organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Xylidinium nitrate

aLaboratoire de chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
*Correspondence e-mail: houda_marouani@voila.fr

(Received 18 August 2013; accepted 20 August 2013; online 23 August 2013)

In the crystal structure of the title compound, C8H12N+·NO3, the 2,3-xylidinium (2,3-di­methyl­anilinium) cations are connected to the nitrate anions through bifurcated N—H⋯(O,O) and weak C—H⋯O hydrogen bonds, generating corrugated layers parallel to (001) at z = 0.25 and 0.75. These layers are connected via C—H⋯O inter­actions, giving rise to a three-dimensional network.

Related literature

For related structures, see: Marouani et al. (2010[Marouani, H., Elmi, L., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o535.], 2012[Marouani, H., Raouafi, N., Toumi Akriche, S., Al-Deyab, S. S. & Rzaigui, M. (2012). E-J. Chem. 9, 772-779.]). For graph-set notation of hydrogen-bonding motifs, see: Bernstein et al. (1995[Bernstein, J., David, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12N+·NO3

  • Mr = 184.20

  • Orthorhombic, P b c a

  • a = 10.889 (2) Å

  • b = 10.110 (2) Å

  • c = 17.010 (3) Å

  • V = 1872.5 (6) Å3

  • Z = 8

  • Ag Kα radiation

  • λ = 0.56083 Å

  • μ = 0.06 mm−1

  • T = 293 K

  • 0.4 × 0.3 × 0.2 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 8719 measured reflections

  • 4541 independent reflections

  • 1933 reflections with I > 2σ(I)

  • Rint = 0.056

  • 2 standard reflections every 120 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.178

  • S = 0.86

  • 4541 reflections

  • 121 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3 0.89 2.03 2.915 (2) 177
N2—H2A⋯O2 0.89 2.64 3.296 (2) 131
N2—H2B⋯O1i 0.89 2.11 2.995 (2) 171
N2—H2B⋯O2i 0.89 2.46 3.148 (2) 134
N2—H2C⋯O3ii 0.89 2.15 2.973 (2) 153
N2—H2C⋯O1ii 0.89 2.36 3.158 (2) 149
C4—H4⋯O2iii 0.93 2.57 3.439 (3) 156
C7—H7A⋯O1ii 0.96 2.63 3.522 (3) 155
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) -x, -y+1, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Putz 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

As a part of our study of crystal packing containing the 2,3-xylidinium cation (Marouani, et al., 2010), we report here the preparation and the crystal structure of the title compound (I).

The asymmetric unit of (I) is composed of nitrate anion and 2,3-xylidinium cation (Fig. 1). The bond distances and angles in the anion and the cation agree very well with the corresponding bond distances and angles reported earlier for the anion (Marouani et al., 2012) and the cation (Marouani et al., 2010). The aromatic ring of the cation is essentially planar with an r.m.s deviation of 0.0017 Å. The interplanar distance between the rings of the cations is in the vicinity of 3.569 Å, indicating the formation of ππ interactions.

The cations are connected to the anions through bifurcated N—H···O(O) and weak C7—H7A···O1 hydrogen bonds (Table 1), generating a corrugated layers parallel to the (001) plane at z = 0.25 and 0.75 (Fig. 2). These layers are connected via C4—H4···O2 interactions, giving rise to a three-dimensional network. Each cation is bonded to three different nitrate anions through six N—H···O hydrogen bonds forming R63(12) and R12(4) motifs in the graph-set notation (Fig. 3) (Bernstein et al., 1995). All the hydrogen bonds, the van der Waals contacts, and electrostatic interactions between the different entities give rise to a three-dimensional network in the structure and add stability to the compound.

Related literature top

For related structures, see: Marouani et al. (2010, 2012). For graph-set notation of hydrogen-bonding motifs, see: Bernstein et al. (1995).

Experimental top

Single crystals of the title compound were prepared at room temperature from an aqueous mixture of 2,3-xylidine ( 1 mmol) and nitric acid (1 mmol). The mixture was stirred for 15 min then slowly evaporated at room temperature until the formation of good quality pink prismatic single crystals.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.96 Å (methyl), N—H = 0.89 Å with Uiso(H) = 1.2Ueq(C or N).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz 2005); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. An ORTEP view of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dotted lines.
[Figure 2] Fig. 2. Projection of (I) along the b axis. The H-atoms not involved in H-bonding are omitted.
[Figure 3] Fig. 3. Hydrogen bond motifs in (I).
2,3-Dimethylanilinium nitrate top
Crystal data top
C8H12N+·NO3F(000) = 784
Mr = 184.20Dx = 1.307 Mg m3
Orthorhombic, PbcaAg Kα radiation, λ = 0.56083 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 10.889 (2) Åθ = 8–10°
b = 10.110 (2) ŵ = 0.06 mm1
c = 17.010 (3) ÅT = 293 K
V = 1872.5 (6) Å3Prism, pink
Z = 80.4 × 0.3 × 0.2 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.056
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.4°
Graphite monochromatorh = 183
non–profiled ω scansk = 516
8719 measured reflectionsl = 228
4541 independent reflections2 standard reflections every 120 min
1933 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 0.86 w = 1/[σ2(Fo2) + (0.0586P)2]
where P = (Fo2 + 2Fc2)/3
4541 reflections(Δ/σ)max < 0.001
121 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C8H12N+·NO3V = 1872.5 (6) Å3
Mr = 184.20Z = 8
Orthorhombic, PbcaAg Kα radiation, λ = 0.56083 Å
a = 10.889 (2) ŵ = 0.06 mm1
b = 10.110 (2) ÅT = 293 K
c = 17.010 (3) Å0.4 × 0.3 × 0.2 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.056
8719 measured reflections2 standard reflections every 120 min
4541 independent reflections intensity decay: 2%
1933 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 0.86Δρmax = 0.13 e Å3
4541 reflectionsΔρmin = 0.15 e Å3
121 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.10288 (17)0.74955 (19)0.26311 (10)0.0625 (5)
O20.01325 (15)0.68356 (15)0.24486 (9)0.0858 (6)
O30.18890 (15)0.69932 (14)0.30086 (10)0.0812 (5)
O10.11018 (16)0.86708 (16)0.24375 (10)0.0992 (6)
C20.22220 (17)0.44029 (17)0.46097 (12)0.0523 (5)
C10.12753 (19)0.39756 (18)0.41282 (12)0.0517 (5)
N20.13609 (14)0.42040 (15)0.32795 (10)0.0613 (5)
H2A0.14900.50600.31890.092*
H2B0.06630.39560.30500.092*
H2C0.19810.37350.30840.092*
C30.2094 (2)0.4186 (2)0.54217 (13)0.0629 (6)
C60.0239 (2)0.33705 (19)0.44060 (15)0.0668 (6)
H60.03810.31110.40630.080*
C70.33189 (17)0.5102 (2)0.42887 (14)0.0669 (6)
H7A0.33610.49680.37310.100*
H7B0.40480.47560.45310.100*
H7C0.32540.60300.43980.100*
C40.1061 (2)0.3555 (2)0.56938 (15)0.0788 (7)
H40.09860.33940.62300.095*
C50.0131 (2)0.3153 (2)0.51969 (16)0.0792 (8)
H50.05640.27380.53980.095*
C80.3045 (2)0.4673 (3)0.59902 (15)0.0933 (8)
H8A0.30940.56190.59620.140*
H8B0.38280.42970.58590.140*
H8C0.28210.44130.65140.140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0656 (11)0.0694 (12)0.0525 (10)0.0014 (12)0.0011 (10)0.0037 (10)
O20.0669 (10)0.1033 (14)0.0872 (12)0.0192 (10)0.0084 (9)0.0135 (9)
O30.0770 (10)0.0763 (11)0.0902 (12)0.0059 (9)0.0291 (10)0.0099 (9)
O10.1262 (15)0.0573 (9)0.1142 (14)0.0031 (11)0.0345 (13)0.0181 (10)
C20.0550 (13)0.0402 (11)0.0615 (13)0.0111 (10)0.0002 (10)0.0052 (10)
C10.0564 (12)0.0385 (10)0.0601 (13)0.0065 (10)0.0027 (11)0.0020 (9)
N20.0620 (11)0.0539 (10)0.0681 (12)0.0002 (9)0.0070 (9)0.0017 (9)
C30.0766 (16)0.0531 (13)0.0590 (14)0.0207 (12)0.0058 (12)0.0057 (11)
C60.0624 (14)0.0465 (12)0.0915 (17)0.0005 (12)0.0080 (13)0.0024 (12)
C70.0590 (13)0.0721 (14)0.0696 (14)0.0010 (12)0.0089 (11)0.0076 (12)
C40.104 (2)0.0593 (15)0.0731 (16)0.0218 (15)0.0272 (17)0.0126 (13)
C50.0821 (18)0.0518 (15)0.104 (2)0.0026 (13)0.0325 (16)0.0089 (14)
C80.111 (2)0.103 (2)0.0656 (15)0.0249 (18)0.0158 (15)0.0014 (14)
Geometric parameters (Å, º) top
N1—O21.222 (2)C3—C81.500 (3)
N1—O11.236 (2)C6—C51.368 (3)
N1—O31.244 (2)C6—H60.9300
C2—C11.386 (3)C7—H7A0.9600
C2—C31.406 (3)C7—H7B0.9600
C2—C71.491 (3)C7—H7C0.9600
C1—C61.368 (3)C4—C51.381 (3)
C1—N21.465 (2)C4—H40.9300
N2—H2A0.8900C5—H50.9300
N2—H2B0.8900C8—H8A0.9600
N2—H2C0.8900C8—H8B0.9600
C3—C41.373 (3)C8—H8C0.9600
O2—N1—O1120.6 (2)C5—C6—H6120.6
O2—N1—O3120.63 (19)C2—C7—H7A109.5
O1—N1—O3118.80 (19)C2—C7—H7B109.5
C1—C2—C3117.3 (2)H7A—C7—H7B109.5
C1—C2—C7121.81 (19)C2—C7—H7C109.5
C3—C2—C7120.9 (2)H7A—C7—H7C109.5
C6—C1—C2123.3 (2)H7B—C7—H7C109.5
C6—C1—N2117.6 (2)C3—C4—C5122.1 (2)
C2—C1—N2119.08 (18)C3—C4—H4118.9
C1—N2—H2A109.5C5—C4—H4118.9
C1—N2—H2B109.5C6—C5—C4119.4 (2)
H2A—N2—H2B109.5C6—C5—H5120.3
C1—N2—H2C109.5C4—C5—H5120.3
H2A—N2—H2C109.5C3—C8—H8A109.5
H2B—N2—H2C109.5C3—C8—H8B109.5
C4—C3—C2119.0 (2)H8A—C8—H8B109.5
C4—C3—C8120.0 (2)C3—C8—H8C109.5
C2—C3—C8120.9 (2)H8A—C8—H8C109.5
C1—C6—C5118.9 (2)H8B—C8—H8C109.5
C1—C6—H6120.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.892.032.915 (2)177
N2—H2A···O20.892.643.296 (2)131
N2—H2B···O1i0.892.112.995 (2)171
N2—H2B···O2i0.892.463.148 (2)134
N2—H2C···O3ii0.892.152.973 (2)153
N2—H2C···O1ii0.892.363.158 (2)149
C4—H4···O2iii0.932.573.439 (3)156
C7—H7A···O1ii0.962.633.522 (3)155
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1/2, y1/2, z; (iii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.892.032.915 (2)176.5
N2—H2A···O20.892.643.296 (2)130.8
N2—H2B···O1i0.892.112.995 (2)170.7
N2—H2B···O2i0.892.463.148 (2)134.2
N2—H2C···O3ii0.892.152.973 (2)153.1
N2—H2C···O1ii0.892.363.158 (2)149.4
C4—H4···O2iii0.932.573.439 (3)156.4
C7—H7A···O1ii0.962.633.522 (3)155.4
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1/2, y1/2, z; (iii) x, y+1, z+1.
 

Acknowledgements

This work was supported by the Tunisian Ministry of HEScR.

References

First citationBernstein, J., David, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal impact GbR, Bonn, Germany.
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
First citationMarouani, H., Elmi, L., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o535.  Web of Science CSD CrossRef IUCr Journals
First citationMarouani, H., Raouafi, N., Toumi Akriche, S., Al-Deyab, S. S. & Rzaigui, M. (2012). E-J. Chem. 9, 772–779.  CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds