organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Fluoro­phen­yl)thio­urea–1,10-phenanthroline (1/1)

aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
*Correspondence e-mail: ctfairus@ukm.my

(Received 24 July 2013; accepted 19 August 2013; online 23 August 2013)

Refluxing a mixture of 1,10-phenanthroline, (4-fluoro­phen­yl)thio­urea and cadmium(II) chloride did not produce the expected mixed-ligand complex but formed a co-crystal of the two ligands, C12H8N2·C7H7FN2S. The asymmetric unit consists of two pairs of the co-crystal mol­ecules. In each (4-fluoro­phen­yl)thio­urea mol­ecule, the planes of the N2CS thio­urea units are almost perpendicular to the corresponding fluoro­benzene rings, subtending angles of 76.53 (7) and 85.25 (7)°. In the crystal, N—H⋯N and N—H⋯S hydrogen bonds form inversion dimers from the co-crystal pairs. A weak ππ inter­action between the phenanthroline rings [centroid–centroid distance = 3.7430 (15)Å] is also observed.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures of other co-crystals formed with 1,10-phenanthroline, see: Ton & Bolte (2005[Ton, Q. C. & Bolte, M. (2005). Acta Cryst. E61, o1406-o1407.]); Wang et al. (2006[Wang, Z.-L., Li, M.-X., Wei, L.-H. & Wang, J.-P. (2006). Acta Cryst. E62, o2508-o2509.]); Shan et al. (2001[Shan, N., Bond, A. D. & Jones, W. (2001). Acta Cryst. E57, o811-o813.]).

[Scheme 1]

Experimental

Crystal data
  • C12H8N2·C7H7FN2S

  • Mr = 350.41

  • Triclinic, [P \overline 1]

  • a = 10.245 (3) Å

  • b = 12.720 (3) Å

  • c = 15.222 (4) Å

  • α = 69.523 (4)°

  • β = 75.854 (5)°

  • γ = 66.565 (4)°

  • V = 1692.2 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 298 K

  • 0.50 × 0.49 × 0.41 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.902, Tmax = 0.919

  • 20024 measured reflections

  • 6992 independent reflections

  • 5255 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.121

  • S = 1.03

  • 6992 reflections

  • 451 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N5i 0.86 2.28 3.076 (2) 155
N2—H2A⋯N6i 0.86 2.08 2.870 (2) 152
N2—H2B⋯S1ii 0.86 2.67 3.4770 (19) 158
N3—H3⋯N8iii 0.86 2.36 3.186 (2) 161
N4—H4A⋯N7iii 0.86 2.11 2.889 (2) 150
N4—H4B⋯S2iv 0.86 2.67 3.485 (2) 157
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+1, -z; (iii) -x, -y+1, -z+1; (iv) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,10-phenantroline is a strong bidentate ligand capable of coordinating with many metals and subsequently promoting other ligands to complete the coordination sphere of a complex. On the other hand it can also form adducts or co-crystals with other compounds in the presence or absence of metal salts. Examples include 1,10-phenanthroline-chloroform (Ton & Bolte, 2005), 1,10-phenantroline-(2R,3R) tartaric acid trihydrate (Wang et al., 2006) and nitrilotriacetic acid-1,10-phenantroline-H2O(1/1/1) (Shan et al., 2001). The formation of co-crystals can also result in the display of an extensive network of hydrogen bonds.

The title compound is a co-crystal of 1,10-phenanthroline with 4-fluorophenylthiourea (Fig. 1) obtained from the reaction of 1,10-phenanthroline, p-fluorophenylthiourea and cadmium (II) chloride. There are two independent pairs of co-crystal molecules in the asymmetric unit. The phenanthroline molecules are planar with a maximum deviation of 0.040 (2)Å for atom C2 from the least squares plane of the ring system. The bond lengths are in normal ranges (Allen et al., 1987). There is a weak C36-H36···F1 intramolecular hydrogen bond in one of the thiourea molecules.

In the crystal structure, the thiourea molecules are linked by intermolecular N–H···S hydrogen bonds and also to the phenanthrolines by N–H···N interactions (symmetry codes as shown in Table 2) forming inversion dimers (Fig. 2). In addition, there is a weak ππ stacking interaction between the phenanthroline ring centroids Cg2 (N6/C21-C25) and Cg3 (C18-C26) (symmetry code: 1-x,-y, 1-z) with a distance between the centroids of 3.7430 (15)Å.

Related literature top

For bond-length data, see: Allen et al. (1987). For related structures of other co-crystals formed with 1,10-phenanthroline, see: Ton & Bolte (2005); Wang et al. (2006); Shan et al. (2001).

Experimental top

A mixture of (4-fluorophenyl)thiourea (2 mmol, 0.34 g) with cadmium (II) chloride (1 mmol, 0.34 g) in methanol was stirred for 1 h. 1,10-phenanthroline (1 mmol, 0.19 g) was then added to the mixture and refluxed for 3 hrs. The green precipitate was filtered and washed with cold ethanol. After recrystallization from ethanol colorless crystals were obtained after 3 days. Melting point: 457.1–458.3 K.

Refinement top

After location in the difference map, the H-atoms attached to the C and N atoms were fixed geometrically at ideal positions and allowed to ride on the parent atoms with C—H = 0.93 Å, N—H = 0.86 Å and with Uiso(H)=1.2Ueq(C or N).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : Molecular structure of 1,10 phenanthroline-(4-fluorophenyl)thiourea co-crystal with 50% probability displacement ellipsoids
[Figure 2] Fig. 2. : Molecular packing of the 1, 10 phenanthroline-(4-fluorophenyl)thiourea co-crystal in the unit cell viewed along the c axis
(4-Fluorophenyl)thiourea–1,10-phenanthroline (1/1) top
Crystal data top
C12H8N2·C7H7FN2SV = 1692.2 (8) Å3
Mr = 350.41Z = 4
Triclinic, P1F(000) = 728
Hall symbol: -P 1Dx = 1.375 Mg m3
a = 10.245 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.720 (3) ŵ = 0.21 mm1
c = 15.222 (4) ÅT = 298 K
α = 69.523 (4)°Block, colorless
β = 75.854 (5)°0.50 × 0.49 × 0.41 mm
γ = 66.565 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6992 independent reflections
Radiation source: fine-focus sealed tube5255 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 83.66 pixels mm-1θmax = 26.5°, θmin = 1.4°
ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker 2000)
k = 1515
Tmin = 0.902, Tmax = 0.919l = 1919
20024 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0656P)2 + 0.2053P]
where P = (Fo2 + 2Fc2)/3
6992 reflections(Δ/σ)max < 0.001
451 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C12H8N2·C7H7FN2Sγ = 66.565 (4)°
Mr = 350.41V = 1692.2 (8) Å3
Triclinic, P1Z = 4
a = 10.245 (3) ÅMo Kα radiation
b = 12.720 (3) ŵ = 0.21 mm1
c = 15.222 (4) ÅT = 298 K
α = 69.523 (4)°0.50 × 0.49 × 0.41 mm
β = 75.854 (5)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6992 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2000)
5255 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.919Rint = 0.022
20024 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.03Δρmax = 0.23 e Å3
6992 reflectionsΔρmin = 0.22 e Å3
451 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.84390 (4)0.40139 (3)0.08829 (3)0.04813 (13)
S20.35529 (4)0.39478 (3)0.58513 (3)0.05227 (13)
F10.33200 (16)0.30480 (13)0.35367 (10)0.1092 (5)
F20.11926 (15)0.26323 (12)0.87533 (9)0.0944 (4)
N10.60344 (13)0.59163 (11)0.07689 (9)0.0490 (3)
H1A0.55750.66560.05130.059*
N20.79779 (14)0.62376 (11)0.02026 (10)0.0546 (4)
H2A0.74360.69670.04090.066*
H2B0.88680.60100.04290.066*
N30.10549 (13)0.57248 (11)0.58379 (9)0.0486 (3)
H30.05200.64470.55980.058*
N40.28874 (15)0.62014 (12)0.48166 (10)0.0594 (4)
H4A0.22940.69170.46370.071*
H4B0.37660.60260.45640.071*
N50.54581 (14)0.17515 (11)0.06797 (10)0.0517 (3)
N60.31190 (14)0.12042 (11)0.06436 (10)0.0536 (3)
N70.18619 (14)0.12214 (12)0.58764 (10)0.0533 (3)
N80.06097 (14)0.17567 (11)0.55104 (9)0.0487 (3)
C10.43416 (18)0.48519 (16)0.12639 (12)0.0583 (4)
H10.41660.50890.06400.070*
C20.3670 (2)0.41244 (19)0.19549 (15)0.0709 (5)
H20.30490.38610.18040.085*
C30.3938 (2)0.38038 (17)0.28597 (14)0.0682 (5)
C40.4789 (2)0.42092 (17)0.31253 (13)0.0667 (5)
H40.49080.40080.37570.080*
C50.54713 (19)0.49301 (15)0.24264 (12)0.0559 (4)
H50.60640.52120.25870.067*
C60.52715 (16)0.52285 (13)0.14942 (11)0.0452 (3)
C70.74405 (15)0.54630 (12)0.04661 (10)0.0404 (3)
C80.05680 (18)0.47833 (14)0.75159 (12)0.0520 (4)
H80.10440.51910.76460.062*
C90.0014 (2)0.40073 (16)0.82506 (12)0.0599 (4)
H90.01050.38900.88740.072*
C100.0670 (2)0.34187 (16)0.80363 (13)0.0610 (5)
C110.0854 (2)0.35812 (19)0.71378 (14)0.0715 (6)
H110.13380.31740.70150.086*
C120.0304 (2)0.43677 (17)0.64110 (12)0.0614 (5)
H120.04270.44990.57910.074*
C130.04237 (15)0.49591 (13)0.65946 (11)0.0443 (3)
C140.24468 (16)0.53690 (12)0.54835 (10)0.0421 (3)
C150.65684 (19)0.19861 (15)0.07450 (14)0.0616 (5)
H150.65700.27630.04610.074*
C160.7741 (2)0.11518 (17)0.12096 (15)0.0691 (5)
H160.84930.13690.12370.083*
C170.7753 (2)0.00132 (17)0.16212 (14)0.0656 (5)
H170.85250.05640.19310.079*
C180.66056 (18)0.02913 (14)0.15793 (12)0.0532 (4)
C190.6560 (2)0.14757 (15)0.19988 (13)0.0647 (5)
H190.73150.20680.23170.078*
C200.5457 (2)0.17479 (14)0.19423 (13)0.0647 (5)
H200.54650.25290.22120.078*
C210.42669 (18)0.08640 (14)0.14760 (12)0.0523 (4)
C220.3075 (2)0.11079 (16)0.14253 (14)0.0655 (5)
H220.30540.18810.16860.079*
C230.1948 (2)0.02219 (17)0.09966 (15)0.0705 (5)
H230.11530.03760.09560.085*
C240.2019 (2)0.09265 (16)0.06190 (14)0.0650 (5)
H240.12440.15340.03320.078*
C250.42480 (16)0.03254 (13)0.10611 (11)0.0457 (3)
C260.54590 (16)0.06138 (13)0.10972 (11)0.0455 (3)
C270.3040 (2)0.09576 (18)0.60676 (15)0.0698 (5)
H270.38880.15770.58980.084*
C280.3099 (2)0.0184 (2)0.65059 (16)0.0756 (6)
H280.39610.03220.66290.091*
C290.1868 (3)0.10883 (18)0.67474 (13)0.0701 (5)
H290.18760.18620.70410.084*
C300.0579 (2)0.08632 (14)0.65567 (12)0.0548 (4)
C310.0750 (3)0.17715 (16)0.68034 (15)0.0755 (6)
H310.07830.25560.70930.091*
C320.1951 (2)0.15183 (17)0.66274 (17)0.0812 (6)
H320.28020.21310.67990.097*
C330.19570 (19)0.03244 (15)0.61797 (13)0.0595 (4)
C340.3194 (2)0.00273 (19)0.60049 (16)0.0785 (6)
H340.40660.06220.61580.094*
C350.3117 (2)0.11256 (19)0.56135 (16)0.0742 (6)
H350.39250.13380.55040.089*
C360.18013 (19)0.19821 (16)0.53802 (13)0.0588 (4)
H360.17580.27720.51130.071*
C370.06725 (16)0.06030 (13)0.59197 (10)0.0441 (3)
C380.06280 (17)0.03267 (13)0.61146 (10)0.0439 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0463 (2)0.0332 (2)0.0577 (3)0.01352 (16)0.00820 (17)0.00332 (16)
S20.0454 (2)0.0362 (2)0.0608 (3)0.01320 (17)0.00714 (18)0.00245 (17)
F10.1178 (11)0.1091 (11)0.0894 (9)0.0710 (9)0.0284 (8)0.0053 (8)
F20.1220 (11)0.0937 (9)0.0774 (8)0.0751 (9)0.0245 (7)0.0164 (7)
N10.0432 (7)0.0349 (6)0.0592 (8)0.0108 (5)0.0088 (6)0.0034 (6)
N20.0452 (7)0.0365 (7)0.0706 (9)0.0167 (6)0.0084 (6)0.0021 (6)
N30.0430 (7)0.0394 (7)0.0535 (8)0.0115 (5)0.0084 (6)0.0031 (6)
N40.0499 (8)0.0390 (7)0.0708 (9)0.0167 (6)0.0055 (7)0.0063 (6)
N50.0487 (7)0.0351 (6)0.0665 (9)0.0159 (6)0.0085 (6)0.0063 (6)
N60.0495 (8)0.0401 (7)0.0662 (9)0.0178 (6)0.0094 (6)0.0048 (6)
N70.0475 (7)0.0446 (7)0.0621 (9)0.0179 (6)0.0062 (6)0.0064 (6)
N80.0465 (7)0.0419 (7)0.0550 (8)0.0174 (6)0.0037 (6)0.0100 (6)
C10.0554 (10)0.0748 (12)0.0535 (10)0.0327 (9)0.0033 (8)0.0233 (9)
C20.0649 (12)0.0887 (14)0.0745 (13)0.0467 (11)0.0108 (10)0.0306 (11)
C30.0645 (11)0.0626 (11)0.0660 (12)0.0286 (9)0.0165 (9)0.0134 (9)
C40.0734 (12)0.0608 (11)0.0497 (10)0.0156 (9)0.0031 (9)0.0084 (8)
C50.0583 (10)0.0493 (9)0.0584 (10)0.0150 (8)0.0134 (8)0.0133 (8)
C60.0418 (8)0.0371 (7)0.0507 (9)0.0108 (6)0.0023 (6)0.0111 (7)
C70.0435 (8)0.0372 (7)0.0436 (8)0.0177 (6)0.0109 (6)0.0068 (6)
C80.0574 (10)0.0504 (9)0.0554 (10)0.0246 (8)0.0102 (8)0.0144 (7)
C90.0714 (12)0.0624 (11)0.0469 (9)0.0280 (9)0.0053 (8)0.0124 (8)
C100.0667 (11)0.0594 (10)0.0590 (11)0.0352 (9)0.0125 (8)0.0172 (8)
C110.0808 (13)0.0911 (15)0.0713 (13)0.0596 (12)0.0110 (10)0.0356 (11)
C120.0675 (11)0.0830 (13)0.0513 (10)0.0435 (10)0.0018 (8)0.0254 (9)
C130.0396 (8)0.0428 (8)0.0497 (9)0.0144 (6)0.0043 (6)0.0127 (7)
C140.0441 (8)0.0382 (7)0.0438 (8)0.0178 (6)0.0105 (6)0.0036 (6)
C150.0567 (10)0.0427 (9)0.0837 (13)0.0211 (8)0.0110 (9)0.0096 (8)
C160.0541 (10)0.0623 (11)0.0927 (15)0.0232 (9)0.0172 (10)0.0148 (10)
C170.0541 (10)0.0579 (11)0.0754 (13)0.0128 (8)0.0204 (9)0.0069 (9)
C180.0535 (9)0.0403 (8)0.0544 (10)0.0112 (7)0.0077 (7)0.0050 (7)
C190.0656 (11)0.0396 (9)0.0692 (12)0.0093 (8)0.0160 (9)0.0028 (8)
C200.0793 (13)0.0324 (8)0.0674 (11)0.0178 (8)0.0097 (9)0.0023 (8)
C210.0615 (10)0.0381 (8)0.0531 (9)0.0221 (7)0.0001 (8)0.0071 (7)
C220.0754 (13)0.0457 (9)0.0756 (12)0.0330 (9)0.0032 (10)0.0115 (9)
C230.0630 (11)0.0633 (12)0.0935 (15)0.0365 (10)0.0042 (10)0.0186 (10)
C240.0561 (10)0.0542 (10)0.0828 (13)0.0229 (8)0.0137 (9)0.0091 (9)
C250.0503 (9)0.0336 (7)0.0470 (8)0.0157 (6)0.0014 (7)0.0058 (6)
C260.0472 (8)0.0346 (7)0.0472 (8)0.0128 (6)0.0021 (6)0.0065 (6)
C270.0556 (11)0.0637 (11)0.0888 (14)0.0270 (9)0.0083 (10)0.0132 (10)
C280.0738 (13)0.0792 (14)0.0837 (14)0.0488 (12)0.0010 (11)0.0145 (11)
C290.1043 (16)0.0578 (11)0.0610 (11)0.0537 (12)0.0068 (10)0.0041 (9)
C300.0777 (12)0.0406 (8)0.0474 (9)0.0240 (8)0.0132 (8)0.0060 (7)
C310.1035 (17)0.0368 (9)0.0818 (14)0.0210 (10)0.0334 (12)0.0005 (9)
C320.0824 (15)0.0434 (10)0.1036 (17)0.0014 (10)0.0415 (13)0.0071 (10)
C330.0568 (10)0.0493 (9)0.0679 (11)0.0087 (8)0.0197 (9)0.0141 (8)
C340.0517 (11)0.0726 (13)0.1020 (17)0.0063 (10)0.0267 (11)0.0198 (12)
C350.0500 (10)0.0824 (14)0.0930 (15)0.0270 (10)0.0106 (10)0.0220 (12)
C360.0552 (10)0.0557 (10)0.0660 (11)0.0259 (8)0.0032 (8)0.0126 (8)
C370.0493 (8)0.0387 (8)0.0412 (8)0.0120 (6)0.0077 (6)0.0098 (6)
C380.0546 (9)0.0380 (8)0.0388 (8)0.0180 (7)0.0063 (6)0.0077 (6)
Geometric parameters (Å, º) top
S1—C71.6869 (15)C12—C131.377 (2)
S2—C141.6847 (15)C12—H120.9300
F1—C31.364 (2)C15—C161.395 (3)
F2—C101.3620 (19)C15—H150.9300
N1—C71.3494 (19)C16—C171.358 (2)
N1—C61.4288 (19)C16—H160.9300
N1—H1A0.8601C17—C181.397 (2)
N2—C71.3289 (18)C17—H170.9300
N2—H2A0.8601C18—C261.414 (2)
N2—H2B0.8601C18—C191.431 (2)
N3—C141.3457 (19)C19—C201.336 (3)
N3—C131.4303 (19)C19—H190.9300
N3—H30.8600C20—C211.424 (2)
N4—C141.3265 (18)C20—H200.9300
N4—H4A0.8600C21—C221.399 (2)
N4—H4B0.8599C21—C251.415 (2)
N5—C151.319 (2)C22—C231.359 (3)
N5—C261.3616 (18)C22—H220.9300
N6—C241.320 (2)C23—C241.395 (2)
N6—C251.351 (2)C23—H230.9300
N7—C271.317 (2)C24—H240.9300
N7—C381.347 (2)C25—C261.444 (2)
N8—C361.316 (2)C27—C281.389 (3)
N8—C371.3604 (19)C27—H270.9300
C1—C61.380 (2)C28—C291.351 (3)
C1—C21.381 (2)C28—H280.9300
C1—H10.9300C29—C301.402 (3)
C2—C31.357 (3)C29—H290.9300
C2—H20.9300C30—C381.410 (2)
C3—C41.366 (3)C30—C311.423 (3)
C4—C51.387 (2)C31—C321.335 (3)
C4—H40.9300C31—H310.9300
C5—C61.379 (2)C32—C331.433 (3)
C5—H50.9300C32—H320.9300
C8—C131.376 (2)C33—C341.402 (3)
C8—C91.382 (2)C33—C371.405 (2)
C8—H80.9300C34—C351.353 (3)
C9—C101.363 (2)C34—H340.9300
C9—H90.9300C35—C361.388 (3)
C10—C111.359 (3)C35—H350.9300
C11—C121.383 (2)C36—H360.9300
C11—H110.9300C37—C381.447 (2)
C7—N1—C6123.25 (12)C16—C17—H17120.0
C7—N1—H1A118.4C18—C17—H17120.0
C6—N1—H1A118.4C17—C18—C26118.00 (15)
C7—N2—H2A120.0C17—C18—C19122.47 (16)
C7—N2—H2B120.0C26—C18—C19119.53 (16)
H2A—N2—H2B120.0C20—C19—C18121.38 (16)
C14—N3—C13123.08 (12)C20—C19—H19119.3
C14—N3—H3118.5C18—C19—H19119.3
C13—N3—H3118.5C19—C20—C21121.21 (15)
C14—N4—H4A120.0C19—C20—H20119.4
C14—N4—H4B120.0C21—C20—H20119.4
H4A—N4—H4B120.0C22—C21—C25117.46 (16)
C15—N5—C26117.52 (14)C22—C21—C20122.83 (15)
C24—N6—C25118.23 (14)C25—C21—C20119.69 (16)
C27—N7—C38118.10 (15)C23—C22—C21120.41 (16)
C36—N8—C37117.39 (14)C23—C22—H22119.8
C6—C1—C2120.36 (17)C21—C22—H22119.8
C6—C1—H1119.8C22—C23—C24117.96 (17)
C2—C1—H1119.8C22—C23—H23121.0
C3—C2—C1118.37 (18)C24—C23—H23121.0
C3—C2—H2120.8N6—C24—C23124.09 (17)
C1—C2—H2120.8N6—C24—H24118.0
C2—C3—F1118.43 (19)C23—C24—H24118.0
C2—C3—C4123.11 (17)N6—C25—C21121.84 (15)
F1—C3—C4118.46 (19)N6—C25—C26118.98 (13)
C3—C4—C5118.14 (18)C21—C25—C26119.18 (14)
C3—C4—H4120.9N5—C26—C18121.72 (15)
C5—C4—H4120.9N5—C26—C25119.30 (13)
C6—C5—C4120.10 (17)C18—C26—C25118.97 (14)
C6—C5—H5120.0N7—C27—C28124.33 (19)
C4—C5—H5120.0N7—C27—H27117.8
C5—C6—C1119.77 (15)C28—C27—H27117.8
C5—C6—N1120.11 (15)C29—C28—C27118.08 (18)
C1—C6—N1120.12 (15)C29—C28—H28121.0
N2—C7—N1115.02 (13)C27—C28—H28121.0
N2—C7—S1122.23 (12)C28—C29—C30120.17 (17)
N1—C7—S1122.73 (11)C28—C29—H29119.9
C13—C8—C9120.71 (15)C30—C29—H29119.9
C13—C8—H8119.6C29—C30—C38117.62 (17)
C9—C8—H8119.6C29—C30—C31122.98 (17)
C10—C9—C8118.18 (16)C38—C30—C31119.39 (17)
C10—C9—H9120.9C32—C31—C30121.25 (17)
C8—C9—H9120.9C32—C31—H31119.4
C11—C10—F2118.42 (17)C30—C31—H31119.4
C11—C10—C9122.92 (16)C31—C32—C33121.49 (18)
F2—C10—C9118.66 (17)C31—C32—H32119.3
C10—C11—C12118.23 (16)C33—C32—H32119.3
C10—C11—H11120.9C34—C33—C37117.82 (16)
C12—C11—H11120.9C34—C33—C32122.76 (17)
C13—C12—C11120.72 (17)C37—C33—C32119.40 (17)
C13—C12—H12119.6C35—C34—C33119.90 (17)
C11—C12—H12119.6C35—C34—H34120.1
C8—C13—C12119.21 (15)C33—C34—H34120.1
C8—C13—N3120.19 (14)C34—C35—C36118.24 (18)
C12—C13—N3120.58 (14)C34—C35—H35120.9
N4—C14—N3115.87 (13)C36—C35—H35120.9
N4—C14—S2122.12 (12)N8—C36—C35124.70 (17)
N3—C14—S2121.99 (11)N8—C36—H36117.6
N5—C15—C16124.64 (16)C35—C36—H36117.6
N5—C15—H15117.7N8—C37—C33121.92 (15)
C16—C15—H15117.7N8—C37—C38119.07 (13)
C17—C16—C15118.11 (17)C33—C37—C38118.99 (14)
C17—C16—H16120.9N7—C38—C30121.70 (15)
C15—C16—H16120.9N7—C38—C37118.82 (13)
C16—C17—C18120.01 (16)C30—C38—C37119.48 (14)
C6—C1—C2—C30.6 (3)C22—C21—C25—N61.1 (2)
C1—C2—C3—F1177.47 (17)C20—C21—C25—N6177.38 (16)
C1—C2—C3—C43.0 (3)C22—C21—C25—C26179.92 (15)
C2—C3—C4—C53.6 (3)C20—C21—C25—C261.6 (2)
F1—C3—C4—C5176.85 (16)C15—N5—C26—C180.4 (2)
C3—C4—C5—C60.6 (3)C15—N5—C26—C25178.58 (15)
C4—C5—C6—C12.9 (2)C17—C18—C26—N50.2 (2)
C4—C5—C6—N1176.58 (15)C19—C18—C26—N5179.44 (16)
C2—C1—C6—C53.5 (3)C17—C18—C26—C25178.77 (16)
C2—C1—C6—N1175.93 (16)C19—C18—C26—C251.6 (2)
C7—N1—C6—C574.5 (2)N6—C25—C26—N52.4 (2)
C7—N1—C6—C1104.90 (18)C21—C25—C26—N5178.51 (14)
C6—N1—C7—N2178.91 (14)N6—C25—C26—C18176.56 (14)
C6—N1—C7—S12.5 (2)C21—C25—C26—C182.5 (2)
C13—C8—C9—C100.4 (3)C38—N7—C27—C280.4 (3)
C8—C9—C10—C111.4 (3)N7—C27—C28—C290.5 (3)
C8—C9—C10—F2178.58 (16)C27—C28—C29—C300.1 (3)
F2—C10—C11—C12179.10 (17)C28—C29—C30—C380.3 (3)
C9—C10—C11—C120.9 (3)C28—C29—C30—C31179.2 (2)
C10—C11—C12—C130.7 (3)C29—C30—C31—C32178.6 (2)
C9—C8—C13—C121.1 (2)C38—C30—C31—C320.2 (3)
C9—C8—C13—N3177.32 (15)C30—C31—C32—C330.3 (3)
C11—C12—C13—C81.7 (3)C31—C32—C33—C34178.5 (2)
C11—C12—C13—N3176.77 (16)C31—C32—C33—C370.0 (3)
C14—N3—C13—C881.4 (2)C37—C33—C34—C351.2 (3)
C14—N3—C13—C1297.02 (19)C32—C33—C34—C35177.4 (2)
C13—N3—C14—N4176.57 (14)C33—C34—C35—C361.2 (3)
C13—N3—C14—S24.5 (2)C37—N8—C36—C351.3 (3)
C26—N5—C15—C160.1 (3)C34—C35—C36—N80.1 (3)
N5—C15—C16—C170.4 (3)C36—N8—C37—C331.2 (2)
C15—C16—C17—C180.6 (3)C36—N8—C37—C38177.18 (14)
C16—C17—C18—C260.3 (3)C34—C33—C37—N80.0 (3)
C16—C17—C18—C19179.92 (18)C32—C33—C37—N8178.62 (16)
C17—C18—C19—C20179.41 (19)C34—C33—C37—C38178.38 (16)
C26—C18—C19—C200.2 (3)C32—C33—C37—C380.2 (3)
C18—C19—C20—C211.1 (3)C27—N7—C38—C300.0 (2)
C19—C20—C21—C22178.19 (18)C27—N7—C38—C37179.29 (16)
C19—C20—C21—C250.2 (3)C29—C30—C38—N70.3 (2)
C25—C21—C22—C230.5 (3)C31—C30—C38—N7179.25 (16)
C20—C21—C22—C23177.94 (18)C29—C30—C38—C37178.92 (15)
C21—C22—C23—C240.4 (3)C31—C30—C38—C370.0 (2)
C25—N6—C24—C230.1 (3)N8—C37—C38—N70.6 (2)
C22—C23—C24—N60.7 (3)C33—C37—C38—N7179.06 (15)
C24—N6—C25—C210.8 (2)N8—C37—C38—C30178.69 (13)
C24—N6—C25—C26179.80 (16)C33—C37—C38—C300.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C36—H36···F10.932.533.003 (3)112
N1—H1A···N5i0.862.283.076 (2)155
N2—H2A···N6i0.862.082.870 (2)152
N2—H2B···S1ii0.862.673.4770 (19)158
N3—H3···N8iii0.862.363.186 (2)161
N4—H4A···N7iii0.862.112.889 (2)150
N4—H4B···S2iv0.862.673.485 (2)157
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N5i0.862.283.076 (2)155
N2—H2A···N6i0.862.082.870 (2)152
N2—H2B···S1ii0.862.673.4770 (19)158
N3—H3···N8iii0.862.363.186 (2)161
N4—H4A···N7iii0.862.112.889 (2)150
N4—H4B···S2iv0.862.673.485 (2)157
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1.
 

Acknowledgements

The authors would like to thank Universiti Kebangsaan Malaysia and the Ministry of Science and Technology, Malaysia, for research grants 06–01-02-SF0844 and DIP-2012–11, and the Centre of Research and Instrumentation (CRIM) for research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals
First citationShan, N., Bond, A. D. & Jones, W. (2001). Acta Cryst. E57, o811–o813.  Web of Science CSD CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationTon, Q. C. & Bolte, M. (2005). Acta Cryst. E61, o1406–o1407.  Web of Science CSD CrossRef CAS IUCr Journals
First citationWang, Z.-L., Li, M.-X., Wei, L.-H. & Wang, J.-P. (2006). Acta Cryst. E62, o2508–o2509.  Web of Science CSD CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds