organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Adamantan-1-yl)-N-(6-meth­­oxy-1,3-benzo­thia­zol-2-yl)acetamide

aDepartment of Chemistry and Chemical Technology, Togliatti State University, 14 Belorusskaya St, Togliatti 445667, Russian Federation, bDepartment of Organic, Bioorganic and Medicinal Chemistry, Samara State University, 1 Academician Pavlov St, Samara 443011, Russian Federation, and cX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: a.s.bunev@gmail.com

(Received 17 August 2013; accepted 19 August 2013; online 23 August 2013)

The asymmetric unit of the title compound, C20H24N2O2S, contains two independent mol­ecules having very similar geometries. The main N-(6-meth­oxy-1,3-benzo­thia­zol-2-yl)acetamide moiety adopts an almost planar structure (r.m.s. deviations of 0.091 and 0.051 Å for the two independent molecules). The adamantyl substituent occupies the gauche position relative to the C—N bond of the acetamide moiety [the corresponding N–C–C–C dihedral angles are −100.3 (3) and −96.5 (3)° for the two independent mol­ecules]. In the crystal, the two independent mol­ecules form a dimer via a pair of N—H⋯N hydrogen bonds. The dimers are further linked by C—H⋯O hydrogen bonds and attractive S⋯S [3.622 (2) Å] inter­actions into ribbons along [100].

Related literature

For properties of benzo­thia­zoles as building blocks in organic synthesis, see: Gupta & Rawat (2010[Gupta, A. & Rawat, S. (2010). J. Curr. Pharm. Res. 3, 13-23.]); Facchinetti et al. (2012[Facchinetti, V., da Reis, R., Gomes, C. R. B. & Vasconcelos, T. R. A. (2012). Mini-Rev. Org. Chem. 9, 44-53.]); Sareen et al. (2012[Sareen, S., Shinde, D., Khatri, V. & Sareen, V. (2012). Heterocycl. Lett. 2, 361-377.]); Radatz et al. (2013[Radatz, C. S., Alves, D. & Schneider, P. H. (2013). Tetrahedron, 69, 1316-1321.]). For syntheses and properties of 2-substituted benzo­thia­zoles, see: Hussein et al. (2012[Hussein, B. H. M., Azab, H. A., El-Azab, M. F. & El-Falouji, A. I. (2012). Eur. J. Med. Chem. 51, 99-109.]); Ugale et al. (2012[Ugale, V. G., Patel, H. M., Wadodkar, S. G., Bari, S. B., Shirkhedkar, A. A. & Surana, S. J. (2012). Eur. J. Med. Chem. 53, 107-113.]); Yoo et al. (2012[Yoo, E., Hayat, F., Rhim, H. & Choo, H. P. (2012). Bioorg. Med. Chem. 20, 2707-2712.]); Zhu et al. (2012[Zhu, X. Y., Etukala, J. R., Eyunni, S. V. K., Setola, V., Roth, B. L. & Ablordeppey, S. Y. (2012). Eur. J. Med. Chem. 53, 124-132.]); Bhardwaj et al. (2013[Bhardwaj, V. K., Saluja, P., Hundal, G., Hundal, M. S., Singh, N. & Jang, D. O. (2013). Tetrahedron, 69, 1606-1610.]); Patel et al. (2013[Patel, N. B., Khan, I. H., Pannecouque, C. & De Clercq, E. (2013). Med. Chem. Res. 22, 1320-1329.]).

[Scheme 1]

Experimental

Crystal data
  • C20H24N2O2S

  • Mr = 356.48

  • Triclinic, [P \overline 1]

  • a = 11.0114 (13) Å

  • b = 13.6647 (18) Å

  • c = 13.9230 (18) Å

  • α = 61.554 (3)°

  • β = 80.252 (3)°

  • γ = 89.782 (4)°

  • V = 1808.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.962, Tmax = 0.981

  • 17897 measured reflections

  • 7124 independent reflections

  • 4424 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.115

  • S = 0.91

  • 7124 reflections

  • 459 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯N3 0.87 (3) 2.13 (3) 2.995 (3) 169 (2)
N4—H4N⋯N1 0.78 (3) 2.30 (3) 3.077 (3) 174 (2)
C6—H6⋯O3i 0.95 2.58 3.452 (3) 153
C26—H26⋯O1ii 0.95 2.45 3.392 (3) 174
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzothiazoles are important and versatile building blocks in organic synthesis, in particular, for production of various biologically active compounds in medicinal and industrial fields (Gupta & Rawat, 2010; Facchinetti et al., 2012; Sareen et al., 2012; Radatz et al., 2013). Notably, among all benzothiazole derivatives, 2-substituted benzothiazoles are of special interest due to their multiple applications as medicinal agents, agrochemicals, materials for chemical sensors etc. (Hussein et al., 2012; Ugale et al., 2012; Yoo et al., 2012; Zhu et al., 2012; Bhardwaj et al., 2013; Patel et al., 2013).

In this work, a 2-(1-adamantyl)-N-(6-methoxy-1,3-benzothiazol-2-yl)acetamide, C20H24N2O2S, (I) was prepared by the reaction of 1-(1-adamantylacetyl)-1H-imidazole with 6-methoxy-1,3-benzothiazol-2-amine (Fig. 1) and its structure was unambiguously established by the X-ray diffraction study.

Compound I crystallizes in the triclinic P1 space group with two crystallographically independent molecules forming an H-bonded dimer by the two classical intermolecular N–H···N hydrogen bonds (Table 1, Fig. 2). The geometries of these two independent molecules are very similar. The main N-(6-oxy-1,3-benzothiazol-2-yl)acetamide fragment adopts almost planar structure determined by the long chain of conjugated bonds. The adamantyl substituent occupies the gauche position in relative to the C–N bond of the acetamide moiety (the corresponding N–C–C–C dihedral angles are -100.3 (3)° and -96.5 (3)° for the two independent molecules, respectively).

In the crystal, the H-bonded dimers of I are linked by the intermolecular C6–H6···O3i and C26–H26···O1ii non-classical hydrogen bonds (Table 1) as well as attractive S1···S2i (3.622 (2)Å) interactions into ribbons toward [100] (Fig. 3). Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Related literature top

For properties of benzothiazoles as building blocks in organic synthesis, see: Gupta & Rawat (2010); Facchinetti et al. (2012); Sareen et al. (2012); Radatz et al. (2013). For syntheses and properties of 2-substituted benzothiazoles, see: Hussein et al. (2012); Ugale et al. (2012); Yoo et al. (2012); Zhu et al. (2012); Bhardwaj et al. (2013); Patel et al. (2013).

Experimental top

A mixture 1-(1-adamantylacetyl)-1H-imidazole (1.06 g, 4.3 mmol) and 6-methoxy-1,3-benzothiazol-2-amine (0.9 g, 4.9 mmol) in CHCl3 (50 ml) were refluxed for 6 h. The precipitate was filtered, and then reaction mixture was concentrated in vacuo. The residue crystallized from 80% EtOH. Yield is 22%. The single crystals of the product I was obtained by slow crystallization from EtOH. M.p. = 485-486 K. IR (KBr), ν/cm-1: 3178, 2903, 2848, 1668, 1604, 1472, 1267, 1062, 827. 1H NMR (500 MHz, DMSO-d6, 304 K): δ = 1.52-1.49 (m, 6H), 1.66-1.63 (m, 6H), 1.96-1.93 (m, 3H), 2.63-2.61(m, 2H), 3.76 (s, 3H), 7.03-7.01 (m, 1H), 7.35-7.34 (m, 1H), 7.73 (dd, 1H, J = 8.87). Anal. Calcd for C20H24N2O2S: C, 67.38; H, 6.79. Found: C,67.32; H, 6.82.

Refinement top

The hydrogen atoms of the amino groups were localized in the difference Fourier map and included in the refinement with fixed positional and isotropic displacement parameters - Uiso(H) = 1.2Ueq(N). The other hydrogen atoms were placed in the calculated positions with C–H = 0.95Å (for aryl H), 0.98Å (for methyl H), 0.99Å (for methylene H), 1.00Å (for methine H) and refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5Ueq(C) for the CH3 groups and 1.2Ueq(C) for the other CH groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The reaction of 1-(1-adamantylacetyl)-1H-imidazole with 6-methoxy-1,3-benzothiazol-2-amine.
[Figure 2] Fig. 2. Molecular structure of I. The two crystallographically independent molecules forming the H-bonded dimer are shown. Displacement ellipsoids are presented at the 40% probability level. H atoms are depicted as small spheres of arbitrary radius. The dashed lines indicate the intermolecular N–H···N hydrogen bonds.
[Figure 3] Fig. 3. A portion of the crystal structure of I demonstrating the H-bonded ribbons toward [100]. The hydrogen atoms participating in the formation of hydrogen bonds are shown only. The intermolecular N–H···N and C–H···O hydrogen bonds as well as attractive S···S interactions are depicted by dashed lines.
2-(Adamantan-1-yl)-N-(6-methoxy-1,3-benzothiazol-2-yl)acetamide top
Crystal data top
C20H24N2O2SZ = 4
Mr = 356.48F(000) = 760
Triclinic, P1Dx = 1.309 Mg m3
Hall symbol: -P 1Melting point = 485–486 K
a = 11.0114 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.6647 (18) ÅCell parameters from 1305 reflections
c = 13.9230 (18) Åθ = 2.8–24.8°
α = 61.554 (3)°µ = 0.20 mm1
β = 80.252 (3)°T = 100 K
γ = 89.782 (4)°Prism, colourless
V = 1808.3 (4) Å30.20 × 0.15 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
7124 independent reflections
Radiation source: fine-focus sealed tube4424 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
ϕ and ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1313
Tmin = 0.962, Tmax = 0.981k = 1616
17897 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 0.91 w = 1/[σ2(Fo2) + (0.0515P)2]
where P = (Fo2 + 2Fc2)/3
7124 reflections(Δ/σ)max < 0.001
459 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C20H24N2O2Sγ = 89.782 (4)°
Mr = 356.48V = 1808.3 (4) Å3
Triclinic, P1Z = 4
a = 11.0114 (13) ÅMo Kα radiation
b = 13.6647 (18) ŵ = 0.20 mm1
c = 13.9230 (18) ÅT = 100 K
α = 61.554 (3)°0.20 × 0.15 × 0.10 mm
β = 80.252 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
7124 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
4424 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.981Rint = 0.071
17897 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 0.91Δρmax = 0.40 e Å3
7124 reflectionsΔρmin = 0.37 e Å3
459 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.64296 (6)0.03880 (6)0.19027 (6)0.02258 (17)
O10.59221 (16)0.16836 (15)0.23783 (15)0.0273 (4)
O20.80076 (16)0.44718 (15)0.07773 (17)0.0336 (5)
N10.47389 (18)0.14101 (17)0.07440 (17)0.0209 (5)
N20.4527 (2)0.05386 (18)0.14838 (18)0.0211 (5)
H2N0.382 (2)0.052 (2)0.128 (2)0.025*
C10.5129 (2)0.0436 (2)0.1310 (2)0.0201 (6)
C20.5505 (2)0.2228 (2)0.0741 (2)0.0211 (6)
C30.5429 (2)0.3383 (2)0.0151 (2)0.0254 (6)
H30.48010.36740.02760.030*
C40.6279 (2)0.4093 (2)0.0197 (2)0.0291 (7)
H40.62260.48770.01970.035*
C50.7219 (2)0.3676 (2)0.0817 (2)0.0254 (6)
C60.7324 (2)0.2535 (2)0.1401 (2)0.0234 (6)
H60.79620.22460.18170.028*
C70.6449 (2)0.1830 (2)0.1350 (2)0.0213 (6)
C80.4930 (2)0.1576 (2)0.2068 (2)0.0205 (6)
C90.4037 (2)0.2551 (2)0.2358 (2)0.0235 (6)
H9A0.44990.31220.22430.028*
H9B0.34370.22950.18510.028*
C100.3327 (2)0.3087 (2)0.3571 (2)0.0219 (6)
C110.2361 (2)0.3993 (2)0.3743 (2)0.0257 (6)
H11A0.17860.36500.32190.031*
H11B0.27810.45550.35830.031*
C120.1631 (2)0.4565 (2)0.4939 (2)0.0303 (7)
H120.10030.51480.50350.036*
C130.2510 (3)0.5111 (2)0.5755 (2)0.0320 (7)
H13A0.29270.56900.56220.038*
H13B0.20360.54750.65290.038*
C140.3477 (2)0.4215 (2)0.5595 (2)0.0295 (7)
H140.40580.45710.61220.035*
C150.2822 (3)0.3343 (3)0.5832 (3)0.0392 (8)
H15A0.34410.27680.57410.047*
H15B0.23580.37050.66080.047*
C160.1931 (3)0.2794 (2)0.5030 (2)0.0347 (7)
H160.15010.22260.51900.042*
C170.2657 (2)0.2223 (2)0.3826 (2)0.0278 (6)
H17A0.32700.16350.37190.033*
H17B0.20820.18660.33060.033*
C180.0973 (2)0.3689 (2)0.5174 (3)0.0347 (7)
H18A0.03960.33360.46550.042*
H18B0.04870.40530.59430.042*
C190.4204 (2)0.3648 (2)0.4400 (2)0.0246 (6)
H19A0.46360.42100.42470.029*
H19B0.48360.30790.43030.029*
C200.9080 (2)0.4100 (2)0.1270 (2)0.0304 (7)
H20A0.95420.47340.12300.046*
H20B0.96100.37840.08660.046*
H20C0.88220.35270.20500.046*
S20.03030 (6)0.00170 (5)0.16571 (5)0.02023 (16)
O30.01738 (16)0.16742 (15)0.20276 (15)0.0245 (4)
O40.15109 (16)0.34505 (15)0.11643 (15)0.0272 (4)
N30.19426 (18)0.04250 (17)0.10519 (16)0.0190 (5)
N40.18972 (19)0.11000 (18)0.13802 (18)0.0205 (5)
H4N0.262 (2)0.122 (2)0.118 (2)0.025*
C210.1303 (2)0.0230 (2)0.1335 (2)0.0173 (5)
C220.1119 (2)0.1226 (2)0.1075 (2)0.0191 (6)
C230.1451 (2)0.2080 (2)0.0829 (2)0.0230 (6)
H230.22970.21640.06250.028*
C240.0539 (2)0.2798 (2)0.0887 (2)0.0225 (6)
H240.07630.33880.07330.027*
C250.0717 (2)0.2682 (2)0.1169 (2)0.0234 (6)
C260.1078 (2)0.1851 (2)0.1433 (2)0.0210 (6)
H260.19260.17750.16410.025*
C270.0139 (2)0.1133 (2)0.1380 (2)0.0187 (5)
C280.1302 (2)0.1771 (2)0.1762 (2)0.0203 (6)
C290.2130 (2)0.2567 (2)0.1874 (2)0.0225 (6)
H29A0.17480.32820.16500.027*
H29B0.29320.27210.13600.027*
C300.2369 (2)0.2112 (2)0.3078 (2)0.0214 (6)
C310.3265 (2)0.2979 (2)0.3073 (2)0.0269 (6)
H31A0.40450.30990.25440.032*
H31B0.28920.37010.28250.032*
C320.3540 (3)0.2569 (3)0.4246 (2)0.0321 (7)
H320.41220.31370.42330.039*
C330.2330 (3)0.2398 (3)0.5059 (2)0.0352 (7)
H33A0.25030.21380.58150.042*
H33B0.19510.31150.48260.042*
C340.1442 (3)0.1534 (2)0.5075 (2)0.0317 (7)
H340.06530.14240.56050.038*
C350.2028 (3)0.0416 (2)0.5449 (2)0.0343 (7)
H35A0.21890.01350.62110.041*
H35B0.14530.01450.54580.041*
C360.3239 (3)0.0588 (2)0.4647 (2)0.0298 (7)
H360.36270.01350.48930.036*
C370.2961 (2)0.0997 (2)0.3474 (2)0.0248 (6)
H37A0.37390.10950.29490.030*
H37B0.23920.04300.34860.030*
C380.4127 (2)0.1466 (2)0.4617 (2)0.0312 (7)
H38A0.43190.12050.53660.037*
H38B0.49100.15750.40950.037*
C390.1164 (2)0.1944 (2)0.3902 (2)0.0265 (6)
H39A0.05770.13880.39160.032*
H39B0.07760.26580.36590.032*
C400.2808 (2)0.3360 (2)0.1403 (2)0.0265 (6)
H40A0.32700.39870.14280.040*
H40B0.30210.26550.08190.040*
H40C0.30230.33770.21230.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0177 (4)0.0212 (4)0.0290 (4)0.0032 (3)0.0085 (3)0.0108 (3)
O10.0208 (11)0.0255 (11)0.0340 (11)0.0054 (8)0.0092 (8)0.0119 (9)
O20.0232 (11)0.0238 (11)0.0607 (14)0.0043 (8)0.0137 (10)0.0241 (11)
N10.0162 (12)0.0213 (12)0.0255 (12)0.0040 (9)0.0062 (9)0.0108 (10)
N20.0159 (12)0.0215 (12)0.0275 (13)0.0032 (9)0.0069 (10)0.0123 (11)
C10.0142 (13)0.0246 (15)0.0218 (14)0.0024 (11)0.0028 (10)0.0117 (12)
C20.0166 (14)0.0218 (14)0.0252 (15)0.0002 (11)0.0006 (11)0.0131 (12)
C30.0175 (14)0.0235 (15)0.0343 (16)0.0065 (11)0.0065 (12)0.0128 (13)
C40.0239 (15)0.0207 (15)0.0415 (18)0.0052 (12)0.0044 (13)0.0145 (14)
C50.0189 (15)0.0258 (16)0.0366 (17)0.0008 (11)0.0022 (12)0.0202 (14)
C60.0187 (14)0.0245 (15)0.0287 (15)0.0029 (11)0.0044 (11)0.0142 (13)
C70.0166 (14)0.0222 (14)0.0253 (15)0.0035 (11)0.0016 (11)0.0123 (12)
C80.0205 (15)0.0215 (14)0.0231 (14)0.0056 (11)0.0062 (11)0.0129 (12)
C90.0231 (15)0.0223 (15)0.0323 (16)0.0058 (11)0.0095 (12)0.0177 (13)
C100.0185 (14)0.0204 (14)0.0288 (15)0.0031 (11)0.0057 (11)0.0130 (12)
C110.0226 (15)0.0213 (15)0.0371 (17)0.0031 (11)0.0122 (12)0.0152 (13)
C120.0190 (15)0.0248 (16)0.0458 (18)0.0010 (11)0.0070 (13)0.0158 (14)
C130.0255 (16)0.0283 (17)0.0342 (17)0.0001 (12)0.0035 (13)0.0094 (14)
C140.0241 (16)0.0334 (17)0.0263 (16)0.0020 (12)0.0088 (12)0.0094 (14)
C150.0351 (19)0.053 (2)0.0327 (17)0.0077 (15)0.0019 (14)0.0264 (16)
C160.0288 (17)0.0324 (17)0.0457 (19)0.0024 (13)0.0027 (14)0.0241 (16)
C170.0210 (15)0.0239 (15)0.0426 (18)0.0030 (12)0.0054 (12)0.0196 (14)
C180.0191 (16)0.0361 (18)0.0429 (19)0.0003 (13)0.0001 (13)0.0163 (15)
C190.0207 (15)0.0254 (15)0.0297 (16)0.0035 (11)0.0104 (12)0.0132 (13)
C200.0215 (16)0.0326 (17)0.0452 (18)0.0015 (12)0.0085 (13)0.0244 (15)
S20.0164 (4)0.0229 (4)0.0257 (4)0.0029 (3)0.0058 (3)0.0146 (3)
O30.0173 (10)0.0285 (11)0.0343 (11)0.0055 (8)0.0073 (8)0.0196 (9)
O40.0214 (11)0.0266 (11)0.0414 (12)0.0012 (8)0.0064 (8)0.0224 (10)
N30.0173 (12)0.0215 (12)0.0200 (12)0.0045 (9)0.0068 (9)0.0105 (10)
N40.0137 (11)0.0224 (12)0.0279 (13)0.0015 (10)0.0055 (10)0.0138 (11)
C210.0190 (14)0.0183 (14)0.0178 (13)0.0048 (10)0.0089 (10)0.0095 (11)
C220.0196 (14)0.0189 (14)0.0184 (13)0.0017 (11)0.0077 (11)0.0073 (11)
C230.0174 (14)0.0311 (16)0.0245 (15)0.0078 (11)0.0066 (11)0.0158 (13)
C240.0254 (15)0.0228 (14)0.0268 (15)0.0046 (11)0.0065 (11)0.0174 (13)
C250.0221 (15)0.0226 (15)0.0245 (15)0.0008 (11)0.0067 (11)0.0100 (12)
C260.0143 (14)0.0234 (15)0.0231 (14)0.0033 (11)0.0031 (11)0.0097 (12)
C270.0210 (14)0.0172 (13)0.0206 (14)0.0032 (10)0.0074 (11)0.0103 (11)
C280.0203 (15)0.0190 (14)0.0217 (14)0.0057 (11)0.0055 (11)0.0094 (12)
C290.0215 (15)0.0184 (14)0.0286 (15)0.0025 (11)0.0070 (11)0.0114 (12)
C300.0156 (14)0.0206 (14)0.0306 (15)0.0036 (10)0.0078 (11)0.0133 (12)
C310.0230 (15)0.0275 (16)0.0367 (17)0.0024 (12)0.0107 (12)0.0192 (14)
C320.0266 (17)0.0415 (18)0.0403 (18)0.0022 (13)0.0118 (13)0.0276 (16)
C330.0354 (18)0.0459 (19)0.0395 (18)0.0121 (14)0.0155 (14)0.0300 (16)
C340.0227 (16)0.0449 (19)0.0338 (17)0.0048 (13)0.0020 (12)0.0250 (15)
C350.0372 (19)0.0398 (19)0.0252 (16)0.0032 (14)0.0090 (13)0.0142 (14)
C360.0305 (17)0.0292 (16)0.0323 (16)0.0104 (13)0.0127 (13)0.0149 (14)
C370.0223 (15)0.0266 (15)0.0301 (16)0.0054 (12)0.0066 (12)0.0167 (13)
C380.0213 (16)0.0486 (19)0.0311 (16)0.0079 (13)0.0122 (12)0.0227 (15)
C390.0197 (15)0.0333 (16)0.0334 (16)0.0050 (12)0.0070 (12)0.0211 (14)
C400.0205 (15)0.0250 (15)0.0344 (16)0.0008 (11)0.0077 (12)0.0139 (13)
Geometric parameters (Å, º) top
S1—C71.739 (3)S2—C211.742 (2)
S1—C11.756 (2)S2—C271.743 (3)
O1—C81.225 (3)O3—C281.223 (3)
O2—C51.368 (3)O4—C251.372 (3)
O2—C201.436 (3)O4—C401.429 (3)
N1—C11.299 (3)N3—C211.300 (3)
N1—C21.401 (3)N3—C221.409 (3)
N2—C81.374 (3)N4—C281.376 (3)
N2—C11.385 (3)N4—C211.391 (3)
N2—H2N0.87 (3)N4—H4N0.78 (3)
C2—C71.397 (3)C22—C231.396 (3)
C2—C31.399 (3)C22—C271.403 (3)
C3—C41.381 (4)C23—C241.372 (3)
C3—H30.9500C23—H230.9500
C4—C51.404 (4)C24—C251.401 (3)
C4—H40.9500C24—H240.9500
C5—C61.389 (4)C25—C261.389 (4)
C6—C71.398 (3)C26—C271.397 (3)
C6—H60.9500C26—H260.9500
C8—C91.506 (3)C28—C291.502 (3)
C9—C101.542 (4)C29—C301.556 (3)
C9—H9A0.9900C29—H29A0.9900
C9—H9B0.9900C29—H29B0.9900
C10—C111.537 (3)C30—C391.538 (3)
C10—C171.539 (3)C30—C371.539 (3)
C10—C191.543 (3)C30—C311.540 (3)
C11—C121.530 (4)C31—C321.539 (4)
C11—H11A0.9900C31—H31A0.9900
C11—H11B0.9900C31—H31B0.9900
C12—C131.532 (4)C32—C381.523 (4)
C12—C181.534 (4)C32—C331.533 (4)
C12—H121.0000C32—H321.0000
C13—C141.534 (4)C33—C341.526 (4)
C13—H13A0.9900C33—H33A0.9900
C13—H13B0.9900C33—H33B0.9900
C14—C151.528 (4)C34—C351.540 (4)
C14—C191.528 (4)C34—C391.540 (4)
C14—H141.0000C34—H341.0000
C15—C161.529 (4)C35—C361.526 (4)
C15—H15A0.9900C35—H35A0.9900
C15—H15B0.9900C35—H35B0.9900
C16—C181.534 (4)C36—C381.532 (4)
C16—C171.538 (4)C36—C371.540 (4)
C16—H161.0000C36—H361.0000
C17—H17A0.9900C37—H37A0.9900
C17—H17B0.9900C37—H37B0.9900
C18—H18A0.9900C38—H38A0.9900
C18—H18B0.9900C38—H38B0.9900
C19—H19A0.9900C39—H39A0.9900
C19—H19B0.9900C39—H39B0.9900
C20—H20A0.9800C40—H40A0.9800
C20—H20B0.9800C40—H40B0.9800
C20—H20C0.9800C40—H40C0.9800
C7—S1—C187.98 (12)C21—S2—C2788.08 (12)
C5—O2—C20117.2 (2)C25—O4—C40117.6 (2)
C1—N1—C2109.1 (2)C21—N3—C22108.6 (2)
C8—N2—C1123.1 (2)C28—N4—C21124.1 (2)
C8—N2—H2N116.6 (17)C28—N4—H4N117 (2)
C1—N2—H2N119.9 (17)C21—N4—H4N119 (2)
N1—C1—N2122.0 (2)N3—C21—N4120.3 (2)
N1—C1—S1117.39 (19)N3—C21—S2118.23 (19)
N2—C1—S1120.53 (19)N4—C21—S2121.46 (19)
C7—C2—C3118.8 (2)C23—C22—C27118.9 (2)
C7—C2—N1115.4 (2)C23—C22—N3125.9 (2)
C3—C2—N1125.7 (2)C27—C22—N3115.3 (2)
C4—C3—C2119.2 (2)C24—C23—C22119.1 (2)
C4—C3—H3120.4C24—C23—H23120.4
C2—C3—H3120.4C22—C23—H23120.4
C3—C4—C5121.2 (3)C23—C24—C25121.6 (2)
C3—C4—H4119.4C23—C24—H24119.2
C5—C4—H4119.4C25—C24—H24119.2
O2—C5—C6124.1 (2)O4—C25—C26124.9 (2)
O2—C5—C4115.1 (2)O4—C25—C24114.3 (2)
C6—C5—C4120.8 (2)C26—C25—C24120.8 (2)
C5—C6—C7117.1 (2)C25—C26—C27117.0 (2)
C5—C6—H6121.4C25—C26—H26121.5
C7—C6—H6121.4C27—C26—H26121.5
C2—C7—C6122.9 (2)C26—C27—C22122.7 (2)
C2—C7—S1110.02 (19)C26—C27—S2127.5 (2)
C6—C7—S1126.9 (2)C22—C27—S2109.81 (18)
O1—C8—N2121.3 (2)O3—C28—N4120.8 (2)
O1—C8—C9123.1 (2)O3—C28—C29123.6 (2)
N2—C8—C9115.5 (2)N4—C28—C29115.6 (2)
C8—C9—C10112.4 (2)C28—C29—C30113.0 (2)
C8—C9—H9A109.1C28—C29—H29A109.0
C10—C9—H9A109.1C30—C29—H29A109.0
C8—C9—H9B109.1C28—C29—H29B109.0
C10—C9—H9B109.1C30—C29—H29B109.0
H9A—C9—H9B107.9H29A—C29—H29B107.8
C11—C10—C17108.7 (2)C39—C30—C37108.9 (2)
C11—C10—C9108.1 (2)C39—C30—C31108.6 (2)
C17—C10—C9111.7 (2)C37—C30—C31108.8 (2)
C11—C10—C19108.2 (2)C39—C30—C29111.3 (2)
C17—C10—C19108.9 (2)C37—C30—C29111.3 (2)
C9—C10—C19111.2 (2)C31—C30—C29107.9 (2)
C12—C11—C10110.6 (2)C32—C31—C30110.2 (2)
C12—C11—H11A109.5C32—C31—H31A109.6
C10—C11—H11A109.5C30—C31—H31A109.6
C12—C11—H11B109.5C32—C31—H31B109.6
C10—C11—H11B109.5C30—C31—H31B109.6
H11A—C11—H11B108.1H31A—C31—H31B108.1
C11—C12—C13110.0 (2)C38—C32—C33109.5 (2)
C11—C12—C18109.1 (2)C38—C32—C31109.3 (2)
C13—C12—C18109.1 (2)C33—C32—C31109.4 (2)
C11—C12—H12109.6C38—C32—H32109.5
C13—C12—H12109.6C33—C32—H32109.5
C18—C12—H12109.6C31—C32—H32109.5
C12—C13—C14109.3 (2)C34—C33—C32109.4 (2)
C12—C13—H13A109.8C34—C33—H33A109.8
C14—C13—H13A109.8C32—C33—H33A109.8
C12—C13—H13B109.8C34—C33—H33B109.8
C14—C13—H13B109.8C32—C33—H33B109.8
H13A—C13—H13B108.3H33A—C33—H33B108.2
C15—C14—C19109.4 (2)C33—C34—C35109.7 (2)
C15—C14—C13109.2 (2)C33—C34—C39109.8 (2)
C19—C14—C13109.8 (2)C35—C34—C39109.2 (2)
C15—C14—H14109.5C33—C34—H34109.4
C19—C14—H14109.5C35—C34—H34109.4
C13—C14—H14109.5C39—C34—H34109.4
C14—C15—C16109.9 (2)C36—C35—C34109.4 (2)
C14—C15—H15A109.7C36—C35—H35A109.8
C16—C15—H15A109.7C34—C35—H35A109.8
C14—C15—H15B109.7C36—C35—H35B109.8
C16—C15—H15B109.7C34—C35—H35B109.8
H15A—C15—H15B108.2H35A—C35—H35B108.3
C15—C16—C18109.5 (2)C35—C36—C38110.1 (2)
C15—C16—C17109.5 (2)C35—C36—C37108.9 (2)
C18—C16—C17108.8 (2)C38—C36—C37109.1 (2)
C15—C16—H16109.7C35—C36—H36109.6
C18—C16—H16109.7C38—C36—H36109.6
C17—C16—H16109.7C37—C36—H36109.6
C16—C17—C10110.2 (2)C30—C37—C36110.3 (2)
C16—C17—H17A109.6C30—C37—H37A109.6
C10—C17—H17A109.6C36—C37—H37A109.6
C16—C17—H17B109.6C30—C37—H37B109.6
C10—C17—H17B109.6C36—C37—H37B109.6
H17A—C17—H17B108.1H37A—C37—H37B108.1
C16—C18—C12109.8 (2)C32—C38—C36109.9 (2)
C16—C18—H18A109.7C32—C38—H38A109.7
C12—C18—H18A109.7C36—C38—H38A109.7
C16—C18—H18B109.7C32—C38—H38B109.7
C12—C18—H18B109.7C36—C38—H38B109.7
H18A—C18—H18B108.2H38A—C38—H38B108.2
C14—C19—C10110.4 (2)C30—C39—C34109.9 (2)
C14—C19—H19A109.6C30—C39—H39A109.7
C10—C19—H19A109.6C34—C39—H39A109.7
C14—C19—H19B109.6C30—C39—H39B109.7
C10—C19—H19B109.6C34—C39—H39B109.7
H19A—C19—H19B108.1H39A—C39—H39B108.2
O2—C20—H20A109.5O4—C40—H40A109.5
O2—C20—H20B109.5O4—C40—H40B109.5
H20A—C20—H20B109.5H40A—C40—H40B109.5
O2—C20—H20C109.5O4—C40—H40C109.5
H20A—C20—H20C109.5H40A—C40—H40C109.5
H20B—C20—H20C109.5H40B—C40—H40C109.5
C2—N1—C1—N2178.0 (2)C22—N3—C21—N4179.9 (2)
C2—N1—C1—S10.4 (3)C22—N3—C21—S20.2 (3)
C8—N2—C1—N1179.2 (2)C28—N4—C21—N3174.2 (2)
C8—N2—C1—S13.2 (3)C28—N4—C21—S25.6 (3)
C7—S1—C1—N10.8 (2)C27—S2—C21—N30.4 (2)
C7—S1—C1—N2176.8 (2)C27—S2—C21—N4179.9 (2)
C1—N1—C2—C71.9 (3)C21—N3—C22—C23179.6 (2)
C1—N1—C2—C3175.1 (2)C21—N3—C22—C270.2 (3)
C7—C2—C3—C40.7 (4)C27—C22—C23—C240.4 (4)
N1—C2—C3—C4177.7 (2)N3—C22—C23—C24179.9 (2)
C2—C3—C4—C50.5 (4)C22—C23—C24—C251.1 (4)
C20—O2—C5—C67.2 (4)C40—O4—C25—C262.8 (4)
C20—O2—C5—C4171.8 (2)C40—O4—C25—C24177.7 (2)
C3—C4—C5—O2179.1 (2)C23—C24—C25—O4178.5 (2)
C3—C4—C5—C60.2 (4)C23—C24—C25—C262.0 (4)
O2—C5—C6—C7179.4 (2)O4—C25—C26—C27179.2 (2)
C4—C5—C6—C70.6 (4)C24—C25—C26—C271.3 (4)
C3—C2—C7—C60.3 (4)C25—C26—C27—C220.1 (4)
N1—C2—C7—C6177.6 (2)C25—C26—C27—S2179.76 (19)
C3—C2—C7—S1174.76 (19)C23—C22—C27—C261.0 (4)
N1—C2—C7—S12.5 (3)N3—C22—C27—C26179.3 (2)
C5—C6—C7—C20.4 (4)C23—C22—C27—S2179.33 (19)
C5—C6—C7—S1174.5 (2)N3—C22—C27—S20.4 (3)
C1—S1—C7—C21.78 (19)C21—S2—C27—C26179.3 (2)
C1—S1—C7—C6176.6 (2)C21—S2—C27—C220.41 (19)
C1—N2—C8—O17.3 (4)C21—N4—C28—O34.5 (4)
C1—N2—C8—C9168.9 (2)C21—N4—C28—C29172.7 (2)
O1—C8—C9—C1075.8 (3)O3—C28—C29—C3080.6 (3)
N2—C8—C9—C10100.3 (3)N4—C28—C29—C3096.5 (3)
C8—C9—C10—C11174.6 (2)C28—C29—C30—C3963.1 (3)
C8—C9—C10—C1755.1 (3)C28—C29—C30—C3758.5 (3)
C8—C9—C10—C1966.8 (3)C28—C29—C30—C31177.8 (2)
C17—C10—C11—C1259.1 (3)C39—C30—C31—C3259.5 (3)
C9—C10—C11—C12179.5 (2)C37—C30—C31—C3258.9 (3)
C19—C10—C11—C1259.0 (3)C29—C30—C31—C32179.7 (2)
C10—C11—C12—C1359.8 (3)C30—C31—C32—C3860.0 (3)
C10—C11—C12—C1859.7 (3)C30—C31—C32—C3360.0 (3)
C11—C12—C13—C1459.0 (3)C38—C32—C33—C3460.1 (3)
C18—C12—C13—C1460.6 (3)C31—C32—C33—C3459.7 (3)
C12—C13—C14—C1560.8 (3)C32—C33—C34—C3560.0 (3)
C12—C13—C14—C1959.2 (3)C32—C33—C34—C3960.0 (3)
C19—C14—C15—C1660.0 (3)C33—C34—C35—C3659.4 (3)
C13—C14—C15—C1660.2 (3)C39—C34—C35—C3661.0 (3)
C14—C15—C16—C1859.4 (3)C34—C35—C36—C3858.7 (3)
C14—C15—C16—C1759.8 (3)C34—C35—C36—C3760.9 (3)
C15—C16—C17—C1059.4 (3)C39—C30—C37—C3659.3 (3)
C18—C16—C17—C1060.2 (3)C31—C30—C37—C3658.9 (3)
C11—C10—C17—C1659.2 (3)C29—C30—C37—C36177.7 (2)
C9—C10—C17—C16178.4 (2)C35—C36—C37—C3060.5 (3)
C19—C10—C17—C1658.4 (3)C38—C36—C37—C3059.7 (3)
C15—C16—C18—C1259.2 (3)C33—C32—C38—C3659.6 (3)
C17—C16—C18—C1260.4 (3)C31—C32—C38—C3660.3 (3)
C11—C12—C18—C1660.2 (3)C35—C36—C38—C3259.3 (3)
C13—C12—C18—C1659.9 (3)C37—C36—C38—C3260.1 (3)
C15—C14—C19—C1059.7 (3)C37—C30—C39—C3459.0 (3)
C13—C14—C19—C1060.1 (3)C31—C30—C39—C3459.3 (3)
C11—C10—C19—C1459.2 (3)C29—C30—C39—C34178.0 (2)
C17—C10—C19—C1458.8 (3)C33—C34—C39—C3060.2 (3)
C9—C10—C19—C14177.7 (2)C35—C34—C39—C3060.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N30.87 (3)2.13 (3)2.995 (3)169 (2)
N4—H4N···N10.78 (3)2.30 (3)3.077 (3)174 (2)
C6—H6···O3i0.952.583.452 (3)153
C26—H26···O1ii0.952.453.392 (3)174
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N30.87 (3)2.13 (3)2.995 (3)169 (2)
N4—H4N···N10.78 (3)2.30 (3)3.077 (3)174 (2)
C6—H6···O3i0.952.583.452 (3)153
C26—H26···O1ii0.952.453.392 (3)174
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Acknowledgements

The authors are grateful to the Ministry of Education and Science of the Russian Federation (State program No. 3.1168.2011).

References

First citationBhardwaj, V. K., Saluja, P., Hundal, G., Hundal, M. S., Singh, N. & Jang, D. O. (2013). Tetrahedron, 69, 1606–1610.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFacchinetti, V., da Reis, R., Gomes, C. R. B. & Vasconcelos, T. R. A. (2012). Mini-Rev. Org. Chem. 9, 44–53.  CrossRef CAS Google Scholar
First citationGupta, A. & Rawat, S. (2010). J. Curr. Pharm. Res. 3, 13–23.  Google Scholar
First citationHussein, B. H. M., Azab, H. A., El-Azab, M. F. & El-Falouji, A. I. (2012). Eur. J. Med. Chem. 51, 99–109.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPatel, N. B., Khan, I. H., Pannecouque, C. & De Clercq, E. (2013). Med. Chem. Res. 22, 1320–1329.  Web of Science CrossRef CAS Google Scholar
First citationRadatz, C. S., Alves, D. & Schneider, P. H. (2013). Tetrahedron, 69, 1316–1321.  Web of Science CrossRef CAS Google Scholar
First citationSareen, S., Shinde, D., Khatri, V. & Sareen, V. (2012). Heterocycl. Lett. 2, 361–377.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUgale, V. G., Patel, H. M., Wadodkar, S. G., Bari, S. B., Shirkhedkar, A. A. & Surana, S. J. (2012). Eur. J. Med. Chem. 53, 107–113.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYoo, E., Hayat, F., Rhim, H. & Choo, H. P. (2012). Bioorg. Med. Chem. 20, 2707–2712.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhu, X. Y., Etukala, J. R., Eyunni, S. V. K., Setola, V., Roth, B. L. & Ablordeppey, S. Y. (2012). Eur. J. Med. Chem. 53, 124–132.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds