metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages m489-m490

2-Amino-6-methyl­pyridinium trans-di­aqua­dioxalatochromate(III) monohydrate

aLaboratoire de Matériaux et Cristallochimie, Département de Chimie, Faculté des Sciences, 2092 El Manar, Tunis, Tunisia
*Correspondence e-mail: faouzi.zid@fst.rnu.tn

(Received 16 July 2013; accepted 7 August 2013; online 10 August 2013)

In the title compound, (C6H9N2)[Cr(C2O4)2(H2O)2]·H2O, the CrIII atom adopts a slightly distorted octa­hedral coordination environment defined by two chelating oxalate ligands in the equatorial plane and two water mol­ecules in axial positions. A three-dimensional network is generated by inter­molecular N—H⋯O and O—H⋯O hydrogen-bonding interactions involving the cation, the complex anion and the lattice water molecule.

Related literature

For general background to the coordination chemistry of oxalates, see: Martin et al. (2007[Martin, L., Day, P., Clegg, W., Harrington, R. W., Horton, P. N., Bingham, A., Hursthouse, M. B., McMillan, P. & Firth, S. (2007). J. Mater. Chem. 17, 3324-3329.]). For the structural characterization of organic–inorganic salts containing the [Cr(C2O4)2(H2O)2] anion, see: Bélombé et al. (2009[Bélombé, M. M., Nenwa, J. & Emmerling, F. (2009). Z. Kristallogr. 224, 239-240.]); Nenwa et al. (2010[Nenwa, J., Belombe, M. M., Ngoune, J. & Fokwa, B. P. T. (2010). Acta Cryst. E66, m1410.]); Chérif et al. (2011[Chérif, I., Abdelhak, J., Zid, M. F. & Driss, A. (2011). Acta Cryst. E67, m1648-m1649.]); Chérif, Abdelhak et al. (2012[Chérif, I., Abdelhak, J., Zid, M. F. & Driss, A. (2012). Acta Cryst. E68, m824-m825.]); Chérif, Zid et al. (2012[Chérif, I., Zid, M. F., ­El-Ghozzi, M. & Avignant, D. (2012). Acta Cryst. E68, m900-m901.]). For C—O bond lengths in oxalate anions, see: Marinescu et al. (2000[Marinescu, G., Andruh, M., Lescouëzec, R., Munoz, M. C., Cano, J., Lloret, F. & Julve, M. (2000). New J. Chem. 24, 527-536.]). For geometric parameters of the 2-amino-6-methyl­pyridinium cation, see: Fun et al. (2008[Fun, H.-K., Jebas, S. R. & Sinthiya, A. (2008). Acta Cryst. E64, o697-o698.], 2009[Fun, H.-K., John, J., Jebas, S. R. & Balasubramanian, T. (2009). Acta Cryst. E65, o748-o749.], 2010[Fun, H.-K., Hemamalini, M. & Rajakannan, V. (2010). Acta Cryst. E66, o2108.]); Jebas et al. (2009[Jebas, S. R., Sinthiya, A., Ravindran Durai Nayagam, B., Schollmeyer, D. & Raj, S. A. C. (2009). Acta Cryst. E65, m521.]); Quah et al. (2008[Quah, C. K., Jebas, S. R. & Fun, H.-K. (2008). Acta Cryst. E64, o1878-o1879.]); Ramesh et al. (2010[Ramesh, P., Akalya, R., Chandramohan, A. & Ponnuswamy, M. N. (2010). Acta Cryst. E66, o1000.]); Rotondo et al. (2009[Rotondo, A., Bruno, G., Messina, F. & Nicoló, F. (2009). Acta Cryst. E65, m1203-m1204.]); Pan et al. (2008[Pan, Z.-C., Zhang, K.-L. & Ng, S. W. (2008). Acta Cryst. E64, m221.]). For discussion of hydrogen bonding, see: Blessing (1986[Blessing, R. H. (1986). Acta Cryst. B42, 613-621.]); Brown (1976[Brown, I. D. (1976). Acta Cryst. A32, 24-31.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H9N2)[Cr(C2O4)2(H2O)2]·H2O

  • Mr = 391.24

  • Monoclinic, C 2/c

  • a = 18.572 (3) Å

  • b = 11.025 (2) Å

  • c = 14.975 (3) Å

  • β = 96.28 (2)°

  • V = 3047.8 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 298 K

  • 0.56 × 0.42 × 0.33 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.679, Tmax = 0.764

  • 4604 measured reflections

  • 3312 independent reflections

  • 2896 reflections with I > 2σ(I)

  • Rint = 0.037

  • 2 standard reflections every 120 min intensity decay: 3.2%

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.112

  • S = 1.07

  • 3312 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H3⋯O7i 0.83 1.82 2.643 (2) 171
O1—H4⋯O10ii 0.83 1.87 2.681 (2) 165
O2—H2⋯O11iii 0.83 1.78 2.611 (2) 173
O2—H10⋯O8iv 0.83 1.85 2.675 (2) 172
N1—H7⋯O9v 0.93 1.90 2.829 (2) 174
N2—H5⋯O7vi 0.93 2.16 2.928 (3) 139
N2—H13⋯O10v 0.93 2.08 2.976 (3) 162
O11—H1⋯O8i 0.83 2.17 2.983 (2) 167
O11—H11⋯O6 0.83 2.03 2.845 (2) 169
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x, y+1, z; (vi) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]; Macíček & Yordanov, 1992[Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The coordination chemistry of oxalates (C2O42-) continues to receive considerable attention, largely due to the ability of this ion to act as a remarkably flexible ligand system in complexations with a wide range of metal ions (Martin et al., 2007). Recently, certain hybrid organic-inorganic salts were reported of formula A[Cr(H2O)2(C2O4)2].xH2O (A+ = aromatic iminium cation, 0 x 1) (Bélombé et al., 2009; Nenwa et al., 2010; Chérif et al., 2011; Chérif, Abdelhak et al., 2012; Chérif, Zid et al., 2012). These salts form different crystalline structures depending on the nature of the substituent and/or substitution position on the ring of the pyridinium cation (Chérif, Abdelhak et al., 2011, 2012; Chérif, Zid et al., 2012; Nenwa et al., 2010). In a continuation of these studies, we report the structure of (amp)[Cr(C2O4)2(H2O)2].H2O (amp = 2-amino-6-methylpyridinium ion) with the anion having trans-geometry. The asymmetric unit of the title compound consists a [Cr(C2O4)2(H2O)2]- anion, a (C6H9N2)+ cation and one uncoordinated water molecule (Figure 1). The coordination environment of the chromium(III) is distorted octahedral since the O—Cr—O angles vary from 82.48 (6)° to 101.02 (6)° while the four Cr—O (ox) distances are slightly shorter than the two Cr—O(water) distances. Similar patterns of distortion have been observed in homologous salts involving quinolinium (C9H8N)+, 4-dimethylaminopyridinium (C7H11N2)+ and 4-aminopyridinium (C5H7N2)+ cations (Bélombé et al., 2009; Nenwa et al., 2010; Chérif et al., 2011). The bond distances for the oxalate ions compare well with those reported for other oxalate complexes (Marinescu et al., 2000) as do the main geometric parameters of the (C6H9N2)+ cation (Fun et al., 2008, 2009, 2010; Jebas et al., 2009; Quah et al., 2008; Ramesh et al., 2010; Rotondo et al., 2009; Pan et al., 2008; Chérif et al., 2011). The cations are located between the anions (Fig. 2) and within the cation layer, the methyl groups of each pair of closest cations point in opposite directions. The crystal packing is stabilized by N—H···O and O—H···O hydrogen bonds (Blessing, 1986; Brown, 1976) between (C6H9N2)+ and [Cr(C2O4)2(H2O)2]- involving the uncoordinated water molecule (O11) as both acceptor and donor and the coordinated water molecules (O1 and O2) only as donors. These interactions link the layers together forming a three-dimensional network and reinforcing the cohesion of the ionic structure.

Related literature top

For general background to the coordination chemistry of oxalates, see: Martin et al. (2007). For the structural characterization of organic–inorganic salts containing the [Cr(C2O4)2(H2O)2]- anion, see: Bélombé et al. (2009); Nenwa et al. (2010); Chérif et al. (2011); Chérif, Abdelhak et al. (2012); Chérif, Zid et al. (2012). For C—O bond lengths in oxalate anions, see: Marinescu et al. (2000). For geometric parameters of the 2-amino-6-methylpyridinium cation, see: Fun et al. (2008, 2009, 2010); Jebas et al. (2009); Quah et al. (2008); Ramesh et al. (2010); Rotondo et al. (2009); Pan et al. (2008). For discussion of hydrogen bonding, see: Blessing (1986); Brown (1976).

Experimental top

The title compound was prepared as good quality pink single crystals from a mixture of chromium (III) nitrate nonahydrate, 2-amino-6-methylpyridinium and oxalic acid in a 1:1:1 molar ratio in ethanol and water (50/50 v:v). The resulting mixture was heated to boiling and was stirred for one hour. After two weeks single pink crystals were obtained by slow evaporation at room temperature.

Refinement top

The hydrogen atoms were located in difference Fourier maps. Those attached to carbon were placed in calculated positions (C—H = 0.93 - 0.96 Å) while those attached to nitrogen and oxygen were placed in the experimental positions and their coordinates adjusted to give N—H = 0.93 Å and O—H = 0.83 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Computing details top

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (C6H9N2)[Cr(H2O)2(C2O4)2].H2O.
[Figure 2] Fig. 2. Projection of the (C6H9N2)[Cr(H2O)2(C2O4)2].H2O structure along the b axis.
[Figure 3] Fig. 3. Closeup view of the hydrogen bonding (dotted lines). H atoms not involved in hydrogen bonding have been omitted for clarity.
2-Amino-6-methylpyridinium trans-diaquadioxalatochromate(III) monohydrate top
Crystal data top
(C6H9N2)[Cr(C2O4)2(H2O)2]·H2OF(000) = 1608
Mr = 391.24Dx = 1.705 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 18.572 (3) Åθ = 10–15°
b = 11.025 (2) ŵ = 0.81 mm1
c = 14.975 (3) ÅT = 298 K
β = 96.28 (2)°Prism, pink
V = 3047.8 (10) Å30.56 × 0.42 × 0.33 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
2896 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 27.0°, θmin = 2.2°
non–profiled ω/2θ scansh = 2323
Absorption correction: ψ scan
(North et al., 1968)
k = 114
Tmin = 0.679, Tmax = 0.764l = 193
4604 measured reflections2 standard reflections every 120 min
3312 independent reflections intensity decay: 3.2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: mixed
wR(F2) = 0.112H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0677P)2 + 2.2239P]
where P = (Fo2 + 2Fc2)/3
3312 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
(C6H9N2)[Cr(C2O4)2(H2O)2]·H2OV = 3047.8 (10) Å3
Mr = 391.24Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.572 (3) ŵ = 0.81 mm1
b = 11.025 (2) ÅT = 298 K
c = 14.975 (3) Å0.56 × 0.42 × 0.33 mm
β = 96.28 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2896 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.037
Tmin = 0.679, Tmax = 0.7642 standard reflections every 120 min
4604 measured reflections intensity decay: 3.2%
3312 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.07Δρmax = 0.65 e Å3
3312 reflectionsΔρmin = 0.45 e Å3
218 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.32255 (2)0.27746 (3)0.19839 (2)0.02219 (13)
O10.38682 (8)0.29143 (13)0.09943 (9)0.0291 (3)
H30.37200.24660.05680.044*
H40.42790.26390.11500.044*
O20.25655 (9)0.26707 (13)0.29364 (10)0.0325 (3)
H20.25870.32600.32840.049*
H100.25780.20500.32510.049*
O30.24053 (8)0.26015 (12)0.10486 (9)0.0259 (3)
O40.40928 (8)0.28451 (13)0.28656 (10)0.0315 (3)
