[Journal logo]

Volume 69 
Part 9 
Pages o1414-o1415  
September 2013  

Received 28 July 2013
Accepted 7 August 2013
Online 14 August 2013

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.003 Å
Disorder in solvent or counterion
R = 0.044
wR = 0.122
Data-to-parameter ratio = 14.5
Details
Open access

(2E)-3-(2-Chloro-7-methylquinolin-3-yl)-1-(6-chloro-2-methyl-4-phenylquinolin-3-yl)prop-2-en-1-one ethanol monosolvate

aDepartment of Chemistry, BITS, Pilani - K. K. Birla Goa Campus, Goa 403 726, India,bCentre for Organic and Medicinal Chemistry, School of Advanced Sciences, VIT University, Vellore 632 014, India,cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
Correspondence e-mail: edward.tiekink@gmail.com

In the title ethanol solvate, C29H20Cl2N2O·C2H5OH, the quinolinyl residues form a dihedral angle of 46.41 (4)° with each other, and each is inclined [Cp-C-C=O and C=C-C-Cp (p = pyridyl) torsion angles = 54.8 (2) and 144.44 (19)°, respectively] with respect to the almost planar bridging prop-2-en-1-one residue [O=C-C=C torsion angle = -4.1 (3)°]. The ethanol solvent molecule is disordered over two positions of equal occupancy and is located close to a centre of inversion. These molecules reside in cavities defined by the organic molecules, which are connected into a three-dimensional architecture by C-H...Cl, C-H...O and C-H...N interactions, as well as [pi]-[pi] contacts [inter-centroid distances = 3.5853 (10) and 3.8268 (11) Å], each involving pyridyl rings.

Related literature

For background details and the biological applications of quinolinyl/chalcone derivatives, see: Joshi et al. (2011[Joshi, R. S., Mandhane, P. G., Khan, W. & Gill, C. H. (2011). J. Heterocycl. Chem. 48, 872-876.]); Prasath et al. (2013a[Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2013a). J. Organomet. Chem. 726, 62-70.]). For a related structure, see: Prasath et al. (2013b[Prasath, R., Sarveswari, S., Ng, S. W. & Tiekink, E. R. T. (2013b). Acta Cryst. E69, o1275.]).

[Scheme 1]

Experimental

Crystal data
  • C29H20Cl2N2O·C2H6O

  • Mr = 529.44

  • Triclinic, [P \overline 1]

  • a = 9.1621 (3) Å

  • b = 11.3598 (4) Å

  • c = 13.1879 (5) Å

  • [alpha] = 74.017 (3)°

  • [beta] = 85.995 (3)°

  • [gamma] = 77.683 (3)°

  • V = 1289.07 (8) Å3

  • Z = 2

  • Cu K[alpha] radiation

  • [mu] = 2.52 mm-1

  • T = 100 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Tmin = 0.724, Tmax = 1.000

  • 9624 measured reflections

  • 5287 independent reflections

  • 4904 reflections with I > 2[sigma](I)

  • Rint = 0.020

Refinement
  • R[F2 > 2[sigma](F2)] = 0.044

  • wR(F2) = 0.122

  • S = 1.05

  • 5287 reflections

  • 365 parameters

  • 42 restraints

  • H-atom parameters constrained

  • [Delta][rho]max = 0.52 e Å-3

  • [Delta][rho]min = -0.77 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
C15-H15...N2i 0.95 2.55 3.335 (2) 140
C25-H25...O1ii 0.95 2.45 3.394 (3) 170
C26-H26...Cl1iii 0.95 2.75 3.654 (2) 159
Symmetry codes: (i) x-1, y, z; (ii) x, y+1, z; (iii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MW2114 ).


Acknowledgements

RP gratefully acknowledges the Council of Scientific and Industrial Research (CSIR), India, for a Senior Research Fellowship (09/919/(0014)/2012 EMR-I). We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

References

Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [ISI] [CrossRef] [ChemPort] [details]
Joshi, R. S., Mandhane, P. G., Khan, W. & Gill, C. H. (2011). J. Heterocycl. Chem. 48, 872-876.  [CrossRef] [ChemPort]
Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2013a). J. Organomet. Chem. 726, 62-70.  [CSD] [CrossRef] [ChemPort]
Prasath, R., Sarveswari, S., Ng, S. W. & Tiekink, E. R. T. (2013b). Acta Cryst. E69, o1275.  [CrossRef] [details]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [details]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [ISI] [CrossRef] [ChemPort] [details]


Acta Cryst (2013). E69, o1414-o1415   [ doi:10.1107/S1600536813022022 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.