organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methyl 2-[(tert-butoxycarbonyl)amino]-3-(4-hydroxyphenyl)propanoate

Xiaokun Li

College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, People's Republic of China Correspondence e-mail: li96052122@126.com

Received 6 July 2013; accepted 17 July 2013

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.039; wR factor = 0.102; data-to-parameter ratio = 19.1.

In the title molecule, $C_{15}H_{21}NO_5$, the dihedral angle between the mean plane of the -N-C(=O)-O- group [maximum deviation = 0.002 (1) Å for the C atom] and the benzene ring is 82.2 (2)°. In the crystal, $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds connect the molecules, forming a two-dimensional network parallel to (001).

Related literature

For the biological activity of related compounds, see: Sykes *et al.* (1999).

Experimental

Crystal data

$C_{15}H_{21}NO_5$	
$M_r = 295.33$	
Orthorhombic, $P2_12_12_1$	

<i>a</i> = 8.7879 (8) Å
b = 9.4844 (9) A
c = 18.9207 (18) A

 $V = 1577.0 (3) \text{ Å}^{3}$ Z = 4Mo *K*\alpha radiation

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.962, T_{\rm max} = 0.989$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.102$ S = 1.033636 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\overline{\begin{array}{c} N1 - H1B \cdots O3^{i} \\ O1 - H1C \cdots O5^{ii} \end{array}}$	0.86	2.27	3.0583 (16)	153
	0.82	1.92	2.7356 (15)	180

 $\mu = 0.09 \text{ mm}^{-1}$

 $0.55 \times 0.49 \times 0.45 \text{ mm}$

9339 measured reflections

3636 independent reflections

3469 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

T = 100 K

 $R_{\rm int}=0.072$

190 parameters

 $\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^-$

 $\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, -z$; (ii) x, y + 1, z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2007)'; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL* and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXTL* and *publCIF* (Westrip, 2010).

The author thanks Henan University of Traditional Chinese Medicine for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5632).

References

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Sykes, B. M., Atwell, G. J., Hogg, A., Wilson, W. R., O'Connor, C. J. & Denny, W. A. (1999). J. Med. Chem. 42, 346-355.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2013). E69, o1372 [doi:10.1107/S160053681301979X]

Methyl 2-[(tert-butoxycarbonyl)amino]-3-(4-hydroxyphenyl)propanoate

Xiaokun Li

S1. Comment

Amide, ester and hydroxyl groups widely exist in many biologically active compounds or can be utilized in prodrugs (Sykes *et al.*, 1999). Herein we report the crystal structure of the title compound. The dihedral angle between the meanplane of the amide group (N1/C9/O5/O4) [a maximum deviation of $0.002 (1)^{\circ}$ for C9) and the benzene ring (C1–C6) is 82.2 (2)°. In the crystal, O—H…O and N—H…O hydrogen bonds connect molecules forming a two-dimensional network parallel to (001) (Fig. 2).

S2. Experimental

The title compound (0.3 mmol, 88.5 mg) was dissolved in 10 ml of methanol solution. Colorless block-shaped crystals separated after 5 d.

S3. Refinement

H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93, 0.96 and 0.98 Å for CH(aromatic), CH₃ and CH(methine) H atoms, respectively, or N—H = 0.86 Å and O—H = 0.82 Å with U_{iso} (H)= kU_{eq} (parent C-atom, N), where k = 1.5 for CH₃ and hydroxyl H atoms and k = 1.2 for all other H atoms. The absolute congiuration could not be determined from the X-ray data. In the absence of anamolous dispersion effects Friedel pairs were merged.

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.

Figure 2

Part of the crystal structure with hydrogen bonds shown as dashed lines. H atoms bonded to C atoms are not shown.

Methyl 2-[(tert-butoxycarbonyl)amino]-3-(4-hydroxyphenyl)propanoate

Crystal data

C₁₅H₂₁NO₅ $M_r = 295.33$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 8.7879 (8) Å b = 9.4844 (9) Å c = 18.9207 (18) Å V = 1577.0 (3) Å³ Z = 4

Data collection

Bruker APEXII CCD	9339 measured reflections
diffractometer	3636 independent reflections
Radiation source: fine-focus sealed tube	3469 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.072$
φ and ω scans	$\theta_{\text{max}} = 27.6^{\circ}, \theta_{\text{min}} = 2.2^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 9$
(SADABS; Sheldrick, 1996)	$k = -12 \rightarrow 8$
$T_{\min} = 0.962, \ T_{\max} = 0.989$	$l = -24 \rightarrow 24$

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0581P)^2 + 0.1712P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.008$
$\Delta \rho_{\rm max} = 0.32 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 632

 $\theta = 1.0-27.6^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$ T = 100 K

Block. colourless

 $0.55 \times 0.49 \times 0.45 \text{ mm}$

 $D_{\rm x} = 1.244 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 9371 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	-0.04196 (17)	1.13511 (15)	0.18071 (7)	0.0216 (3)
H1A	-0.1123	1.1434	0.2172	0.026*
C2	-0.03335 (16)	1.01206 (15)	0.14197 (7)	0.0205 (3)
H2A	-0.0978	0.9376	0.1531	0.025*
C3	0.07017 (15)	0.99675 (14)	0.08627 (7)	0.0172 (3)

C4	0.16908 (15)	1.10800 (15)	0.07254 (7)	0.0192 (3)
H4A	0.2409	1.0991	0.0367	0.023*
C5	0.16250 (16)	1.23229 (15)	0.11142 (7)	0.0200 (3)
H5A	0.2297	1.3055	0.1016	0.024*
C6	0.05528 (16)	1.24689 (14)	0.16488 (7)	0.0184 (3)
C7	0.06700 (17)	0.86702 (15)	0.04022 (7)	0.0188 (3)
H7A	0.1336	0.8823	0.0001	0.023*
H7B	-0.0354	0.8547	0.0221	0.023*
C8	0.11575 (14)	0.73007 (14)	0.07772 (7)	0.0166 (3)
H8A	0.0573	0.7217	0.1216	0.020*
С9	0.33960 (15)	0.64306 (14)	0.13963 (7)	0.0159 (3)
C10	0.59030 (15)	0.56854 (15)	0.18449 (7)	0.0199 (3)
C11	0.5429 (2)	0.5555 (2)	0.26171 (8)	0.0302 (3)
H11A	0.5434	0.6471	0.2833	0.045*
H11B	0.6131	0.4950	0.2861	0.045*
H11C	0.4424	0.5161	0.2644	0.045*
C12	0.59178 (18)	0.42703 (17)	0.14678 (8)	0.0280(3)
H12A	0.6225	0.4403	0.0985	0.042*
H12B	0.4917	0.3866	0.1480	0.042*
H12C	0.6621	0.3649	0.1699	0.042*
C13	0.74355 (17)	0.64103 (19)	0.17817 (9)	0.0305 (3)
H13A	0.7714	0.6480	0.1292	0.046*
H13B	0.8190	0.5872	0.2030	0.046*
H13C	0.7373	0.7338	0.1982	0.046*
C14	0.1469 (2)	0.42237 (17)	-0.04498 (8)	0.0292 (3)
H14A	0.2370	0.3749	-0.0609	0.044*
H14B	0.0943	0.4618	-0.0848	0.044*
H14C	0.0816	0.3563	-0.0213	0.044*
C15	0.07176 (16)	0.60783 (14)	0.02939 (7)	0.0180 (3)
N1	0.27499 (13)	0.73700 (12)	0.09567 (6)	0.0170 (2)
H1B	0.3301	0.8029	0.0778	0.020*
01	0.04029 (13)	1.36708 (11)	0.20398 (5)	0.0247 (2)
H1C	0.1090	1.4220	0.1939	0.037*
O2	0.18880 (11)	0.53485 (11)	0.00379 (5)	0.0221 (2)
03	-0.05943 (13)	0.58394 (11)	0.01458 (6)	0.0254 (2)
04	0.48955 (11)	0.66726 (10)	0.14566 (5)	0.0186 (2)
05	0.27010 (12)	0.54940 (10)	0.16994 (5)	0.0204 (2)
	× /	× /	× /	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0215 (7)	0.0263 (7)	0.0171 (6)	-0.0023 (6)	0.0044 (5)	0.0007 (5)
C2	0.0205 (6)	0.0205 (6)	0.0206 (6)	-0.0054 (5)	0.0015 (5)	0.0015 (5)
C3	0.0161 (6)	0.0182 (6)	0.0172 (6)	0.0019 (5)	-0.0039 (5)	0.0011 (5)
C4	0.0145 (6)	0.0235 (7)	0.0195 (6)	0.0009 (5)	0.0020 (5)	0.0009 (5)
C5	0.0176 (6)	0.0208 (6)	0.0217 (6)	-0.0034 (5)	0.0006 (5)	0.0018 (5)
C6	0.0200 (6)	0.0185 (6)	0.0167 (5)	-0.0002(5)	-0.0023 (5)	0.0006 (5)
C7	0.0179 (6)	0.0208 (6)	0.0178 (6)	0.0018 (5)	-0.0025 (5)	-0.0009 (5)

supporting information

C8	0.0116 (6)	0.0203 (6)	0.0178 (6)	-0.0004 (5)	-0.0014 (5)	-0.0005 (5)
C9	0.0152 (6)	0.0171 (6)	0.0155 (5)	-0.0002 (5)	0.0007 (5)	-0.0038 (5)
C10	0.0145 (6)	0.0248 (7)	0.0206 (6)	0.0027 (5)	-0.0050 (5)	0.0017 (5)
C11	0.0281 (8)	0.0429 (9)	0.0196 (6)	0.0005 (7)	-0.0040 (6)	0.0012 (6)
C12	0.0281 (8)	0.0264 (7)	0.0296 (7)	0.0064 (6)	-0.0033 (6)	0.0000 (6)
C13	0.0146 (7)	0.0421 (9)	0.0348 (8)	-0.0032 (6)	-0.0069 (6)	0.0052 (7)
C14	0.0364 (9)	0.0281 (7)	0.0232 (7)	-0.0031 (7)	0.0026 (6)	-0.0084 (6)
C15	0.0164 (6)	0.0189 (6)	0.0188 (6)	-0.0003 (5)	-0.0011 (5)	0.0037 (5)
N1	0.0129 (5)	0.0185 (5)	0.0196 (5)	-0.0023 (4)	-0.0008 (4)	0.0012 (4)
01	0.0269 (5)	0.0215 (5)	0.0256 (5)	-0.0057 (4)	0.0063 (4)	-0.0059 (4)
02	0.0191 (5)	0.0249 (5)	0.0224 (5)	-0.0012 (4)	0.0020 (4)	-0.0060 (4)
03	0.0179 (5)	0.0250 (5)	0.0333 (5)	-0.0016 (4)	-0.0080 (4)	-0.0020 (4)
04	0.0123 (4)	0.0210 (5)	0.0223 (4)	-0.0010 (3)	-0.0038 (4)	0.0031 (4)
05	0.0175 (5)	0.0214 (5)	0.0221 (4)	-0.0027 (4)	0.0013 (4)	0.0028 (4)

Geometric parameters (Å, °)

C1—C2	1.380 (2)	C10—O4	1.4834 (16)
C1—C6	1.3942 (19)	C10—C13	1.517 (2)
C1—H1A	0.9300	C10-C12	1.520 (2)
C2—C3	1.3997 (19)	C10—C11	1.524 (2)
C2—H2A	0.9300	C11—H11A	0.9600
C3—C4	1.3915 (19)	C11—H11B	0.9600
С3—С7	1.5079 (18)	C11—H11C	0.9600
C4—C5	1.391 (2)	C12—H12A	0.9600
C4—H4A	0.9300	C12—H12B	0.9600
C5—C6	1.3893 (19)	C12—H12C	0.9600
C5—H5A	0.9300	C13—H13A	0.9600
C6—O1	1.3653 (16)	C13—H13B	0.9600
С7—С8	1.5408 (19)	C13—H13C	0.9600
C7—H7A	0.9700	C14—O2	1.4578 (17)
С7—Н7В	0.9700	C14—H14A	0.9600
C8—N1	1.4415 (16)	C14—H14B	0.9600
C8—C15	1.5265 (18)	C14—H14C	0.9600
C8—H8A	0.9800	C15—O3	1.2079 (18)
С9—О5	1.2210 (17)	C15—O2	1.3309 (17)
С9—О4	1.3424 (16)	N1—H1B	0.8600
C9—N1	1.3447 (17)	O1—H1C	0.8200
C2—C1—C6	119.69 (13)	O4—C10—C11	111.29 (12)
C2-C1-H1A	120.2	C13—C10—C11	110.79 (12)
C6-C1-H1A	120.2	C12—C10—C11	112.37 (13)
C1—C2—C3	121.55 (13)	C10-C11-H11A	109.5
C1—C2—H2A	119.2	C10-C11-H11B	109.5
С3—С2—Н2А	119.2	H11A—C11—H11B	109.5
C4—C3—C2	117.90 (12)	C10—C11—H11C	109.5
C4—C3—C7	121.49 (12)	H11A—C11—H11C	109.5
C2—C3—C7	120.51 (12)	H11B—C11—H11C	109.5

C5—C4—C3	121.20 (12)	C10-C12-H12A	109.5
C5—C4—H4A	119.4	C10-C12-H12B	109.5
C3—C4—H4A	119.4	H12A—C12—H12B	109.5
C6—C5—C4	119.85 (12)	C10—C12—H12C	109.5
С6—С5—Н5А	120.1	H12A—C12—H12C	109.5
C4—C5—H5A	120.1	H12B-C12-H12C	109.5
O1—C6—C5	122.90 (12)	C10-C13-H13A	109.5
O1—C6—C1	117.34 (12)	C10-C13-H13B	109.5
C5—C6—C1	119.75 (12)	H13A—C13—H13B	109.5
C3—C7—C8	114.62 (10)	C10—C13—H13C	109.5
С3—С7—Н7А	108.6	H13A—C13—H13C	109.5
C8—C7—H7A	108.6	H13B—C13—H13C	109.5
С3—С7—Н7В	108.6	O2—C14—H14A	109.5
С8—С7—Н7В	108.6	O2—C14—H14B	109.5
H7A—C7—H7B	107.6	H14A—C14—H14B	109.5
N1—C8—C15	114.93 (11)	O2—C14—H14C	109.5
N1—C8—C7	109.87 (11)	H14A—C14—H14C	109.5
C15—C8—C7	107.10 (10)	H14B—C14—H14C	109.5
N1—C8—H8A	108.2	O3—C15—O2	123.75 (13)
C15—C8—H8A	108.2	O3—C15—C8	121.54 (12)
С7—С8—Н8А	108.2	O2—C15—C8	114.67 (11)
O5—C9—O4	125.14 (13)	C9—N1—C8	121.70 (11)
O5—C9—N1	124.15 (13)	C9—N1—H1B	119.2
O4—C9—N1	110.71 (12)	C8—N1—H1B	119.2
O4—C10—C13	101.82 (11)	С6—О1—Н1С	109.5
O4—C10—C12	109.26 (11)	C15—O2—C14	114.55 (12)
C13—C10—C12	110.83 (13)	C9—O4—C10	121.33 (11)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1 <i>B</i> ···O3 ⁱ	0.86	2.27	3.0583 (16)	153
01—H1 <i>C</i> ···O5 ⁱⁱ	0.82	1.92	2.7356 (15)	180

Symmetry codes: (i) *x*+1/2, -*y*+3/2, -*z*; (ii) *x*, *y*+1, *z*.