O50.29813 (8)0.45160 (12)0.18501 (10)0.0290 (3)
O60.33921 (8)0.10332 (13)0.20991 (9)0.0284 (3)
O70.15703 (8)0.37130 (15)0.02425 (10)0.0379 (4)
O80.22682 (10)0.57497 (14)0.09691 (10)0.0374 (4)
O90.40914 (10)0.03256 (15)0.28778 (13)0.0468 (4)
O100.49100 (8)0.16363 (17)0.36144 (11)0.0389 (4)
O110.24742 (10)0.05094 (17)0.09548 (11)0.0480 (5)
H10.26100.06200.04510.072*
H110.27250.00150.12390.072*
N10.49218 (10)0.78135 (16)0.37925 (13)0.0325 (4)
H70.46320.84340.35320.039*
N20.56211 (12)0.93977 (19)0.43928 (15)0.0455 (5)
H50.60020.96460.48070.055*
H130.53200.99780.40960.055*
C10.21055 (11)0.35961 (17)0.07919 (12)0.0246 (4)
C20.43552 (11)0.1812 (2)0.31024 (13)0.0281 (4)
C30.24748 (11)0.47407 (17)0.12350 (13)0.0254 (4)
C40.39248 (11)0.07128 (19)0.26753 (14)0.0288 (4)
C50.52196 (14)0.5768 (2)0.4038 (2)0.0480 (6)
H120.51240.49470.39490.058*
C60.58452 (15)0.6150 (3)0.4566 (2)0.0518 (7)
H90.61650.55700.48300.062*
C70.59978 (14)0.7335 (3)0.47029 (18)0.0449 (6)
H60.64160.75700.50610.054*
C80.47476 (13)0.6629 (2)0.36524 (17)0.0397 (5)
C90.40503 (15)0.6364 (3)0.3091 (2)0.0587 (8)
H80.36590.63950.34600.088*
H140.40720.55700.28320.088*
H150.39710.69560.26210.088*
C100.55186 (12)0.8210 (2)0.42989 (15)0.0337 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.02305 (19)0.01884 (19)0.02292 (19)0.00059 (11)0.00543 (12)0.00012 (10)
O10.0281 (7)0.0301 (7)0.0279 (7)0.0021 (6)0.0021 (6)0.0019 (6)
O20.0400 (8)0.0271 (8)0.0304 (8)0.0037 (6)0.0047 (6)0.0027 (6)
O30.0260 (7)0.0220 (7)0.0278 (7)0.0003 (5)0.0059 (5)0.0012 (5)
O40.0305 (8)0.0311 (8)0.0302 (8)0.0023 (6)0.0088 (6)0.0015 (6)
O50.0329 (7)0.0200 (6)0.0317 (7)0.0001 (6)0.0071 (6)0.0014 (5)
O60.0272 (7)0.0228 (7)0.0330 (7)0.0015 (6)0.0062 (6)0.0006 (6)
O70.0356 (8)0.0361 (8)0.0377 (8)0.0107 (7)0.0152 (7)0.0085 (7)
O80.0545 (10)0.0220 (7)0.0333 (8)0.0083 (7)0.0054 (7)0.0007 (6)
O90.0468 (10)0.0309 (9)0.0602 (11)0.0099 (7)0.0058 (8)0.0134 (8)
O100.0261 (7)0.0521 (10)0.0359 (8)0.0011 (7)0.0087 (6)0.0098 (7)
O110.0649 (12)0.0413 (10)0.0375 (9)0.0201 (9)0.0042 (8)0.0002 (7)
N10.0279 (9)0.0289 (9)0.0396 (10)0.0063 (7)0.0012 (7)0.0018 (7)
N20.0462 (12)0.0356 (10)0.0534 (12)0.0063 (9)0.0005 (9)0.0046 (9)
C10.0270 (9)0.0249 (10)0.0214 (9)0.0032 (7)0.0002 (7)0.0016 (7)
C20.0229 (9)0.0371 (11)0.0240 (9)0.0005 (8)0.0003 (7)0.0042 (8)
C30.0316 (10)0.0229 (9)0.0215 (9)0.0017 (7)0.0015 (7)0.0015 (7)
C40.0264 (10)0.0280 (10)0.0312 (10)0.0029 (8)0.0005 (8)0.0053 (8)
C50.0487 (15)0.0287 (11)0.0673 (17)0.0031 (11)0.0094 (13)0.0012 (11)
C60.0435 (14)0.0473 (14)0.0639 (17)0.0152 (12)0.0029 (12)0.0120 (13)
C70.0331 (12)0.0506 (15)0.0486 (14)0.0068 (10)0.0061 (11)0.0036 (11)
C80.0338 (11)0.0353 (12)0.0509 (14)0.0016 (9)0.0087 (10)0.0066 (10)
C90.0378 (13)0.0634 (19)0.0733 (19)0.0083 (13)0.0011 (13)0.0253 (15)
C100.0295 (10)0.0381 (12)0.0334 (11)0.0027 (9)0.0028 (8)0.0033 (9)
Geometric parameters (Å, º) top
Cr1—O61.9493 (15)N1—C101.346 (3)
Cr1—O31.9626 (14)N1—C81.357 (3)
Cr1—O41.9695 (15)N1—H70.9300
Cr1—O51.9778 (15)N2—C101.328 (3)
Cr1—O21.9830 (15)N2—H50.9300
Cr1—O12.0080 (15)N2—H130.9300
O1—H30.8300C1—C31.550 (3)
O1—H40.8300C2—C41.551 (3)
O2—H20.8299C5—C81.375 (4)
O2—H100.8300C5—C61.397 (4)
O3—C11.270 (2)C5—H120.9300
O4—C21.274 (3)C6—C71.348 (4)
O5—C31.267 (2)C6—H90.9300
O6—C41.289 (2)C7—C101.404 (3)
O7—C11.226 (2)C7—H60.9300
O8—C31.229 (2)C8—C91.494 (4)
O9—C41.216 (3)C9—H80.9600
O10—C21.231 (2)C9—H140.9600
O11—H10.8299C9—H150.9600
O11—H110.8301
O6—Cr1—O394.05 (6)O7—C1—C3119.34 (17)
O6—Cr1—O482.49 (6)O3—C1—C3114.48 (16)
O3—Cr1—O4175.08 (6)O10—C2—O4125.7 (2)
O6—Cr1—O5175.89 (6)O10—C2—C4119.50 (19)
O3—Cr1—O582.57 (6)O4—C2—C4114.82 (16)
O4—Cr1—O5101.03 (6)O8—C3—O5126.40 (19)
O6—Cr1—O289.09 (6)O8—C3—C1119.36 (18)
O3—Cr1—O290.87 (7)O5—C3—C1114.24 (16)
O4—Cr1—O292.56 (7)O9—C4—O6125.5 (2)
O5—Cr1—O288.63 (6)O9—C4—C2121.83 (19)
O6—Cr1—O192.26 (6)O6—C4—C2112.65 (17)
O3—Cr1—O187.62 (6)C8—C5—C6118.9 (2)
O4—Cr1—O189.03 (6)C8—C5—H12120.6
O5—Cr1—O189.94 (6)C6—C5—H12120.6
O2—Cr1—O1178.04 (6)C7—C6—C5121.7 (2)
Cr1—O1—H3110.3C7—C6—H9119.1
Cr1—O1—H4111.5C5—C6—H9119.1
H3—O1—H4102.5C6—C7—C10119.2 (2)
Cr1—O2—H2114.5C6—C7—H6120.4
Cr1—O2—H10118.3C10—C7—H6120.4
H2—O2—H10107.0N1—C8—C5118.0 (2)
C1—O3—Cr1114.35 (12)N1—C8—C9116.9 (2)
C2—O4—Cr1114.29 (13)C5—C8—C9125.1 (2)
C3—O5—Cr1114.03 (12)C8—C9—H8109.5
C4—O6—Cr1115.59 (13)C8—C9—H14109.5
H1—O11—H11111.1H8—C9—H14109.5
C10—N1—C8124.6 (2)C8—C9—H15109.5
C10—N1—H7113.7H8—C9—H15109.5
C8—N1—H7121.7H14—C9—H15109.5
C10—N2—H5116.8N2—C10—N1118.7 (2)
C10—N2—H13123.8N2—C10—C7123.7 (2)
H5—N2—H13119.3N1—C10—C7117.6 (2)
O7—C1—O3126.18 (18)
Cr1—O3—C1—O7177.14 (17)O4—C2—C4—O9176.0 (2)
Cr1—O3—C1—C33.0 (2)O10—C2—C4—O6174.65 (18)
Cr1—O4—C2—O10176.81 (17)O4—C2—C4—O64.3 (3)
Cr1—O4—C2—C42.0 (2)C8—C5—C6—C70.3 (4)
Cr1—O5—C3—O8173.21 (18)C5—C6—C7—C100.5 (4)
Cr1—O5—C3—C16.1 (2)C10—N1—C8—C51.4 (4)
O7—C1—C3—O86.7 (3)C10—N1—C8—C9178.2 (2)
O3—C1—C3—O8173.12 (19)C6—C5—C8—N11.2 (4)
O7—C1—C3—O5173.94 (18)C6—C5—C8—C9178.4 (3)
O3—C1—C3—O56.2 (2)C8—N1—C10—N2179.0 (2)
Cr1—O6—C4—O9175.95 (19)C8—N1—C10—C70.7 (4)
Cr1—O6—C4—C24.4 (2)C6—C7—C10—N2180.0 (2)
O10—C2—C4—O95.1 (3)C6—C7—C10—N10.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H3···O7i0.831.822.643 (2)171
O1—H4···O10ii0.831.872.681 (2)165
O2—H2···O11iii0.831.782.611 (2)173
O2—H10···O8iv0.831.852.675 (2)172
N1—H7···O9v0.931.902.829 (2)174
N2—H5···O7vi0.932.162.928 (3)139
N2—H13···O10v0.932.082.976 (3)162
C9—H8···O3iii0.962.563.405 (3)147
C9—H14···O50.962.643.277 (3)124
O11—H1···O8i0.832.172.983 (2)167
O11—H11···O60.832.032.845 (2)169
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z+1/2; (v) x, y+1, z; (vi) x+1/2, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H3···O7i0.831.822.643 (2)171
O1—H4···O10ii0.831.872.681 (2)165
O2—H2···O11iii0.831.782.611 (2)173
O2—H10···O8iv0.831.852.675 (2)172
N1—H7···O9v0.931.902.829 (2)174
N2—H5···O7vi0.932.162.928 (3)139
N2—H13···O10v0.932.082.976 (3)162
C9—H8···O3iii0.962.563.405 (3)147
C9—H14···O50.962.643.277 (3)124
O11—H1···O8i0.832.172.983 (2)167
O11—H11···O60.832.032.845 (2)169
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z+1/2; (v) x, y+1, z; (vi) x+1/2, y+3/2, z+1/2.
 

References

First citationBélombé, M. M., Nenwa, J. & Emmerling, F. (2009). Z. Kristallogr. 224, 239–240.  Google Scholar
First citationBlessing, R. H. (1986). Acta Cryst. B42, 613–621.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. (1976). Acta Cryst. A32, 24–31.  CrossRef IUCr Journals Web of Science Google Scholar
First citationChérif, I., Abdelhak, J., Zid, M. F. & Driss, A. (2011). Acta Cryst. E67, m1648–m1649.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChérif, I., Abdelhak, J., Zid, M. F. & Driss, A. (2012). Acta Cryst. E68, m824–m825.  CSD CrossRef IUCr Journals Google Scholar
First citationChérif, I., Zid, M. F., ­El-Ghozzi, M. & Avignant, D. (2012). Acta Cryst. E68, m900–m901.  CSD CrossRef IUCr Journals Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M. & Rajakannan, V. (2010). Acta Cryst. E66, o2108.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Jebas, S. R. & Sinthiya, A. (2008). Acta Cryst. E64, o697–o698.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., John, J., Jebas, S. R. & Balasubramanian, T. (2009). Acta Cryst. E65, o748–o749.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJebas, S. R., Sinthiya, A., Ravindran Durai Nayagam, B., Schollmeyer, D. & Raj, S. A. C. (2009). Acta Cryst. E65, m521.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73–80.  CrossRef Web of Science IUCr Journals Google Scholar
First citationMarinescu, G., Andruh, M., Lescouëzec, R., Munoz, M. C., Cano, J., Lloret, F. & Julve, M. (2000). New J. Chem. 24, 527–536.  Web of Science CSD CrossRef CAS Google Scholar
First citationMartin, L., Day, P., Clegg, W., Harrington, R. W., Horton, P. N., Bingham, A., Hursthouse, M. B., McMillan, P. & Firth, S. (2007). J. Mater. Chem. 17, 3324–3329.  Web of Science CSD CrossRef CAS Google Scholar
First citationNenwa, J., Belombe, M. M., Ngoune, J. & Fokwa, B. P. T. (2010). Acta Cryst. E66, m1410.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPan, Z.-C., Zhang, K.-L. & Ng, S. W. (2008). Acta Cryst. E64, m221.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQuah, C. K., Jebas, S. R. & Fun, H.-K. (2008). Acta Cryst. E64, o1878–o1879.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRamesh, P., Akalya, R., Chandramohan, A. & Ponnuswamy, M. N. (2010). Acta Cryst. E66, o1000.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRotondo, A., Bruno, G., Messina, F. & Nicoló, F. (2009). Acta Cryst. E65, m1203–m1204.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages m489-m490
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds