organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1425-o1426

3-Amino-1H-pyrazol-2-ium tri­fluoro­acetate

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 20 July 2013; accepted 7 August 2013; online 14 August 2013)

The asymmetric unit of the title salt, C3H6N3+·C2F3O2, contains two independent 3-amino­pyrazolium cations and two independent tri­fluoro­acetate anions. The F atoms of both anions were refined as disordered over two sets of sites, with common occupancy ratios of 0.639 (12):0.361 (12). In the crystal, the cations and anions are linked via N—H⋯O hydrogen bonds, forming chains along [100] and [010].

Related literature

For biological properties of pyrazole derivatives, see: Hall et al. (2008[Hall, A., Billinton, A., Brown, S. H., Clayton, N. M., Chowdhury, A., Gerald, M. P., Goldsmith, G. P., Hayhow, T. G., Hurst, D. N., Kilford, I. R., Naylor, A. & Passingham, B. (2008). Bioorg. Med. Chem. Lett. 18, 3392-3399.]); Isloor et al. (2009[Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784-3787.]); Patel et al. (2010[Patel, C. K., Rami, C. S., Panigrahi, B. & Patel, C. N. (2010). J. Chem. Pharm. Res. 2, 73-78.]); Samshuddin et al. (2010[Samshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279-o1280.]). For the chemistry of amino­pyrazoles, see: Giuseppe et al. (1991[Giuseppe, D., Salvatore, P. & Demetrio, R. (1991). Trends Heterocycl. Chem. 2, 97.]). For the medicinal activity of pyrazoles, see: Vinogradov et al. (1994[Vinogradov, V. M., Dalinger, I. L. & Shevelev, S. A. (1994). Khim. Farm. Zh. 28, 37-46.]). For related structures, see: Dobson & Gerkin (1998[Dobson, A. J. & Gerkin, R. E. (1998). Acta Cryst. C54, 253-256.]); Foces-Foces et al. (1996[Foces-Foces, C., Cativiela, C., Zurbano, M. M., Sobrados, I., Jagerovic, N. & Elguero, J. (1996). J. Chem. Crystallogr. 26, 579-584.]); Hemamalini & Fun (2010[Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o783-o784.]); Thanigaimani et al. (2012[Thanigaimani, K., Farhadikoutenaei, A., Khalib, N. C., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o3319-o3320.]). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C3H6N3+·C2F3O2

  • Mr = 197.13

  • Monoclinic, P 21 /n

  • a = 10.9292 (8) Å

  • b = 10.9332 (6) Å

  • c = 13.7002 (13) Å

  • β = 107.939 (9)°

  • V = 1557.5 (2) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 1.58 mm−1

  • T = 173 K

  • 0.16 × 0.14 × 0.06 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.662, Tmax = 1.000

  • 9227 measured reflections

  • 3031 independent reflections

  • 2343 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.136

  • S = 1.05

  • 3031 reflections

  • 338 parameters

  • All H-atom parameters refined

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1AA⋯O1Ai 0.85 (3) 2.28 (3) 2.936 (3) 134 (2)
N1A—H1AB⋯O2Aii 0.91 (3) 1.99 (3) 2.884 (3) 169 (3)
N2A—H2AA⋯O1Aii 0.94 (3) 1.85 (3) 2.778 (2) 171 (3)
N3A—H3AA⋯O2A 0.93 (3) 1.78 (3) 2.705 (2) 172 (3)
N1B—H1BA⋯O2Biii 0.84 (3) 2.18 (3) 2.962 (2) 153 (2)
N1B—H1BB⋯O2Biv 0.90 (3) 2.03 (3) 2.929 (3) 173 (2)
N2B—H2BA⋯O1Biv 0.95 (3) 1.81 (3) 2.756 (2) 174 (2)
N3B—H3BA⋯O1Bv 0.91 (3) 1.82 (3) 2.728 (2) 171 (2)
Symmetry codes: (i) x, y+1, z; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) x, y-1, z; (v) -x, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Pyrazoles are an important class of heterocyclic compounds and many pyrazole derivatives are reported to have a broad spectrum of biological properties, e.g. antibacterial and anti-inflammatory activities (Patel et al., 2010), anticancer (Hall et al., 2008), antimicrobial (Samshuddin et al., 2010), anti-inflammatory, antidepressant, anticonvulsant and anti-HIV properties (Isloor et al., 2009). The chemistry of aminopyrazoles has been extensively investigated in the past (Giuseppe et al., 1991). The considerable biological and medicinal activities of pyrazoles (Vinogradov et al., 1994) for which aminopyrazoles are preferred precursors, have stimulated our investigations.

The crystal structures of some related compounds, viz., 3-aminopyrazole-4-carboxylic acid (Dobson & Gerkin, 1998), 4-(3,5-dimethylpyrazol-1-yl)benzoic acid trifluoroacetate (Foces-Foces et al., 1996), 2-amino-5-methylpyridinium trifluoroacetate (Thanigaimani et al., 2012) and 2-amino-5-chloropyridinium trifluoroacetate (Hemamalini & Fun, 2010) have been reported. In view of the importance of the title compound this paper reports its crystal structure.

The asymmetric unit of the title compound consists of two crystallographically independent 3-aminopyrazolium cations (A and B) and two trifluoroacetate anions (A and B) (Fig. 1). Each 3-aminopyrazolium cation is planar, with a maximum deviation of 0.0006 (2) Å for atom N2A in cation A and 0.0005 (2) Å for atom N2B in cation B. In the cations, atoms N3A and N3B are protonated. The F atoms of both anions are disordered over two sets of positions, with occupancy ratios of 0.639 (12):0.361 (12). Bond lengths and are normal (Allen et al., 1987).

In the crystal packing (Fig. 2), the A/B type 3-aminopyrazolium cations interact with the carboxylate groups of the A/B type trifluoroacetate anions through N—H···O hydrogen bonds, forming R22(8), R24(8), R24(10), R44(16) and R44(18) (Bernstein et al., 1995) ring motifs.

Related literature top

For biological properties of pyrazole derivatives, see: Hall et al. (2008); Isloor et al. (2009); Patel et al. (2010); Samshuddin et al. (2010). For the chemistry of aminopyrazoles, see: Giuseppe et al. (1991); For the medicinal activity of pyrazoles, see: Vinogradov et al. (1994). For related structures, see: Dobson & Gerkin (1998); Foces-Foces et al., (1996); Hemamalini & Fun, (2010); Thanigaimani et al. (2012). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995). For standard bond lengths, see: Allen et al. (1987).

Experimental top

A mixture of commercially available 3-aminopyrazole and trifluoroacetic acid (1:3 v/v) were stirred for 15 minutes at room temperature. X-ray quality crystals were formed on slow evaporation. (m.p.: 463-468 K).

Refinement top

All H atoms were located in a difference Fourier map and refined independently with isotropic displacement parameters [N—H = 0.84 (3)–0.95 (3) Å and C—H = 0.89 (3)–0.96 (3)Å].

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. All disorder components are shown.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the hydrogen bonds (dashed lines) forming chains along [100] and [010]. H atoms not involved in hydrogen bonding and the minor component of disorder have been removed for clarity.
3-Amino-1H-pyrazol-2-ium trifluoroacetate top
Crystal data top
C3H6N3+·C2F3O2F(000) = 800
Mr = 197.13Dx = 1.681 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.5418 Å
a = 10.9292 (8) ÅCell parameters from 2544 reflections
b = 10.9332 (6) Åθ = 3.4–72.4°
c = 13.7002 (13) ŵ = 1.58 mm1
β = 107.939 (9)°T = 173 K
V = 1557.5 (2) Å3Irregular, colourless
Z = 80.16 × 0.14 × 0.06 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
3031 independent reflections
Radiation source: Enhance (Cu) X-ray Source2343 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 16.0416 pixels mm-1θmax = 72.5°, θmin = 4.6°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
k = 139
Tmin = 0.662, Tmax = 1.000l = 1516
9227 measured reflections
Refinement top
Refinement on F2Primary atom site location: inferred from neighbouring sites
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048All H-atom parameters refined
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0697P)2 + 0.4559P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3031 reflectionsΔρmax = 0.24 e Å3
338 parametersΔρmin = 0.23 e Å3
0 restraints
Crystal data top
C3H6N3+·C2F3O2V = 1557.5 (2) Å3
Mr = 197.13Z = 8
Monoclinic, P21/nCu Kα radiation
a = 10.9292 (8) ŵ = 1.58 mm1
b = 10.9332 (6) ÅT = 173 K
c = 13.7002 (13) Å0.16 × 0.14 × 0.06 mm
β = 107.939 (9)°
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
3031 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
2343 reflections with I > 2σ(I)
Tmin = 0.662, Tmax = 1.000Rint = 0.030
9227 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.136All H-atom parameters refined
S = 1.05Δρmax = 0.24 e Å3
3031 reflectionsΔρmin = 0.23 e Å3
338 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C1A0.56299 (19)0.93721 (18)0.25897 (17)0.0384 (5)
C2A0.4240 (2)0.7896 (2)0.25222 (19)0.0453 (5)
H2A0.351 (2)0.741 (2)0.2498 (18)0.050 (7)*
C3A0.4396 (2)0.9121 (2)0.26406 (18)0.0428 (5)
H3A0.379 (2)0.968 (2)0.2737 (18)0.050 (7)*
N1A0.6272 (2)1.04305 (18)0.2644 (2)0.0588 (6)
H1AA0.593 (3)1.108 (3)0.278 (2)0.057 (8)*
H1AB0.713 (3)1.041 (3)0.272 (2)0.064 (8)*
N2A0.61502 (17)0.83064 (15)0.24439 (15)0.0396 (4)
H2AA0.697 (3)0.815 (3)0.240 (2)0.062 (8)*
N3A0.52875 (17)0.73971 (17)0.23916 (16)0.0440 (5)
H3AA0.549 (3)0.657 (3)0.236 (2)0.067 (8)*
C1B0.28710 (18)0.17323 (18)0.48905 (16)0.0351 (4)
C2B0.1618 (2)0.3114 (2)0.5268 (2)0.0451 (5)
H2B0.122 (2)0.382 (2)0.5441 (19)0.050 (7)*
C3B0.2771 (2)0.2975 (2)0.50783 (18)0.0410 (5)
H3B0.336 (3)0.354 (3)0.508 (2)0.061 (8)*
N1B0.37852 (18)0.11030 (18)0.46300 (18)0.0472 (5)
H1BA0.450 (3)0.147 (2)0.476 (2)0.053 (7)*
H1BB0.375 (3)0.029 (3)0.472 (2)0.060 (8)*
N2B0.18060 (15)0.11865 (16)0.49623 (14)0.0372 (4)
H2BA0.164 (2)0.034 (3)0.4985 (19)0.058 (8)*
N3B0.10420 (17)0.20371 (16)0.52047 (16)0.0431 (4)
H3BA0.024 (3)0.184 (2)0.5222 (19)0.051 (7)*
C4A0.58112 (19)0.40965 (18)0.26078 (18)0.0409 (5)
C5A0.4574 (2)0.4142 (2)0.29303 (18)0.0422 (5)
F1A10.4274 (7)0.3086 (7)0.3249 (5)0.0619 (13)0.639 (12)
F1A20.3945 (12)0.3073 (14)0.2818 (12)0.075 (3)0.361 (12)
F2A10.3589 (8)0.4515 (8)0.2173 (6)0.0681 (17)0.639 (12)
F2A20.3687 (14)0.4932 (10)0.2363 (13)0.067 (3)0.361 (12)
F3A10.4720 (7)0.4955 (5)0.3687 (6)0.0651 (13)0.639 (12)
F3A20.4800 (14)0.4446 (15)0.3885 (10)0.089 (4)0.361 (12)
O1A0.63921 (15)0.31128 (13)0.27322 (15)0.0526 (5)
O2A0.60816 (16)0.50747 (14)0.22685 (17)0.0622 (5)
C4B0.23375 (19)0.8115 (2)0.48329 (18)0.0413 (5)
C5B0.2075 (2)0.6750 (2)0.45833 (19)0.0447 (5)
F1B10.1329 (4)0.6255 (3)0.5045 (6)0.077 (2)0.639 (12)
F1B20.2028 (16)0.6103 (8)0.5367 (6)0.101 (4)0.361 (12)
F2B10.3162 (3)0.6097 (3)0.4866 (5)0.0669 (13)0.639 (12)
F2B20.2821 (9)0.6190 (6)0.4167 (12)0.089 (4)0.361 (12)
F3B10.1581 (7)0.6629 (3)0.3597 (3)0.090 (2)0.639 (12)
F3B20.0855 (7)0.6537 (6)0.3935 (8)0.079 (3)0.361 (12)
O1B0.13834 (14)0.86991 (13)0.49109 (15)0.0530 (5)
O2B0.34134 (14)0.84860 (15)0.48973 (15)0.0538 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0374 (10)0.0299 (10)0.0508 (12)0.0050 (8)0.0177 (9)0.0021 (8)
C2A0.0330 (11)0.0431 (13)0.0629 (15)0.0022 (9)0.0194 (10)0.0043 (10)
C3A0.0351 (10)0.0382 (12)0.0595 (14)0.0072 (9)0.0208 (10)0.0022 (10)
N1A0.0434 (11)0.0275 (10)0.113 (2)0.0008 (8)0.0358 (12)0.0044 (10)
N2A0.0340 (9)0.0284 (9)0.0624 (12)0.0006 (7)0.0238 (8)0.0023 (8)
N3A0.0385 (9)0.0281 (9)0.0701 (13)0.0011 (7)0.0239 (9)0.0017 (8)
C1B0.0265 (9)0.0353 (11)0.0453 (11)0.0029 (7)0.0138 (8)0.0041 (8)
C2B0.0464 (12)0.0299 (11)0.0663 (15)0.0029 (9)0.0280 (11)0.0050 (10)
C3B0.0344 (10)0.0341 (11)0.0570 (13)0.0096 (8)0.0178 (9)0.0010 (9)
N1B0.0302 (9)0.0350 (10)0.0823 (15)0.0018 (8)0.0259 (9)0.0024 (9)
N2B0.0288 (8)0.0279 (9)0.0588 (11)0.0013 (6)0.0192 (7)0.0009 (7)
N3B0.0345 (9)0.0330 (9)0.0709 (13)0.0024 (7)0.0298 (9)0.0039 (8)
C4A0.0354 (10)0.0301 (11)0.0639 (14)0.0021 (8)0.0252 (10)0.0036 (9)
C5A0.0363 (11)0.0397 (12)0.0549 (13)0.0014 (9)0.0201 (10)0.0010 (9)
F1A10.053 (3)0.0486 (17)0.099 (4)0.004 (2)0.045 (3)0.015 (3)
F1A20.046 (5)0.054 (3)0.135 (10)0.010 (4)0.044 (5)0.013 (7)
F2A10.0376 (17)0.094 (5)0.071 (2)0.011 (3)0.0149 (16)0.019 (3)
F2A20.038 (4)0.058 (5)0.113 (8)0.009 (4)0.035 (5)0.018 (4)
F3A10.061 (2)0.067 (3)0.079 (4)0.001 (2)0.039 (2)0.027 (2)
F3A20.070 (4)0.137 (11)0.069 (5)0.006 (7)0.034 (3)0.015 (7)
O1A0.0452 (9)0.0277 (8)0.0968 (13)0.0022 (6)0.0394 (9)0.0030 (7)
O2A0.0526 (10)0.0302 (8)0.1222 (16)0.0029 (7)0.0538 (11)0.0110 (9)
C4B0.0309 (10)0.0341 (11)0.0634 (14)0.0007 (8)0.0211 (10)0.0020 (9)
C5B0.0379 (11)0.0350 (12)0.0636 (15)0.0034 (9)0.0193 (10)0.0015 (10)
F1B10.071 (2)0.0309 (14)0.151 (6)0.0066 (15)0.068 (3)0.005 (2)
F1B20.174 (11)0.053 (4)0.069 (4)0.026 (6)0.025 (6)0.011 (3)
F2B10.0527 (15)0.0417 (14)0.107 (3)0.0162 (11)0.0249 (19)0.0071 (17)
F2B20.072 (6)0.059 (3)0.163 (11)0.002 (3)0.076 (7)0.038 (5)
F3B10.113 (5)0.0658 (19)0.069 (2)0.017 (2)0.003 (2)0.0142 (14)
F3B20.050 (3)0.060 (3)0.108 (6)0.002 (2)0.003 (3)0.033 (3)
O1B0.0343 (8)0.0290 (8)0.1059 (14)0.0020 (6)0.0366 (8)0.0059 (8)
O2B0.0310 (8)0.0434 (9)0.0937 (13)0.0013 (6)0.0290 (8)0.0035 (8)
Geometric parameters (Å, º) top
C1A—C3A1.399 (3)N2B—H2BA0.95 (3)
C1A—N1A1.344 (3)N2B—N3B1.358 (2)
C1A—N2A1.338 (3)N3B—H3BA0.91 (3)
C2A—H2A0.96 (3)C4A—C5A1.547 (3)
C2A—C3A1.354 (3)C4A—O1A1.234 (2)
C2A—N3A1.329 (3)C4A—O2A1.238 (3)
C3A—H3A0.94 (3)C5A—F1A11.312 (8)
N1A—H1AA0.85 (3)C5A—F1A21.341 (14)
N1A—H1AB0.91 (3)C5A—F2A11.309 (8)
N2A—H2AA0.94 (3)C5A—F2A21.351 (15)
N2A—N3A1.357 (2)C5A—F3A11.337 (7)
N3A—H3AA0.93 (3)C5A—F3A21.298 (14)
C1B—C3B1.393 (3)C4B—C5B1.538 (3)
C1B—N1B1.349 (3)C4B—O1B1.255 (2)
C1B—N2B1.338 (2)C4B—O2B1.221 (2)
C2B—H2B0.95 (3)C5B—F1B11.295 (5)
C2B—C3B1.372 (3)C5B—F1B21.299 (8)
C2B—N3B1.325 (3)C5B—F2B11.337 (4)
C3B—H3B0.89 (3)C5B—F2B21.284 (6)
N1B—H1BA0.84 (3)C5B—F3B11.298 (4)
N1B—H1BB0.90 (3)C5B—F3B21.375 (6)
N1A—C1A—C3A131.41 (19)C2B—N3B—N2B108.01 (17)
N2A—C1A—C3A107.28 (18)C2B—N3B—H3BA130.5 (16)
N2A—C1A—N1A121.30 (19)N2B—N3B—H3BA121.1 (16)
C3A—C2A—H2A129.0 (15)O1A—C4A—C5A116.52 (18)
N3A—C2A—H2A121.0 (15)O1A—C4A—O2A129.27 (19)
N3A—C2A—C3A109.9 (2)O2A—C4A—C5A114.21 (17)
C1A—C3A—H3A127.7 (15)F1A1—C5A—C4A113.4 (4)
C2A—C3A—C1A106.02 (19)F1A1—C5A—F3A1108.0 (4)
C2A—C3A—H3A126.3 (15)F1A2—C5A—C4A113.7 (7)
C1A—N1A—H1AA118.4 (19)F1A2—C5A—F2A2103.9 (7)
C1A—N1A—H1AB119.1 (18)F2A1—C5A—C4A111.2 (4)
H1AA—N1A—H1AB120 (3)F2A1—C5A—F1A1108.0 (4)
C1A—N2A—H2AA128.8 (18)F2A1—C5A—F3A1106.2 (4)
C1A—N2A—N3A109.00 (17)F2A2—C5A—C4A113.1 (7)
N3A—N2A—H2AA122.2 (18)F3A1—C5A—C4A109.7 (3)
C2A—N3A—N2A107.79 (18)F3A2—C5A—C4A112.6 (6)
C2A—N3A—H3AA129.0 (18)F3A2—C5A—F1A2105.7 (7)
N2A—N3A—H3AA122.6 (18)F3A2—C5A—F2A2107.3 (8)
N1B—C1B—C3B130.75 (19)O1B—C4B—C5B114.19 (18)
N2B—C1B—C3B107.58 (17)O2B—C4B—C5B116.60 (19)
N2B—C1B—N1B121.60 (19)O2B—C4B—O1B129.2 (2)
C3B—C2B—H2B131.0 (15)F1B1—C5B—C4B113.5 (3)
N3B—C2B—H2B119.5 (15)F1B1—C5B—F2B1105.8 (3)
N3B—C2B—C3B109.57 (19)F1B1—C5B—F3B1110.1 (3)
C1B—C3B—H3B125.5 (18)F1B2—C5B—C4B113.3 (4)
C2B—C3B—C1B105.75 (18)F1B2—C5B—F3B299.4 (5)
C2B—C3B—H3B128.7 (18)F2B1—C5B—C4B111.4 (2)
C1B—N1B—H1BA114.8 (18)F2B2—C5B—C4B117.5 (3)
C1B—N1B—H1BB113.5 (17)F2B2—C5B—F1B2107.4 (6)
H1BA—N1B—H1BB121 (2)F2B2—C5B—F3B2104.7 (5)
C1B—N2B—H2BA128.4 (16)F3B1—C5B—C4B108.6 (2)
C1B—N2B—N3B109.08 (17)F3B1—C5B—F2B1107.2 (3)
N3B—N2B—H2BA121.5 (16)F3B2—C5B—C4B112.7 (3)
C1A—N2A—N3A—C2A1.0 (3)O1A—C4A—C5A—F3A288.7 (8)
C3A—C1A—N2A—N3A0.6 (3)O2A—C4A—C5A—F1A1177.4 (4)
C3A—C2A—N3A—N2A1.1 (3)O2A—C4A—C5A—F1A2149.4 (7)
N1A—C1A—C3A—C2A178.8 (3)O2A—C4A—C5A—F2A155.5 (5)
N1A—C1A—N2A—N3A178.3 (2)O2A—C4A—C5A—F2A231.3 (7)
N2A—C1A—C3A—C2A0.1 (3)O2A—C4A—C5A—F3A161.7 (4)
N3A—C2A—C3A—C1A0.7 (3)O2A—C4A—C5A—F3A290.5 (8)
C1B—N2B—N3B—C2B1.0 (3)O1B—C4B—C5B—F1B138.2 (4)
C3B—C1B—N2B—N3B0.9 (2)O1B—C4B—C5B—F1B276.1 (9)
C3B—C2B—N3B—N2B0.6 (3)O1B—C4B—C5B—F2B1157.5 (3)
N1B—C1B—C3B—C2B177.5 (2)O1B—C4B—C5B—F2B2157.7 (8)
N1B—C1B—N2B—N3B178.2 (2)O1B—C4B—C5B—F3B184.6 (5)
N2B—C1B—C3B—C2B0.5 (3)O1B—C4B—C5B—F3B235.9 (7)
N3B—C2B—C3B—C1B0.1 (3)O2B—C4B—C5B—F1B1143.9 (4)
O1A—C4A—C5A—F1A13.4 (4)O2B—C4B—C5B—F1B2106.0 (9)
O1A—C4A—C5A—F1A231.4 (7)O2B—C4B—C5B—F2B124.5 (4)
O1A—C4A—C5A—F2A1125.3 (4)O2B—C4B—C5B—F2B220.3 (9)
O1A—C4A—C5A—F2A2149.5 (6)O2B—C4B—C5B—F3B193.3 (5)
O1A—C4A—C5A—F3A1117.5 (4)O2B—C4B—C5B—F3B2142.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AA···O1Ai0.85 (3)2.28 (3)2.936 (3)134 (2)
N1A—H1AB···O2Aii0.91 (3)1.99 (3)2.884 (3)169 (3)
N2A—H2AA···O1Aii0.94 (3)1.85 (3)2.778 (2)171 (3)
N3A—H3AA···O2A0.93 (3)1.78 (3)2.705 (2)172 (3)
N1B—H1BA···O2Biii0.84 (3)2.18 (3)2.962 (2)153 (2)
N1B—H1BB···O2Biv0.90 (3)2.03 (3)2.929 (3)173 (2)
N2B—H2BA···O1Biv0.95 (3)1.81 (3)2.756 (2)174 (2)
N3B—H3BA···O1Bv0.91 (3)1.82 (3)2.728 (2)171 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+3/2, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x, y1, z; (v) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AA···O1Ai0.85 (3)2.28 (3)2.936 (3)134 (2)
N1A—H1AB···O2Aii0.91 (3)1.99 (3)2.884 (3)169 (3)
N2A—H2AA···O1Aii0.94 (3)1.85 (3)2.778 (2)171 (3)
N3A—H3AA···O2A0.93 (3)1.78 (3)2.705 (2)172 (3)
N1B—H1BA···O2Biii0.84 (3)2.18 (3)2.962 (2)153 (2)
N1B—H1BB···O2Biv0.90 (3)2.03 (3)2.929 (3)173 (2)
N2B—H2BA···O1Biv0.95 (3)1.81 (3)2.756 (2)174 (2)
N3B—H3BA···O1Bv0.91 (3)1.82 (3)2.728 (2)171 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+3/2, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x, y1, z; (v) x, y+1, z+1.
 

Acknowledgements

TSY thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani's Science College for Women, Mysore, for giving permission to do research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science
First citationDobson, A. J. & Gerkin, R. E. (1998). Acta Cryst. C54, 253–256.  Web of Science CSD CrossRef CAS IUCr Journals
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals
First citationFoces-Foces, C., Cativiela, C., Zurbano, M. M., Sobrados, I., Jagerovic, N. & Elguero, J. (1996). J. Chem. Crystallogr. 26, 579–584.  CAS
First citationGiuseppe, D., Salvatore, P. & Demetrio, R. (1991). Trends Heterocycl. Chem. 2, 97.
First citationHall, A., Billinton, A., Brown, S. H., Clayton, N. M., Chowdhury, A., Gerald, M. P., Goldsmith, G. P., Hayhow, T. G., Hurst, D. N., Kilford, I. R., Naylor, A. & Passingham, B. (2008). Bioorg. Med. Chem. Lett. 18, 3392–3399.  Web of Science CrossRef PubMed CAS
First citationHemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o783–o784.  Web of Science CrossRef CAS IUCr Journals
First citationIsloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787.  Web of Science CrossRef PubMed CAS
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals
First citationPatel, C. K., Rami, C. S., Panigrahi, B. & Patel, C. N. (2010). J. Chem. Pharm. Res. 2, 73–78.  CAS
First citationSamshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279–o1280.  Web of Science CSD CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationThanigaimani, K., Farhadikoutenaei, A., Khalib, N. C., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o3319–o3320.  CSD CrossRef CAS IUCr Journals
First citationVinogradov, V. M., Dalinger, I. L. & Shevelev, S. A. (1994). Khim. Farm. Zh. 28, 37–46.  CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1425-o1426
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds