

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E,Z)-1-(4-Chlorophenyl)-5-phenyl-5-(phenylsulfanyl)penta-2,4-dien-1-one

Anna V. Vologzhanina,^a* Dmitry M. Gusev,^b Alexander A. Golovanov^b and Valentina S. Pisareva^b

^aNesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 119991 Moscow, Russian Federation, and ^bDepartment of Chemical and Chemical Technology, Togliatti State University, 445667 Togliatti, Russian Federation

Correspondence e-mail: vologzhanina@mail.ru

Received 26 July 2013; accepted 17 August 2013

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.003 Å; R factor = 0.049; wR factor = 0.100; data-to-parameter ratio = 22.6.

The penta-2,4-dien-1-one fragment of the title compound, $C_{23}H_{17}ClOS$, is twisted by 20.0 (3)°, as measured by the dihedral angle between the planes of the carbonyl group and its attached C atom and the distant C=C double bond and its attached C atom. The 4-chlorophenyl group forms a dihedral angle of $4.0 (3)^{\circ}$ with the adjacent carbonyl group. Conjugation between the phenyl ring and the C=C double bond is absent; the dihedral angle between the phenyl ring and the C-C=C fragment is 34.3 (2)°. In the crystal, molecules are linked via C-H···O hydrogen bonds, forming chains parallel to the *b*-axis direction.

Related literature

For the biological activity of chalcones, and their arylthiocontaining derivatives, see: Chate et al. (2012); Nielsen et al. (2005); Wu et al. (2011), Karaman et al. (2012). For the synthesis and crystal structures of precursor 1,5-diarylpent-2en-4-yn-1-ones, see: Golovanov et al. (2013). For standard bond lengths, see: Allen et al. (1987).

Experimental

Crystal data

C23H17CIOS	V = 3643.9 (8) Å ³
$M_r = 376.88$	Z = 8
Orthorhombic, Pbca	Mo $K\alpha$ radiation
a = 8.2663 (11) Å	$\mu = 0.33 \text{ mm}^{-1}$
b = 11.1661 (13) Å	$T = 120 { m K}$
c = 39.478 (6) Å	$0.38 \times 0.08 \times 0.07 \text{ mm}$

Data collection

Bruker APEXII CCD	20709 measured reflections
diffractometer	5311 independent reflections
Absorption correction: multi-scan	3104 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1998)	$R_{\rm int} = 0.088$
$T_{\min} = 0.903, \ T_{\max} = 0.967$	

Refinement

$vR(F^2) = 0.100$ H-atom parameters constrained	ned
$\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$	
5311 reflections $\Delta \rho_{\min} = -0.37 \text{ e} \text{ Å}^{-3}$	

Table 1

Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C7-H7A\cdotsO1^{i}$	0.95	2.57	3.515 (3)	178
Symmetry code: (i) -	$r + \frac{3}{2}v + \frac{1}{2}z$			

metry code: (i) $-x + \frac{3}{2}, y + \frac{1}{2}, z$.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2112).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
- Chate, A. V., Joshi, R. S., Mandhane, P. G., Mohekar, S. R. & Gill, C. H. (2012). Phosphorus Sulfur Silicon Relat. Elem. 187, 327-335.
- Golovanov, A. A., Latypova, D. R., Bekin, V. V., Pisareva, V. S., Vologzhanina, A. V. & Dokichev, V. A. (2013). Russ. J. Org. Chem. 49. In the press.

Karaman, I., Gezegen, H., Ceylan, M. & Dilmac, M. (2012). Phosphorus Sulfur Silicon Relat. Elem. 187, 580-586.

- Nielsen, S. F., Larsen, M., Boesen, T., Schonning, K. & Kromann, H. (2005). J. Med. Chem. 48, 2667-2677.
- Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wu, J., Li, J., Cai, Y., Pan, Y., Ye, F., Zhang, Y., Zhao, Y., Yang, S., Li, X. & Liang, G. (2011). J. Med. Chem. 54, 8110-8123.

supporting information

Acta Cryst. (2013). E69, o1479 [doi:10.1107/S160053681302312X]

(E,Z)-1-(4-Chlorophenyl)-5-phenyl-5-(phenylsulfanyl)penta-2,4-dien-1-one

Anna V. Vologzhanina, Dmitry M. Gusev, Alexander A. Golovanov and Valentina S. Pisareva

S1. Comment

The family of chalcones exhibit antibiotic (Nielsen *et al.*, 2005) and anti-inflammatory (Wu *et al.*, 2011) activity. Arylthio-containing ketones are also active against some human pathogenic microorganisms (Chate *et al.*, 2012; Karaman *et al.*, 2012). Thus, a molecule which contains both fragments may have a high biological effect. Herein, we present the structure of (E, Z)-1-(4-chlorophenyl)-5-phenylthio-penta-2,4-dien-1-one prepared by Michael-type addition reaction between thiophenol and 1-(4-chlorophenyl)-5-phenyl-2-penten-4-yn-1-one.

All bond lengths have characteristic values (Allen *et al.*, 1987), although the length of the C3—C4 bond (1.429 (3) Å) indicates some electron delocalization along polyene C=C—C=C chain. The S—C distances of 1.769 (2) and 1.774 (2) Å, are slightly shortened due to mesomeric effect of sulfur electron pairs. The penta-2,4-dien-1-one fragment is twisted, the angle between two meanplanes (O1=C1—C2 and C3—C4=C5) is equal to 20.0 (3) °. The 4-chlorophenyl ring makes with the carbonyl group a dihedral angle of 4.0 (3) °. A dihedral angle between the phenyl ring and C3—C4=C5 fragment is 34.3 (2)°.

The molecules are linked in the crystal *via* C7—H7A···O bonds into chains parallel to the crystallographic *b* axis. It is worth mentioning that the C—H···O bonds which involve the hydrogen atom at *o* position of phenyl ring are typical for 1,5-diarylsubstituted penten-yn-ones (Golovanov, *et al.*, 2013).

S2. Experimental

Three drops of triethylamine were added to a solution of 1-(4-chlorophenyl)-5-phenylpent-2-en-4-yn-1-one (322 mg, 1.21 mmol) and thiophenol (133 mg, 1.21 mmol) in 3 ml 95% ethanol. After 12 h, the precipitated yellow crystals were filtered and washed with 2 ml of cold 40% alcohol. Yield 82%. The single crystal was obtained from mixture of acetone and water. M.p. 366–367K.

S3. Refinement

All non-H atoms were refined anisotropically. Hydrogen atoms were positioned geometrically and refined isotropically being constrained to ride on their adjacent carbon atoms with $U_{iso}(H) = 1.2U_{eq}(C)$.

The molecular structure of the title compound. Displacement ellipsoids are drawn at 50% probability level.

Figure 2

The C—H…O bonded chain viewed down the *a* axis. Dashed lines indicate hydrogen bonds.

(E,Z)-1-(4-Chlorophenyl)-5-phenyl-5-(phenylsulfanyl)penta-2,4-dien-1-one

Crystal data
C ₂₃ H ₁₇ ClOS
$M_r = 376.88$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
a = 8.2663 (11) Å
<i>b</i> = 11.1661 (13) Å
<i>c</i> = 39.478 (6) Å
V = 3643.9 (8) Å ³
Z = 8
F(000) = 1568

 $D_x = 1.374 \text{ Mg m}^{-3}$ Melting point = 366–280 K Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1957 reflections $\theta = 2.7-27.8^{\circ}$ $\mu = 0.33 \text{ mm}^{-1}$ T = 120 KNeedle, yellow $0.38 \times 0.08 \times 0.07 \text{ mm}$ Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1998) $T_{min} = 0.903, T_{max} = 0.967$ <i>Refinement</i>	20709 measured reflections 5311 independent reflections 3104 reflections with $I > 2\sigma(I)$ $R_{int} = 0.088$ $\theta_{max} = 30.0^{\circ}, \ \theta_{min} = 2.1^{\circ}$ $h = -11 \rightarrow 11$ $k = -11 \rightarrow 15$ $l = -55 \rightarrow 38$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from
$wR(F^2) = 0.100$	neighbouring sites
S = 1.00	H-atom parameters constrained
5311 reflections	$w = 1/[\sigma^2(F_o^2) + (0.019P)^2 + 2.8P]$
235 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.38 \text{ e } \text{Å}^{-3}$
direct methods	$\Delta\rho_{min} = -0.37 \text{ e } \text{Å}^{-3}$

Special details

Experimental. IR (KBr), v/cm^{-1} : 3051, 1648, 1589, 1573, 1559, 1481, 1441, 1397, 1356, 1333, 1272, 1225, 1176, 1091, 1025, 1009, 939. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.02$ (d, 1H, J = 11.2 Hz), 7.12 (d, 1H, J = 14.9 Hz), 7.20–8.00 (m, 14H), 8.27 (dd, 1H, J = 11.2 Hz, J = 15.0 Hz). ¹³C NMR (100 MHz, CDCl₃): 77.5, 123.2, 127.3, 129.0, 130.1, 132.3, 134.7, 136.6, 139.2, 141.5, 153.9, 189.5. Anal. Calcd. for C₂₃H₁₇ClSO: C, 73.29; H, 4.67. Found: C, 73.33; H, 4.56. **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 ,

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.88212 (7)	0.25480 (5)	0.159299 (14)	0.02170 (13)	
Cl1	0.91964 (8)	-0.02110 (5)	-0.110391 (14)	0.02792 (15)	
01	0.6697 (2)	0.08592 (16)	0.04724 (4)	0.0328 (4)	
C1	0.7800 (3)	0.1369 (2)	0.03200 (6)	0.0222 (5)	
C2	0.8736 (3)	0.2331 (2)	0.04818 (6)	0.0220 (5)	
H2A	0.9446	0.2803	0.0348	0.026*	
C3	0.8611 (3)	0.2558 (2)	0.08142 (5)	0.0210 (5)	
H3A	0.7946	0.2043	0.0946	0.025*	
C4	0.9409 (3)	0.35209 (19)	0.09840 (6)	0.0207 (5)	
H4A	0.9973	0.4078	0.0845	0.025*	
C5	0.9444 (3)	0.37216 (19)	0.13219 (6)	0.0188 (5)	
C6	1.0132 (3)	0.48280 (19)	0.14683 (6)	0.0173 (5)	
C7	1.0076 (3)	0.5896 (2)	0.12817 (6)	0.0233 (5)	

H7A	0.9575	0.5906	0.1065	0.028*
C8	1.0748 (3)	0.6937 (2)	0.14119 (7)	0.0294 (6)
H8A	1.0716	0.7655	0.1283	0.035*
C9	1.1464 (3)	0.6935 (2)	0.17291 (7)	0.0293 (6)
H9A	1.1925	0.7648	0.1817	0.035*
C10	1.1504 (3)	0.5892 (2)	0.19162 (6)	0.0266 (6)
H10A	1.1986	0.5890	0.2135	0.032*
C11	1.0847 (3)	0.4850 (2)	0.17873 (6)	0.0213 (5)
H11A	1.0884	0.4137	0.1918	0.026*
C12	0.8177 (3)	0.1007 (2)	-0.00365 (6)	0.0199 (5)
C13	0.9341 (3)	0.1579 (2)	-0.02328 (6)	0.0275 (6)
H13A	0.9929	0.2234	-0.0141	0.033*
C14	0.9652 (3)	0.1205 (2)	-0.05610 (6)	0.0292 (6)
H14A	1.0441	0.1605	-0.0695	0.035*
C15	0.8809 (3)	0.0248 (2)	-0.06919 (5)	0.0206 (5)
C16	0.7655 (3)	-0.0342 (2)	-0.05040 (6)	0.0262 (6)
H16A	0.7082	-0.1002	-0.0597	0.031*
C17	0.7343 (3)	0.0043 (2)	-0.01770 (6)	0.0261 (5)
H17A	0.6546	-0.0358	-0.0046	0.031*
C18	0.7446 (3)	0.32191 (19)	0.18812 (6)	0.0176 (5)
C19	0.7105 (3)	0.2586 (2)	0.21755 (6)	0.0209 (5)
H19A	0.7657	0.1857	0.2222	0.025*
C20	0.5960 (3)	0.3016 (2)	0.24015 (6)	0.0229 (5)
H20A	0.5721	0.2575	0.2601	0.028*
C21	0.5163 (3)	0.4082 (2)	0.23384 (6)	0.0243 (5)
H21A	0.4386	0.4380	0.2495	0.029*
C22	0.5510 (3)	0.4712 (2)	0.20447 (6)	0.0232 (5)
H22A	0.4961	0.5442	0.2000	0.028*
C23	0.6647 (3)	0.4293 (2)	0.18159 (6)	0.0204 (5)
H23A	0.6879	0.4735	0.1616	0.024*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0278 (3)	0.0179 (3)	0.0194 (3)	0.0019 (3)	0.0046 (3)	0.0014 (2)
Cl1	0.0348 (3)	0.0317 (3)	0.0173 (3)	0.0022 (3)	0.0017 (3)	-0.0028 (2)
O1	0.0357 (11)	0.0387 (10)	0.0240 (9)	-0.0100 (9)	0.0075 (8)	-0.0041 (8)
C1	0.0218 (13)	0.0246 (13)	0.0202 (13)	0.0011 (10)	0.0013 (10)	0.0018 (10)
C2	0.0254 (12)	0.0218 (12)	0.0188 (11)	-0.0005 (10)	-0.0001 (10)	0.0009 (9)
C3	0.0217 (12)	0.0217 (11)	0.0197 (11)	0.0028 (10)	0.0003 (9)	0.0012 (10)
C4	0.0218 (12)	0.0204 (12)	0.0198 (12)	-0.0018 (10)	0.0022 (10)	0.0011 (9)
C5	0.0176 (11)	0.0188 (11)	0.0200 (11)	0.0027 (9)	0.0012 (10)	0.0020 (9)
C6	0.0152 (11)	0.0184 (11)	0.0183 (11)	0.0014 (9)	0.0032 (9)	0.0004 (9)
C7	0.0226 (13)	0.0239 (12)	0.0233 (13)	0.0047 (10)	0.0025 (10)	0.0005 (10)
C8	0.0338 (15)	0.0199 (13)	0.0344 (15)	0.0018 (11)	0.0083 (12)	0.0022 (11)
C9	0.0247 (14)	0.0253 (13)	0.0381 (15)	-0.0041 (11)	0.0018 (12)	-0.0099 (12)
C10	0.0208 (13)	0.0343 (14)	0.0247 (13)	0.0020 (11)	-0.0023 (11)	-0.0093 (11)
C11	0.0204 (12)	0.0230 (12)	0.0205 (11)	0.0041 (10)	0.0020 (10)	-0.0001 (10)

C12	0.0230 (12)	0.0217 (12)	0.0149 (11)	0.0028 (10)	-0.0004 (10)	0.0012 (9)
C13	0.0326 (15)	0.0299 (14)	0.0199 (12)	-0.0100 (12)	0.0000 (11)	-0.0037 (10)
C14	0.0281 (14)	0.0381 (15)	0.0213 (13)	-0.0121 (12)	0.0055 (11)	-0.0006 (11)
C15	0.0244 (12)	0.0252 (12)	0.0122 (10)	0.0059 (11)	-0.0013 (9)	-0.0003 (9)
C16	0.0330 (14)	0.0240 (13)	0.0216 (13)	-0.0065 (11)	-0.0009 (11)	-0.0022 (10)
C17	0.0297 (14)	0.0263 (13)	0.0223 (12)	-0.0086 (11)	0.0043 (11)	0.0000 (11)
C18	0.0171 (11)	0.0189 (11)	0.0168 (11)	-0.0018 (9)	-0.0001 (9)	-0.0013 (9)
C19	0.0228 (12)	0.0198 (12)	0.0203 (12)	0.0004 (10)	-0.0027 (9)	0.0016 (10)
C20	0.0266 (13)	0.0259 (12)	0.0164 (11)	-0.0048 (11)	0.0009 (10)	0.0033 (9)
C21	0.0222 (13)	0.0273 (13)	0.0232 (13)	-0.0016 (10)	0.0045 (10)	-0.0045 (10)
C22	0.0215 (13)	0.0212 (12)	0.0271 (13)	0.0000 (10)	0.0003 (10)	-0.0003 (10)
C23	0.0211 (12)	0.0198 (11)	0.0202 (12)	-0.0018 (10)	0.0012 (10)	0.0030 (9)

Geometric parameters (Å, °)

S1—C5	1.769 (2)	C11—H11A	0.9500	
S1—C18	1.774 (2)	C12—C13	1.391 (3)	
Cl1—C15	1.735 (2)	C12—C17	1.393 (3)	
01—C1	1.231 (3)	C13—C14	1.386 (3)	
C1—C2	1.470 (3)	C13—H13A	0.9500	
C1-C12	1.497 (3)	C14—C15	1.377 (3)	
C2—C3	1.340 (3)	C14—H14A	0.9500	
C2—H2A	0.9500	C15—C16	1.376 (3)	
C3—C4	1.429 (3)	C16—C17	1.385 (3)	
С3—НЗА	0.9500	C16—H16A	0.9500	
C4—C5	1.353 (3)	C17—H17A	0.9500	
C4—H4A	0.9500	C18—C19	1.389 (3)	
C5—C6	1.478 (3)	C18—C23	1.394 (3)	
C6-C11	1.391 (3)	C19—C20	1.387 (3)	
C6—C7	1.402 (3)	C19—H19A	0.9500	
С7—С8	1.388 (3)	C20—C21	1.384 (3)	
C7—H7A	0.9500	C20—H20A	0.9500	
С8—С9	1.385 (3)	C21—C22	1.386 (3)	
C8—H8A	0.9500	C21—H21A	0.9500	
C9—C10	1.379 (3)	C22—C23	1.384 (3)	
С9—Н9А	0.9500	C22—H22A	0.9500	
C10-C11	1.381 (3)	C23—H23A	0.9500	
C10—H10A	0.9500			
C5—S1—C18	105.17 (10)	C13—C12—C1	122.9 (2)	
01—C1—C2	121.0 (2)	C17—C12—C1	118.7 (2)	
01—C1—C12	119.2 (2)	C14—C13—C12	120.7 (2)	
C2-C1-C12	119.8 (2)	C14—C13—H13A	119.6	
C3—C2—C1	121.5 (2)	C12—C13—H13A	119.6	
С3—С2—Н2А	119.2	C15—C14—C13	119.4 (2)	
C1—C2—H2A	119.2	C15—C14—H14A	120.3	
C2—C3—C4	124.5 (2)	C13—C14—H14A	120.3	
С2—С3—НЗА	117.8	C16—C15—C14	121.3 (2)	

C4—C3—H3A	117.8	C16—C15—Cl1	119.48 (18)
C5—C4—C3	126.7 (2)	C14—C15—Cl1	119.17 (18)
C5—C4—H4A	116.7	C15—C16—C17	118.9 (2)
C3—C4—H4A	116.7	C15—C16—H16A	120.6
C4—C5—C6	122.2 (2)	C17—C16—H16A	120.6
C4—C5—S1	117.89 (17)	C16—C17—C12	121.3 (2)
C6—C5—S1	119.65 (17)	С16—С17—Н17А	119.4
C11—C6—C7	118.3 (2)	С12—С17—Н17А	119.4
C11—C6—C5	122.2 (2)	C19—C18—C23	119.8 (2)
C7—C6—C5	119.5 (2)	C19—C18—S1	116.83(17)
C8 - C7 - C6	120.3(2)	C^{23} — C^{18} — S^{1}	123 27 (17)
C8-C7-H7A	119.8	C_{20} C_{19} C_{18}	120.0(2)
C6-C7-H7A	119.8	C_{20} C_{19} H_{19A}	120.0 (2)
C9-C8-C7	120.3(2)	C_{18} C_{19} H_{19A}	120.0
C_{0} C_{8} H_{8A}	110.0	$C_{10} = C_{10} = C_{10}$	120.0 120.5(2)
$C_7 = C_8 = H_8 \Lambda$	119.9	$C_{21} = C_{20} = C_{13}$	120.3 (2)
$C_1 = C_0 = C_0$	119.9	$C_{21} = C_{20} = H_{20A}$	119.8
C10 - C9 - C8	119.6 (2)	C19 - C20 - H20A	119.0
C^{0} C^{0} H^{0}	120.1	$C_{20} = C_{21} = C_{22}$	119.2 (2)
C8-C9-H9A	120.1	C20-C21-H21A	120.4
	120.3 (2)	C22—C21—H21A	120.4
C_{9} — C_{10} — H_{10A}	119.9	$C_{23} = C_{22} = C_{21}$	121.0 (2)
CII—CI0—HI0A	119.9	C23—C22—H22A	119.5
	121.1 (2)	C21—C22—H22A	119.5
C10—C11—H11A	119.5	C22—C23—C18	119.5 (2)
C6—C11—H11A	119.5	C22—C23—H23A	120.3
C13—C12—C17	118.4 (2)	C18—C23—H23A	120.3
O1—C1—C2—C3	11.0 (4)	O1—C1—C12—C17	-4.6 (3)
C12—C1—C2—C3	-169.6 (2)	C2-C1-C12-C17	176.0 (2)
C1—C2—C3—C4	-176.1 (2)	C17—C12—C13—C14	0.6 (4)
C2—C3—C4—C5	-173.4 (2)	C1—C12—C13—C14	179.6 (2)
C3—C4—C5—C6	-172.1 (2)	C12—C13—C14—C15	-0.7 (4)
C3—C4—C5—S1	14.1 (3)	C13—C14—C15—C16	0.4 (4)
C18—S1—C5—C4	-131.58 (19)	C13—C14—C15—Cl1	179.6 (2)
C18—S1—C5—C6	54.5 (2)	C14—C15—C16—C17	0.0 (4)
C4—C5—C6—C11	-150.1 (2)	Cl1—C15—C16—C17	-179.20 (19)
S1—C5—C6—C11	23.6 (3)	C15—C16—C17—C12	-0.2 (4)
C4—C5—C6—C7	29.7 (3)	C13—C12—C17—C16	-0.1 (4)
S1—C5—C6—C7	-156.70 (18)	C1—C12—C17—C16	-179.2(2)
C11—C6—C7—C8	1.2 (3)	C5—S1—C18—C19	-163.19(18)
$C_{5}-C_{6}-C_{7}-C_{8}$	-1786(2)	$C_{5}=S_{1}=C_{18}=C_{23}$	20.6 (2)
C6-C7-C8-C9	-0.7(4)	C^{23} C^{18} C^{19} C^{20}	0.7(3)
C7-C8-C9-C10	-0.1(4)	1 - 18 - 19 - 20	-175.65(18)
C8-C9-C10-C11	0.6 (4)	C_{18} C_{19} C_{20} C_{21}	-0.8(3)
C9-C10-C11-C6	-0.1(4)	C_{19} C_{20} C_{21} C_{22}	0.6(4)
C7-C6-C11-C10	-0.8(3)	C_{20} C_{21} C_{22} C_{23}	-0.4(4)
C_{5} C_{6} C_{11} C_{10}	179 0 (2)	$C_{21} - C_{22} - C_{23} - C_{18}$	0.1(1)
01-01-012-013	1764(2)	C19 - C18 - C23 - C22	-0.5(3)
	······································		

supporting information

<u>C2-C1-C12-C13</u>	-3.0 (3)	S1—C18—C23—C22		175.62 (18)	
Hydrogen-bond geometry (Å, °)					
D—H···A	<i>D</i> —Н	H···A	D···A	D—H···A	
C7—H7A···O1 ⁱ	0.95	2.57	3.515 (3)	178	

Symmetry code: (i) -x+3/2, y+1/2, z.