Phosphorus Sulfur Silicon Relat. Elem. 187, 327-335.]); Nielsen et al. (2005[Nielsen, S. F., Larsen, M., Boesen, T., Schonning, K. & Kromann, H. (2005). J. Med. Chem. 48, 2667-2677.]); Wu et al. (2011[Wu, J., Li, J., Cai, Y., Pan, Y., Ye, F., Zhang, Y., Zhao, Y., Yang, S., Li, X. & Liang, G. (2011). J. Med. Chem. 54, 8110-8123.]), Karaman et al. (2012[Karaman, I., Gezegen, H., Ceylan, M. & Dilmac, M. (2012). Phosphorus Sulfur Silicon Relat. Elem. 187, 580-586.]). For the synthesis and crystal structures of precursor 1,5-di­aryl­pent-2-en-4-yn-1-ones, see: Golovanov et al. (2013[Golovanov, A. A., Latypova, D. R., Bekin, V. V., Pisareva, V. S., Vologzhanina, A. V. & Dokichev, V. A. (2013). Russ. J. Org. Chem. 49. In the press.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C23H17ClOS

  • Mr = 376.88

  • Orthorhombic, P b c a

  • a = 8.2663 (11) Å

  • b = 11.1661 (13) Å

  • c = 39.478 (6) Å

  • V = 3643.9 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 120 K

  • 0.38 × 0.08 × 0.07 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.903, Tmax = 0.967

  • 20709 measured reflections

  • 5311 independent reflections

  • 3104 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.100

  • S = 1.00

  • 5311 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O1i 0.95 2.57 3.515 (3) 178
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The family of chalcones exhibit antibiotic (Nielsen et al., 2005) and anti-inflammatory (Wu et al., 2011) activity. Arylthio-containing ketones are also active against some human pathogenic microorganisms (Chate et al., 2012; Karaman et al., 2012). Thus, a molecule which contains both fragments may have a high biological effect. Herein, we present the structure of (E, Z)-1-(4-chlorophenyl)-5-phenyl-5-phenylthio-penta-2,4-dien-1-one prepared by Michael-type addition reaction between thiophenol and 1-(4-chlorophenyl)-5-phenyl-2-penten-4-yn-1-one.

All bond lengths have characteristic values (Allen et al., 1987), although the length of the C3—C4 bond (1.429 (3) Å) indicates some electron delocalization along polyene CC—CC chain. The S—C distances of 1.769 (2) and 1.774 (2) Å, are slightly shortened due to mesomeric effect of sulfur electron pairs. The penta-2,4-dien-1-one fragment is twisted, the angle between two meanplanes (O1C1—C2 and C3—C4C5) is equal to 20.0 (3) °. The 4-chlorophenyl ring makes with the carbonyl group a dihedral angle of 4.0 (3) °. A dihedral angle between the phenyl ring and C3—C4C5 fragment is 34.3 (2)°.

The molecules are linked in the crystal via C7—H7A···O bonds into chains parallel to the crystallographic b axis. It is worth mentioning that the C—H···O bonds which involve the hydrogen atom at o position of phenyl ring are typical for 1,5-diarylsubstituted penten-yn-ones (Golovanov, et al., 2013).

Related literature top

For the biological activity of chalcones, and their arylthio-containing derivatives, see: Chate et al. (2012); Nielsen et al. (2005); Wu et al. (2011), Karaman et al. (2012). For the synthesis and crystal structures of precursor 1,5-diarylpent-2-en-4-yn-1-ones, see: Golovanov et al. (2013). For standard bond lengths, see: Allen et al. (1987).

Experimental top

Three drops of triethylamine were added to a solution of 1-(4-chlorophenyl)-5-phenylpent-2-en-4-yn-1-one (322 mg, 1.21 mmol) and thiophenol (133 mg, 1.21 mmol) in 3 ml 95% ethanol. After 12 h, the precipitated yellow crystals were filtered and washed with 2 ml of cold 40% alcohol. Yield 82%. The single crystal was obtained from mixture of acetone and water. M.p. 366–367K.

Refinement top

All non-H atoms were refined anisotropically. Hydrogen atoms were positioned geometrically and refined isotropically being constrained to ride on their adjacent carbon atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at 50% probability level.
[Figure 2] Fig. 2. The C—H···O bonded chain viewed down the a axis. Dashed lines indicate hydrogen bonds.
(E,Z)-1-(4-Chlorophenyl)-5-phenyl-5-(phenylsulfanyl)penta-2,4-dien-1-one top
Crystal data top
C23H17ClOSDx = 1.374 Mg m3
Mr = 376.88Melting point = 366–280 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1957 reflections
a = 8.2663 (11) Åθ = 2.7–27.8°
b = 11.1661 (13) ŵ = 0.33 mm1
c = 39.478 (6) ÅT = 120 K
V = 3643.9 (8) Å3Needle, yellow
Z = 80.38 × 0.08 × 0.07 mm
F(000) = 1568
Data collection top
Bruker APEXII CCD
diffractometer
5311 independent reflections
Radiation source: fine-focus sealed tube3104 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
ω scansθmax = 30.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1111
Tmin = 0.903, Tmax = 0.967k = 1115
20709 measured reflectionsl = 5538
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.019P)2 + 2.8P]
where P = (Fo2 + 2Fc2)/3
5311 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C23H17ClOSV = 3643.9 (8) Å3
Mr = 376.88Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.2663 (11) ŵ = 0.33 mm1
b = 11.1661 (13) ÅT = 120 K
c = 39.478 (6) Å0.38 × 0.08 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
5311 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
3104 reflections with I > 2σ(I)
Tmin = 0.903, Tmax = 0.967Rint = 0.088
20709 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.00Δρmax = 0.38 e Å3
5311 reflectionsΔρmin = 0.37 e Å3
235 parameters
Special details top

Experimental. IR (KBr), ν/cm-1: 3051, 1648, 1589, 1573, 1559, 1481, 1441, 1397, 1356, 1333, 1272, 1225, 1176, 1091, 1025, 1009, 939. 1H NMR (400 MHz, CDCl3): δ = 7.02 (d, 1H, J = 11.2 Hz), 7.12 (d, 1H, J = 14.9 Hz), 7.20–8.00 (m, 14H), 8.27 (dd, 1H, J = 11.2 Hz, J = 15.0 Hz). 13C NMR (100 MHz, CDCl3): 77.5, 123.2, 127.3, 129.0, 130.1, 132.3, 134.7, 136.6, 139.2, 141.5, 153.9, 189.5. Anal. Calcd. for C23H17ClSO: C, 73.29; H, 4.67. Found: C, 73.33; H, 4.56.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.88212 (7)0.25480 (5)0.159299 (14)0.02170 (13)
Cl10.91964 (8)0.02110 (5)0.110391 (14)0.02792 (15)
O10.6697 (2)0.08592 (16)0.04724 (4)0.0328 (4)
C10.7800 (3)0.1369 (2)0.03200 (6)0.0222 (5)
C20.8736 (3)0.2331 (2)0.04818 (6)0.0220 (5)
H2A0.94460.28030.03480.026*
C30.8611 (3)0.2558 (2)0.08142 (5)0.0210 (5)
H3A0.79460.20430.09460.025*
C40.9409 (3)0.35209 (19)0.09840 (6)0.0207 (5)
H4A0.99730.40780.08450.025*
C50.9444 (3)0.37216 (19)0.13219 (6)0.0188 (5)
C61.0132 (3)0.48280 (19)0.14683 (6)0.0173 (5)
C71.0076 (3)0.5896 (2)0.12817 (6)0.0233 (5)
H7A0.95750.59060.10650.028*
C81.0748 (3)0.6937 (2)0.14119 (7)0.0294 (6)
H8A1.07160.76550.12830.035*
C91.1464 (3)0.6935 (2)0.17291 (7)0.0293 (6)
H9A1.19250.76480.18170.035*
C101.1504 (3)0.5892 (2)0.19162 (6)0.0266 (6)
H10A1.19860.58900.21350.032*
C111.0847 (3)0.4850 (2)0.17873 (6)0.0213 (5)
H11A1.08840.41370.19180.026*
C120.8177 (3)0.1007 (2)0.00365 (6)0.0199 (5)
C130.9341 (3)0.1579 (2)0.02328 (6)0.0275 (6)
H13A0.99290.22340.01410.033*
C140.9652 (3)0.1205 (2)0.05610 (6)0.0292 (6)
H14A1.04410.16050.06950.035*
C150.8809 (3)0.0248 (2)0.06919 (5)0.0206 (5)
C160.7655 (3)0.0342 (2)0.05040 (6)0.0262 (6)
H16A0.70820.10020.05970.031*
C170.7343 (3)0.0043 (2)0.01770 (6)0.0261 (5)
H17A0.65460.03580.00460.031*
C180.7446 (3)0.32191 (19)0.18812 (6)0.0176 (5)
C190.7105 (3)0.2586 (2)0.21755 (6)0.0209 (5)
H19A0.76570.18570.22220.025*
C200.5960 (3)0.3016 (2)0.24015 (6)0.0229 (5)
H20A0.57210.25750.26010.028*
C210.5163 (3)0.4082 (2)0.23384 (6)0.0243 (5)
H21A0.43860.43800.24950.029*
C220.5510 (3)0.4712 (2)0.20447 (6)0.0232 (5)
H22A0.49610.54420.20000.028*
C230.6647 (3)0.4293 (2)0.18159 (6)0.0204 (5)
H23A0.68790.47350.16160.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0278 (3)0.0179 (3)0.0194 (3)0.0019 (3)0.0046 (3)0.0014 (2)
Cl10.0348 (3)0.0317 (3)0.0173 (3)0.0022 (3)0.0017 (3)0.0028 (2)
O10.0357 (11)0.0387 (10)0.0240 (9)0.0100 (9)0.0075 (8)0.0041 (8)
C10.0218 (13)0.0246 (13)0.0202 (13)0.0011 (10)0.0013 (10)0.0018 (10)
C20.0254 (12)0.0218 (12)0.0188 (11)0.0005 (10)0.0001 (10)0.0009 (9)
C30.0217 (12)0.0217 (11)0.0197 (11)0.0028 (10)0.0003 (9)0.0012 (10)
C40.0218 (12)0.0204 (12)0.0198 (12)0.0018 (10)0.0022 (10)0.0011 (9)
C50.0176 (11)0.0188 (11)0.0200 (11)0.0027 (9)0.0012 (10)0.0020 (9)
C60.0152 (11)0.0184 (11)0.0183 (11)0.0014 (9)0.0032 (9)0.0004 (9)
C70.0226 (13)0.0239 (12)0.0233 (13)0.0047 (10)0.0025 (10)0.0005 (10)
C80.0338 (15)0.0199 (13)0.0344 (15)0.0018 (11)0.0083 (12)0.0022 (11)
C90.0247 (14)0.0253 (13)0.0381 (15)0.0041 (11)0.0018 (12)0.0099 (12)
C100.0208 (13)0.0343 (14)0.0247 (13)0.0020 (11)0.0023 (11)0.0093 (11)
C110.0204 (12)0.0230 (12)0.0205 (11)0.0041 (10)0.0020 (10)0.0001 (10)
C120.0230 (12)0.0217 (12)0.0149 (11)0.0028 (10)0.0004 (10)0.0012 (9)
C130.0326 (15)0.0299 (14)0.0199 (12)0.0100 (12)0.0000 (11)0.0037 (10)
C140.0281 (14)0.0381 (15)0.0213 (13)0.0121 (12)0.0055 (11)0.0006 (11)
C150.0244 (12)0.0252 (12)0.0122 (10)0.0059 (11)0.0013 (9)0.0003 (9)
C160.0330 (14)0.0240 (13)0.0216 (13)0.0065 (11)0.0009 (11)0.0022 (10)
C170.0297 (14)0.0263 (13)0.0223 (12)0.0086 (11)0.0043 (11)0.0000 (11)
C180.0171 (11)0.0189 (11)0.0168 (11)0.0018 (9)0.0001 (9)0.0013 (9)
C190.0228 (12)0.0198 (12)0.0203 (12)0.0004 (10)0.0027 (9)0.0016 (10)
C200.0266 (13)0.0259 (12)0.0164 (11)0.0048 (11)0.0009 (10)0.0033 (9)
C210.0222 (13)0.0273 (13)0.0232 (13)0.0016 (10)0.0045 (10)0.0045 (10)
C220.0215 (13)0.0212 (12)0.0271 (13)0.0000 (10)0.0003 (10)0.0003 (10)
C230.0211 (12)0.0198 (11)0.0202 (12)0.0018 (10)0.0012 (10)0.0030 (9)
Geometric parameters (Å, º) top
S1—C51.769 (2)C11—H11A0.9500
S1—C181.774 (2)C12—C131.391 (3)
Cl1—C151.735 (2)C12—C171.393 (3)
O1—C11.231 (3)C13—C141.386 (3)
C1—C21.470 (3)C13—H13A0.9500
C1—C121.497 (3)C14—C151.377 (3)
C2—C31.340 (3)C14—H14A0.9500
C2—H2A0.9500C15—C161.376 (3)
C3—C41.429 (3)C16—C171.385 (3)
C3—H3A0.9500C16—H16A0.9500
C4—C51.353 (3)C17—H17A0.9500
C4—H4A0.9500C18—C191.389 (3)
C5—C61.478 (3)C18—C231.394 (3)
C6—C111.391 (3)C19—C201.387 (3)
C6—C71.402 (3)C19—H19A0.9500
C7—C81.388 (3)C20—C211.384 (3)
C7—H7A0.9500C20—H20A0.9500
C8—C91.385 (3)C21—C221.386 (3)
C8—H8A0.9500C21—H21A0.9500
C9—C101.379 (3)C22—C231.384 (3)
C9—H9A0.9500C22—H22A0.9500
C10—C111.381 (3)C23—H23A0.9500
C10—H10A0.9500
C5—S1—C18105.17 (10)C13—C12—C1122.9 (2)
O1—C1—C2121.0 (2)C17—C12—C1118.7 (2)
O1—C1—C12119.2 (2)C14—C13—C12120.7 (2)
C2—C1—C12119.8 (2)C14—C13—H13A119.6
C3—C2—C1121.5 (2)C12—C13—H13A119.6
C3—C2—H2A119.2C15—C14—C13119.4 (2)
C1—C2—H2A119.2C15—C14—H14A120.3
C2—C3—C4124.5 (2)C13—C14—H14A120.3
C2—C3—H3A117.8C16—C15—C14121.3 (2)
C4—C3—H3A117.8C16—C15—Cl1119.48 (18)
C5—C4—C3126.7 (2)C14—C15—Cl1119.17 (18)
C5—C4—H4A116.7C15—C16—C17118.9 (2)
C3—C4—H4A116.7C15—C16—H16A120.6
C4—C5—C6122.2 (2)C17—C16—H16A120.6
C4—C5—S1117.89 (17)C16—C17—C12121.3 (2)
C6—C5—S1119.65 (17)C16—C17—H17A119.4
C11—C6—C7118.3 (2)C12—C17—H17A119.4
C11—C6—C5122.2 (2)C19—C18—C23119.8 (2)
C7—C6—C5119.5 (2)C19—C18—S1116.83 (17)
C8—C7—C6120.3 (2)C23—C18—S1123.27 (17)
C8—C7—H7A119.8C20—C19—C18120.0 (2)
C6—C7—H7A119.8C20—C19—H19A120.0
C9—C8—C7120.3 (2)C18—C19—H19A120.0
C9—C8—H8A119.9C21—C20—C19120.5 (2)
C7—C8—H8A119.9C21—C20—H20A119.8
C10—C9—C8119.8 (2)C19—C20—H20A119.8
C10—C9—H9A120.1C20—C21—C22119.2 (2)
C8—C9—H9A120.1C20—C21—H21A120.4
C9—C10—C11120.3 (2)C22—C21—H21A120.4
C9—C10—H10A119.9C23—C22—C21121.0 (2)
C11—C10—H10A119.9C23—C22—H22A119.5
C10—C11—C6121.1 (2)C21—C22—H22A119.5
C10—C11—H11A119.5C22—C23—C18119.5 (2)
C6—C11—H11A119.5C22—C23—H23A120.3
C13—C12—C17118.4 (2)C18—C23—H23A120.3
O1—C1—C2—C311.0 (4)O1—C1—C12—C174.6 (3)
C12—C1—C2—C3169.6 (2)C2—C1—C12—C17176.0 (2)
C1—C2—C3—C4176.1 (2)C17—C12—C13—C140.6 (4)
C2—C3—C4—C5173.4 (2)C1—C12—C13—C14179.6 (2)
C3—C4—C5—C6172.1 (2)C12—C13—C14—C150.7 (4)
C3—C4—C5—S114.1 (3)C13—C14—C15—C160.4 (4)
C18—S1—C5—C4131.58 (19)C13—C14—C15—Cl1179.6 (2)
C18—S1—C5—C654.5 (2)C14—C15—C16—C170.0 (4)
C4—C5—C6—C11150.1 (2)Cl1—C15—C16—C17179.20 (19)
S1—C5—C6—C1123.6 (3)C15—C16—C17—C120.2 (4)
C4—C5—C6—C729.7 (3)C13—C12—C17—C160.1 (4)
S1—C5—C6—C7156.70 (18)C1—C12—C17—C16179.2 (2)
C11—C6—C7—C81.2 (3)C5—S1—C18—C19163.19 (18)
C5—C6—C7—C8178.6 (2)C5—S1—C18—C2320.6 (2)
C6—C7—C8—C90.7 (4)C23—C18—C19—C200.7 (3)
C7—C8—C9—C100.1 (4)S1—C18—C19—C20175.65 (18)
C8—C9—C10—C110.6 (4)C18—C19—C20—C210.8 (3)
C9—C10—C11—C60.1 (4)C19—C20—C21—C220.6 (4)
C7—C6—C11—C100.8 (3)C20—C21—C22—C230.4 (4)
C5—C6—C11—C10179.0 (2)C21—C22—C23—C180.3 (4)
O1—C1—C12—C13176.4 (2)C19—C18—C23—C220.5 (3)
C2—C1—C12—C133.0 (3)S1—C18—C23—C22175.62 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O1i0.952.573.515 (3)178
Symmetry code: (i) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O1i0.952.5663.515 (3)178
Symmetry code: (i) x+3/2, y+1/2, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChate, A. V., Joshi, R. S., Mandhane, P. G., Mohekar, S. R. & Gill, C. H. (2012). Phosphorus Sulfur Silicon Relat. Elem. 187, 327–335.  Web of Science CrossRef CAS Google Scholar
First citationGolovanov, A. A., Latypova, D. R., Bekin, V. V., Pisareva, V. S., Vologzhanina, A. V. & Dokichev, V. A. (2013). Russ. J. Org. Chem. 49. In the press.  Google Scholar
First citationKaraman, I., Gezegen, H., Ceylan, M. & Dilmac, M. (2012). Phosphorus Sulfur Silicon Relat. Elem. 187, 580–586.  Web of Science CrossRef CAS Google Scholar
First citationNielsen, S. F., Larsen, M., Boesen, T., Schonning, K. & Kromann, H. (2005). J. Med. Chem. 48, 2667–2677.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, J., Li, J., Cai, Y., Pan, Y., Ye, F., Zhang, Y., Zhao, Y., Yang, S., Li, X. & Liang, G. (2011). J. Med. Chem. 54, 8110–8123.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds