organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E,4E)-Ethyl 5-(2,4-di­chloro­phenyl­sulfon­yl)penta-2,4-dienoate

aDepartment of Chemistry, Pachaiyappa's College, Chennai 600 030, India, bDepartment of Physics, Presidency College, Chennai 600 005, India, and cDepartment of Chemistry, B.S. Abdur Rahman University, Chennai 600 048, India
*Correspondence e-mail: aravindhanpresidency@gmail.com

(Received 23 June 2013; accepted 1 August 2013; online 7 August 2013)

In the title compound, C13H12Cl2O4S, both C=C double bonds adopt an E conformation. The S atom has a distorted tetra­hedral geometry with bond angles ranging from 103.03 (12) to 118.12 (13)°. The eth­oxy­carbonyl group is disordered over two sets of sites, with site-occupancy factors of 0.739 (11) and 0.261 (11). In the crystal, C—H⋯O inter­actions link the mol­ecules into chains mol­ecules running parallel to the a axis.

Related literature

For the biological activity of phenyl­sulfonyl-containing compounds, see: De Benedetti et al. (1985[De Benedetti, P. G., Folli, U., Iarossi, D. & Frassineti, C. (1985). J. Chem. Soc. Perkin Trans. 2, pp. 1527-1532.]). For related structures, see: Li (2011[Li, X.-L. (2011). Acta Cryst. E67, o2622.]); Sankar et al. (2012[Sankar, U., Sabari, V., Suresh, G., Uma, R. & Aravindhan, S. (2012). Acta Cryst. E68, o1093.]); Chakkaravarthi et al. (2008[Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o542.]); Rodriguez et al. (1995[Rodriguez, J. G., del Valle, C., Esteban-Calderon, C. & Martinez-Repoll, M. (1995). J. Chem. Crystallogr. 25, 249-257.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12Cl2O4S

  • Mr = 335.19

  • Monoclinic, P 21

  • a = 5.773 (5) Å

  • b = 9.939 (5) Å

  • c = 13.268 (5) Å

  • β = 95.876 (5)°

  • V = 757.3 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.824, Tmax = 0.847

  • 6848 measured reflections

  • 2471 independent reflections

  • 2314 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.074

  • S = 1.06

  • 2471 reflections

  • 209 parameters

  • 74 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1054 Friedel pairs

  • Absolute structure parameter: 0.04 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.93 2.36 3.217 (4) 153
C9—H9⋯O1i 0.93 2.50 3.312 (4) 146
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Phenyl sulfonyl containing compounds show a wide range of biological properties (De Benedetti et al., 1985). The geometric parameters of the title molecule (Fig. 1) agree well with the reported values of similar structures (Sankar et al., 2012; Li, 2011). Both C=C double bonds in the title compound display an E configuration. The dihedral angle between the planes (C5/C6/S1/O1) and (C1/C6/S1/O2) is 42.01 (2)°. The torsion angles C5—C6—S1—O1 and C1—C6—S1—O2 [1.1 (2)° and 50.6 (2)°, respectively] indicate synconformation of the sulfonyl moiety. The S atom exhibits significant deviation from a regular tetrahedron, with the largest deviations being seen for the O1—S1—O2 [118.12 (13)°] and C6—S1—C7 [103.3 (12)°] angles. The widening of the angles may be due to repulsive interactions between the two short S=O bonds, similar to what is observed in related structures (Chakkaravarthi et al., 2008; Rodriguez et al., 1995). The ethoxycarbonyl group is disordered over two conformations with site-occupancy factors of 0.739 (11) and 0.261 (11). The crystal packing is stabilized by C—H···O intermolecular interactions resulting in chains of molecules running along the a-axis (Tab. 1 & Fig. 2).

Related literature top

For the biological activity of phenylsulfonyl-containing compounds, see: De Benedetti et al. (1985). For related structures, see: Li (2011); Sankar et al. (2012); Chakkaravarthi et al. (2008); Rodriguez et al. (1995).

Experimental top

Lithium bis(trimethyl silyl)amide(LHMDS) (5.4 ml, 5.7 mmol, 1.06 molar solution in THF) was added drop wise to a 258 K cooled solution of bis 2,4-dichloro phenyl sulfonyl methane (1 g, 2.3 mmol) in distilled THF (15 ml) under argon. After being stirred at 258 K for 1 h, trans ethyl 4-bromo crotonate (2.5 mmol) in distilled THF (5 ml) was added drop wise over a period of 10 min and allowed the reaction mixture to warm up to the room temperature over a period of 1–2 h and stirred at r.t., for 24 h. The reaction mixture was quenched with sat NH4Cl (20 ml) and extracted with EtOAc (2x20 ml) washed with water (2x20 ml) and sat brine (20 ml), the organic layer was dried over MgSO4. Evaporation of the solvent under vacuum furnished desired crude product which was purified by column chromatography on silica gel (230–400mesh) with 17–20% of EtOAc in hexane afforded the title compound as a pale yellow solid with 65% yield.

Refinement top

Hydrogen atoms were placed in calculated positions with C—H ranging from 0.93 Å to 0.97 Å and refined using a riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5 Ueq(C) for the methyl group and Uiso(H) = 1.2 Ueq(C) for other groups. The ethoxy carbonyl moiety was disordered over the positions O4/C12/C13:O4 /C12 /C13 with site-occupancy factors of 0.739 (11) and 0.261 (11). The absolute configuration of the reported structure was ascertained by anomalous dispersion. The refined Flack parameter (Flack, 1983) was 0.04 (6); 1417 Friedel pairs of unmerged reflections were used.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the crystal packing. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
(2E,4E)-Ethyl 5-(2,4-dichlorophenylsulfonyl)penta-2,4-dienoate top
Crystal data top
C13H12Cl2O4SF(000) = 344
Mr = 335.19Dx = 1.470 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 8834 reflections
a = 5.773 (5) Åθ = 2.1–31.2°
b = 9.939 (5) ŵ = 0.57 mm1
c = 13.268 (5) ÅT = 293 K
β = 95.876 (5)°Block, colourless
V = 757.3 (8) Å30.30 × 0.30 × 0.20 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2471 independent reflections
Radiation source: fine-focus sealed tube2314 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and ϕ scanθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 66
Tmin = 0.824, Tmax = 0.847k = 118
6848 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0288P)2 + 0.2277P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2471 reflectionsΔρmax = 0.24 e Å3
209 parametersΔρmin = 0.21 e Å3
74 restraintsAbsolute structure: Flack (1983), 1054 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (6)
Crystal data top
C13H12Cl2O4SV = 757.3 (8) Å3
Mr = 335.19Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.773 (5) ŵ = 0.57 mm1
b = 9.939 (5) ÅT = 293 K
c = 13.268 (5) Å0.30 × 0.30 × 0.20 mm
β = 95.876 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2471 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2314 reflections with I > 2σ(I)
Tmin = 0.824, Tmax = 0.847Rint = 0.023
6848 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.074Δρmax = 0.24 e Å3
S = 1.06Δρmin = 0.21 e Å3
2471 reflectionsAbsolute structure: Flack (1983), 1054 Friedel pairs
209 parametersAbsolute structure parameter: 0.04 (6)
74 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5395 (4)0.2357 (3)0.6203 (2)0.0521 (6)
C20.5786 (6)0.1770 (3)0.7135 (2)0.0667 (8)
H20.70970.19910.75710.080*
C30.4218 (6)0.0853 (4)0.7415 (2)0.0741 (9)
C40.2235 (6)0.0511 (3)0.6808 (2)0.0714 (8)
H40.11710.00970.70280.086*
C50.1869 (5)0.1095 (3)0.5862 (2)0.0597 (7)
H50.05610.08590.54300.072*
C60.3436 (4)0.2036 (3)0.5546 (2)0.0486 (6)
C70.5117 (4)0.2097 (3)0.3680 (2)0.0530 (6)
H70.66350.23870.38580.064*
C80.4707 (4)0.1217 (3)0.2951 (2)0.0518 (6)
H80.31720.09810.27470.062*
C90.6546 (4)0.0595 (3)0.24492 (19)0.0536 (6)
H90.80720.08470.26560.064*
C100.6203 (5)0.0303 (3)0.1722 (2)0.0577 (7)
H100.46870.05340.14780.069*
C110.8169 (6)0.0953 (4)0.1282 (2)0.0722 (9)
O10.0716 (3)0.2181 (2)0.38846 (15)0.0669 (6)
O20.3050 (4)0.4175 (2)0.43995 (17)0.0713 (6)
O31.0171 (4)0.0764 (4)0.1560 (2)0.1189 (12)
Cl10.4769 (3)0.00684 (14)0.85912 (9)0.1250 (5)
Cl20.74573 (11)0.35013 (8)0.58707 (6)0.0671 (2)
S10.28638 (10)0.27417 (7)0.43281 (5)0.05173 (18)
O40.7333 (12)0.1885 (7)0.0550 (6)0.0776 (16)0.739 (11)
C120.9044 (15)0.2721 (8)0.0100 (6)0.103 (2)0.739 (11)
H12A1.02890.29630.06150.124*0.739 (11)
H12B0.83060.35430.01640.124*0.739 (11)
C130.9999 (15)0.2001 (9)0.0710 (7)0.137 (3)0.739 (11)
H13A1.11270.25560.09950.205*0.739 (11)
H13B1.07340.11900.04470.205*0.739 (11)
H13C0.87690.17790.12260.205*0.739 (11)
O4'0.777 (3)0.1422 (19)0.0509 (18)0.079 (4)0.261 (11)
C12'0.966 (3)0.205 (2)0.0030 (17)0.094 (5)0.261 (11)
H12C1.06340.25710.05250.113*0.261 (11)
H12D1.06140.13650.02440.113*0.261 (11)
C13'0.865 (4)0.293 (2)0.0783 (15)0.125 (7)0.261 (11)
H13D0.98660.32740.11520.188*0.261 (11)
H13E0.75660.24250.12330.188*0.261 (11)
H13F0.78540.36620.04980.188*0.261 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0450 (13)0.0456 (16)0.0666 (17)0.0056 (10)0.0099 (11)0.0127 (12)
C20.0668 (19)0.067 (2)0.0655 (19)0.0109 (16)0.0055 (15)0.0085 (15)
C30.091 (2)0.067 (2)0.067 (2)0.020 (2)0.0172 (17)0.0022 (17)
C40.075 (2)0.0610 (19)0.084 (2)0.0022 (17)0.0347 (17)0.0024 (18)
C50.0443 (14)0.0577 (19)0.080 (2)0.0016 (11)0.0208 (13)0.0074 (15)
C60.0369 (12)0.0445 (14)0.0659 (16)0.0061 (11)0.0119 (11)0.0089 (12)
C70.0330 (12)0.0651 (18)0.0621 (16)0.0004 (11)0.0112 (11)0.0003 (14)
C80.0345 (12)0.0667 (17)0.0549 (15)0.0035 (11)0.0075 (11)0.0052 (13)
C90.0401 (12)0.0696 (18)0.0526 (14)0.0002 (14)0.0119 (10)0.0025 (15)
C100.0445 (14)0.0692 (19)0.0602 (16)0.0018 (12)0.0088 (12)0.0036 (15)
C110.0620 (19)0.096 (3)0.0594 (17)0.0193 (17)0.0110 (15)0.0055 (17)
O10.0306 (8)0.0966 (16)0.0740 (13)0.0012 (9)0.0072 (8)0.0091 (11)
O20.0631 (12)0.0541 (13)0.0978 (16)0.0121 (11)0.0133 (11)0.0071 (12)
O30.0513 (14)0.201 (3)0.1044 (19)0.0282 (17)0.0099 (13)0.048 (2)
Cl10.1582 (11)0.1325 (11)0.0856 (7)0.0214 (8)0.0194 (7)0.0369 (6)
Cl20.0490 (4)0.0649 (4)0.0873 (5)0.0096 (4)0.0072 (3)0.0181 (4)
S10.0318 (3)0.0585 (4)0.0656 (4)0.0040 (3)0.0089 (2)0.0020 (4)
O40.079 (3)0.069 (4)0.088 (2)0.002 (2)0.024 (2)0.027 (3)
C120.120 (5)0.084 (5)0.111 (5)0.001 (4)0.036 (4)0.033 (4)
C130.148 (7)0.119 (7)0.157 (7)0.014 (5)0.081 (6)0.010 (5)
O4'0.084 (8)0.062 (9)0.090 (7)0.001 (6)0.004 (6)0.031 (7)
C12'0.105 (9)0.089 (10)0.095 (8)0.003 (8)0.041 (8)0.039 (8)
C13'0.164 (15)0.109 (14)0.104 (12)0.009 (12)0.019 (11)0.054 (11)
Geometric parameters (Å, º) top
C1—C21.366 (4)C10—H100.9300
C1—C61.393 (4)C11—O4'1.13 (2)
C1—Cl21.735 (3)C11—O31.191 (4)
C2—C31.363 (5)C11—O41.392 (8)
C2—H20.9300O1—S11.430 (2)
C3—C41.373 (5)O2—S11.431 (2)
C3—Cl11.744 (3)O4—C121.464 (6)
C4—C51.380 (4)C12—C131.447 (9)
C4—H40.9300C12—H12A0.9700
C5—C61.395 (4)C12—H12B0.9700
C5—H50.9300C13—H13A0.9600
C6—S11.761 (3)C13—H13B0.9600
C7—C81.307 (4)C13—H13C0.9600
C7—S11.752 (3)O4'—C12'1.456 (10)
C7—H70.9300C12'—C13'1.461 (17)
C8—C91.449 (4)C12'—H12C0.9700
C8—H80.9300C12'—H12D0.9700
C9—C101.315 (4)C13'—H13D0.9600
C9—H90.9300C13'—H13E0.9600
C10—C111.477 (4)C13'—H13F0.9600
C2—C1—C6121.1 (3)O4—C11—C10109.9 (4)
C2—C1—Cl2117.1 (2)O1—S1—O2118.12 (13)
C6—C1—Cl2121.7 (2)O1—S1—C7108.15 (13)
C3—C2—C1118.7 (3)O2—S1—C7109.99 (13)
C3—C2—H2120.7O1—S1—C6107.18 (12)
C1—C2—H2120.7O2—S1—C6109.29 (14)
C2—C3—C4122.9 (3)C7—S1—C6103.03 (12)
C2—C3—Cl1118.5 (3)C11—O4—C12117.5 (6)
C4—C3—Cl1118.6 (3)C13—C12—O4110.3 (6)
C3—C4—C5118.0 (3)C13—C12—H12A109.6
C3—C4—H4121.0O4—C12—H12A109.6
C5—C4—H4121.0C13—C12—H12B109.6
C4—C5—C6120.8 (3)O4—C12—H12B109.6
C4—C5—H5119.6H12A—C12—H12B108.1
C6—C5—H5119.6C12—C13—H13A109.5
C1—C6—C5118.4 (3)C12—C13—H13B109.5
C1—C6—S1123.1 (2)H13A—C13—H13B109.5
C5—C6—S1118.5 (2)C12—C13—H13C109.5
C8—C7—S1121.3 (2)H13A—C13—H13C109.5
C8—C7—H7119.3H13B—C13—H13C109.5
S1—C7—H7119.3C11—O4'—C12'118.9 (17)
C7—C8—C9122.7 (2)O4'—C12'—C13'108.6 (13)
C7—C8—H8118.7O4'—C12'—H12C110.0
C9—C8—H8118.7C13'—C12'—H12C110.0
C10—C9—C8124.4 (2)O4'—C12'—H12D110.0
C10—C9—H9117.8C13'—C12'—H12D110.0
C8—C9—H9117.8H12C—C12'—H12D108.4
C9—C10—C11121.5 (3)C12'—C13'—H13D109.5
C9—C10—H10119.2C12'—C13'—H13E109.5
C11—C10—H10119.2H13D—C13'—H13E109.5
O4'—C11—O3116.5 (10)C12'—C13'—H13F109.5
O3—C11—O4125.2 (4)H13D—C13'—H13F109.5
O4'—C11—C10116.6 (10)H13E—C13'—H13F109.5
O3—C11—C10124.7 (3)
C6—C1—C2—C30.1 (4)C9—C10—C11—O4178.3 (4)
Cl2—C1—C2—C3179.1 (2)C8—C7—S1—O12.3 (3)
C1—C2—C3—C41.2 (5)C8—C7—S1—O2132.6 (2)
C1—C2—C3—Cl1178.1 (2)C8—C7—S1—C6110.9 (3)
C2—C3—C4—C52.1 (5)C1—C6—S1—O1179.8 (2)
Cl1—C3—C4—C5177.3 (2)C5—C6—S1—O11.1 (2)
C3—C4—C5—C61.8 (4)C1—C6—S1—O250.6 (2)
C2—C1—C6—C50.1 (4)C5—C6—S1—O2130.3 (2)
Cl2—C1—C6—C5179.29 (19)C1—C6—S1—C766.3 (2)
C2—C1—C6—S1179.0 (2)C5—C6—S1—C7112.8 (2)
Cl2—C1—C6—S10.2 (3)O4'—C11—O4—C1273 (3)
C4—C5—C6—C10.8 (4)O3—C11—O4—C121.3 (9)
C4—C5—C6—S1180.0 (2)C10—C11—O4—C12174.4 (5)
S1—C7—C8—C9175.6 (2)C11—O4—C12—C1382.9 (10)
C7—C8—C9—C10179.3 (3)O3—C11—O4'—C12'15 (2)
C8—C9—C10—C11176.5 (3)O4—C11—O4'—C12'105 (4)
C9—C10—C11—O4'159.7 (13)C10—C11—O4'—C12'178.7 (15)
C9—C10—C11—O32.6 (6)C11—O4'—C12'—C13'163 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.932.363.217 (4)153
C9—H9···O1i0.932.503.312 (4)146
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.932.363.217 (4)153
C9—H9···O1i0.932.503.312 (4)146
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

SA and VS thank the UGC, India, for financial support. The authors thank Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT, Chennai, India, for the

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationChakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o542.  Web of Science CSD CrossRef IUCr Journals
First citationDe Benedetti, P. G., Folli, U., Iarossi, D. & Frassineti, C. (1985). J. Chem. Soc. Perkin Trans. 2, pp. 1527–1532.  CrossRef
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals
First citationLi, X.-L. (2011). Acta Cryst. E67, o2622.  Web of Science CSD CrossRef IUCr Journals
First citationRodriguez, J. G., del Valle, C., Esteban-Calderon, C. & Martinez-Repoll, M. (1995). J. Chem. Crystallogr. 25, 249–257.  CSD CrossRef Web of Science
First citationSankar, U., Sabari, V., Suresh, G., Uma, R. & Aravindhan, S. (2012). Acta Cryst. E68, o1093.  CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds