organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1456-o1457

Racemic 2′-hy­droxy-4′,4′-di­methylpyran-1,5-di­hydroxyxanthone monohydrate

aFaculty of Traditional Thai Medicine, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and dDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 26 July 2013; accepted 30 July 2013; online 21 August 2013)

The title xanthone (systematic name: 3,6,11-trihy­droxy-1,1-dimethyl-2,3-di­hydro­chromeno[2,3-f]chromen-7-one monohydrate), known as pruniflorone N, crystallized as a monohydrate, C18H16O6·H2O. The three ring systems of the xanthone skeleton are approximately coplanar, with an r.m.s. deviation of 0.0270 (1) Å from the plane through the 14 non-H atoms. The O atoms of the two hy­droxy substituents on the benzene rings also lie close to this plane, with deviations of 0.019 (1) and 0.070 (1) Å. The 2′-hy­droxy-4′,4′-di­methyl­pyran ring is disordered over two positions with a 0.798 (3):0.202 (3) site-occupancy ratio. An intra­molecular O—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, the xanthone and water mol­ecules are linked into a three-dimensional network by O—H⋯O hydrogen bonds and weak C—H⋯O inter­actions. ππ inter­actions, with centroid–centroid distances of 3.5982 (7), 3.6081 (7) and 3.6456 (7) Å, are also observed.

Related literature

For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to xanthones and their biological activity, see: Boonnak, Karalai et al. (2010[Boonnak, N., Karalai, C., Chantrapromma, S., Ponglimanont, C., Kanjana-Opas, A., Chantrapromma, K. & Kato, S. (2010). Chem. Pharm. Bull. 58, 386-389.]); Boonnak, Khamthip et al. (2010[Boonnak, N., Khamthip, A., Karalai, C., Chantrapromma, S., Ponglimanont, C., Kanjana-Opas, A., Tewtrakul, S., Chantrapromma, K., Fun, H.-K. & Kato, S. (2010). Aust. J. Chem.. 63, 1550-1556.]); Gopal­a­krishnan et al. (1997[Gopalakrishnan, G., Banumathi, B. & Suresh, G. (1997). J. Nat. Prod. 60, 519-524.]); Ho et al. (2002[Ho, C. K., Huang, Y. L. & Chen, C. C. (2002). Planta Med. 68, 975-979.]); Obolskiy et al. (2009[Obolskiy, D., Pischel, I., Siriwatanametanon, N. & Heinrich, M. (2009). Phytother. Res. 23, 1047-1065.]). For related structures, see: Boonnak et al. (2006[Boonnak, N., Chantrapromma, S. & Fun, H.-K. (2006). Acta Cryst. E62, o2034-o2036.]); Boonnak, Chantrapromma et al. (2010[Boonnak, N., Chantrapromma, S., Fun, H.-K. & Karalai, C. (2010). Acta Cryst. E66, o817-o818.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer, (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16O6·H2O

  • Mr = 346.20

  • Orthorhombic, P b c a

  • a = 9.8965 (2) Å

  • b = 15.2329 (3) Å

  • c = 20.1122 (4) Å

  • V = 3031.96 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.65 × 0.21 × 0.13 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.927, Tmax = 0.985

  • 40070 measured reflections

  • 4949 independent reflections

  • 4378 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.145

  • S = 1.04

  • 4949 reflections

  • 275 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.97 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1O4⋯O3 0.92 (3) 1.67 (3) 2.5337 (14) 156 (3)
O1—H1O1⋯O1Wi 0.86 (2) 1.81 (2) 2.6599 (16) 172.5 (19)
O1W—H2W1⋯O4ii 0.77 (2) 2.13 (2) 2.8756 (16) 166 (2)
O1W—H1W1⋯O6Aiii 0.88 (3) 1.93 (3) 2.8078 (17) 175 (3)
O6A—H6A⋯O1iii 0.82 (3) 2.10 (3) 2.8838 (16) 160 (3)
C18A—H18A⋯O6A 0.96 2.44 3.078 (2) 124
C18A—H18C⋯O4iv 0.96 2.60 3.530 (2) 164
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iv) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Xanthones are reported to exhibit various biological and pharmacological properties (Obolskiy et al., 2009) such as antibacterial (Boonnak, Karalai et al., 2010), antifungal (Gopalakrishnan et al., 1997), anti-inflammatory (Boonnak, Khamthip et al., 2010) and anti-cancer (Ho et al., 2002) activities. We have previously reported several isolated xanthones and their biological activities (Boonnak, Karalai et al., 2010; Boonnak, Khamthip et al., 2010). Among these compounds, the title xanthone (I), which is also known as pruniflorone N, showed antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) with a MIC value of 9.37 µg mL-1. Compound (I) crystallized out in the centrosymmetric Pbca space group indicating that the extracted material was a racemate, Figure 1.

Compound (I) has a xanthone nucleus with a pyran ring fused to it in an angular fashion which is rarely found. It crystallized out in a monohydrate form, C18H16O6.H2O (Fig. 2). The 2'-hydroxy-4',4'-dimethylpyran ring is disordered over two positions with 0.798 (3):0.202 (3) site occupancies in which the 2'-hydroxy group or the hydroxy groups at atom C12 of the major A and minor B components were attached in opposite directions. The three ring systems of the xanthone nucleus [C1–C11/C15/C16/O2] are essentially co-planar with an r.m.s. deviation of 0.0270 (1) Å from the plane through all the fourteen non-hydrogen atoms. The O1 and O4 atoms of the two hydroxy substituents also lie close to this plane with deviations of -0.019 (1) and -0.070 (1) Å, respectively. The pyran ring (C11–C15/O5) is in a half-chair conformation with the puckering parameters Q = 0.406 (2) Å, θ = 43.7 (2)° and ϕ = 250.7 (3)° (Cremer & Pople, 1975) with the puckered C12A and C13A atoms having the deviation of -0.228 (2) and 0.282 (2) Å, respectively for the major component A [the corresponding values for the minor component B are 0.555 (9) Å, 123.8 (7)° and 33.7 (8)°, and the values for the puckering C12B and C13B atoms are 0.365 (7) and -0.352 (11) Å, respectively]. An intramolecular O4—H1O4···O3 hydrogen bond (Table 1) generates an S(6) ring motif (Bernstein, et al., 1995). The bond distances in (I) are normal (Allen et al., 1987) and comparable to those found in related structures (Boonnak et al., 2006 and Boonnak, Chantrapromma et al., 2010).

The crystal packing of (I) is stabilized by intermolecular O—H···O hydrogen bonds and weak C—H···O interactions (Table 1). The xanthone and water molecules are linked into a three dimensional network by these interactions (Fig. 3). ππ interaction with the distances of Cg1···Cg3v = 3.6081 (7) Å, Cg1···Cg4iv = 3.6456 (7) Å and Cg3···Cg4iv = 3.5982 (7) Å were observed [symmetry code (v) = -1/2+x, y, 1/2-z]; Cg1, Cg3 and Cg4 are the centroids of the C1/C6–C8/C16/O2, C1–C6 and C8–C11/C15/C16 rings, respectively.

Related literature top

For details of hydrogen-bond motifs, see: Bernstein et al. (1995) and for ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For background to xanthones and their biological activity, see: Boonnak, Karalai et al. (2010); Boonnak, Khamthip et al. (2010); Gopalakrishnan et al. (1997); Ho et al. (2002); Obolskiy et al. (2009). For related structures, see: Boonnak et al. (2006); Boonnak, Chantrapromma et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer, (1986).

Experimental top

The green fruits of C. formosum ssp. pruniflorum (5.00 kg) were extracted with CH2Cl2 (2 x 20 L, for a week) at room temperature and was further evaporated under reduced pressure to afford a crude CH2Cl2 extract (31.42 g), which was subjected to QCC (Quick Column Chromatography) on silica gel using hexane as a first eluent and then increasing the polarity with acetone to give 14 fractions (F1–F14). Fraction F10 was separated by QCC eluting with a gradient of acetone–hexane to give 17 subfractions (F10A–F10Q). Subfractions F10N was separated by CC and eluted with gradient of EtOAc–hexane to obtain 8 subfractions (F10N1–F10N8). Subfraction F10N6 was separated by CC and eluted with CHCl3 to give the title compound as a yellow solid (5.3 mg). Yellow block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystallized from acetone–CH3OH (9.5:0.5, v/v) after several days (M.p. 523–525 K).

Refinement top

Hydroxy H atoms were located from the difference maps and refined isotropically. The remaining H atoms were placed in calculated positions with d(C—H) = 0.93 Å for aromatic, 0.98 for CH, 0.97 for CH2 and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The 2'-hydroxy-4',4'-dimethylpyran is disordered over two sites with refined site occupancies of 0.798 (3) and 0.202 (3). All disordered atoms were subjected to similarity restraints. The same Uij parameters were used for atom pairs C12A/C12B, C13A/C13B, C18A/C18B, C19A/C19B and O5A/O5B.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The chemical transformation that yields the title compound.
[Figure 2] Fig. 2. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. O—H···O intramolecular hydrogen bond was drawn as a dashed line. Open bonds show the minor component.
[Figure 3] Fig. 3. The crystal packing of the major component of (I) viewed along the c axis, showing the three dimensional molecular network. Hydrogen bonds were drawn as dashed lines.
3,6,11-Trihydroxy-1,1-dimethyl-2,3-dihydrochromeno[2,3-f]chromen-7-one monohydrate top
Crystal data top
C18H16O6·H2ODx = 1.517 Mg m3
Mr = 346.20Melting point = 523–525 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4949 reflections
a = 9.8965 (2) Åθ = 2.0–31.3°
b = 15.2329 (3) ŵ = 0.12 mm1
c = 20.1122 (4) ÅT = 100 K
V = 3031.96 (10) Å3Block, yellow
Z = 80.65 × 0.21 × 0.13 mm
F(000) = 1456
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4949 independent reflections
Radiation source: sealed tube4378 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 31.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1014
Tmin = 0.927, Tmax = 0.985k = 2222
40070 measured reflectionsl = 2729
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0754P)2 + 2.1985P]
where P = (Fo2 + 2Fc2)/3
4949 reflections(Δ/σ)max = 0.001
275 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.97 e Å3
Crystal data top
C18H16O6·H2OV = 3031.96 (10) Å3
Mr = 346.20Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.8965 (2) ŵ = 0.12 mm1
b = 15.2329 (3) ÅT = 100 K
c = 20.1122 (4) Å0.65 × 0.21 × 0.13 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4949 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4378 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.985Rint = 0.030
40070 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.71 e Å3
4949 reflectionsΔρmin = 0.97 e Å3
275 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.58520 (10)1.15586 (6)0.38580 (5)0.01809 (19)
O20.40787 (9)1.05055 (6)0.32849 (4)0.01448 (18)
O30.36164 (10)1.03467 (6)0.12623 (5)0.0205 (2)
O40.17901 (10)0.92011 (7)0.14256 (5)0.0201 (2)
O5A0.03637 (14)0.85070 (10)0.35563 (7)0.0161 (3)0.798 (3)
O6A0.12745 (13)0.76392 (8)0.43976 (6)0.0202 (3)0.798 (3)
H6A0.082 (3)0.7235 (18)0.4244 (13)0.031 (7)*0.798 (3)
O5B0.0688 (6)0.8401 (5)0.3682 (3)0.0161 (3)0.202 (3)
O6B0.0235 (10)0.7824 (7)0.4712 (4)0.072 (3)0.202 (3)
H6B0.00480.73340.45700.108*0.202 (3)
C10.48453 (11)1.10150 (7)0.28720 (6)0.0129 (2)
C20.57959 (12)1.15648 (8)0.31807 (6)0.0144 (2)
C30.66177 (12)1.20850 (8)0.27862 (6)0.0163 (2)
H3A0.72611.24440.29850.020*
C40.64937 (13)1.20774 (8)0.20928 (6)0.0179 (2)
H4A0.70541.24300.18350.021*
C50.55441 (13)1.15485 (8)0.17905 (6)0.0170 (2)
H5A0.54501.15530.13300.020*
C60.47209 (12)1.10035 (8)0.21811 (6)0.0140 (2)
C70.37462 (12)1.04051 (8)0.18811 (6)0.0148 (2)
C80.29411 (12)0.98915 (7)0.23357 (6)0.0135 (2)
C90.19417 (12)0.93068 (8)0.20908 (6)0.0148 (2)
C100.11267 (12)0.88544 (8)0.25236 (6)0.0165 (2)
H10A0.04550.84830.23640.020*
C110.13192 (13)0.89594 (8)0.32090 (6)0.0164 (2)
C140.25267 (13)0.95266 (8)0.42430 (6)0.0174 (2)
C150.23195 (12)0.94999 (8)0.34905 (6)0.0142 (2)
C160.31063 (11)0.99645 (7)0.30282 (6)0.0125 (2)
C12A0.05298 (16)0.84187 (10)0.42636 (8)0.0164 (3)0.798 (3)
H12A0.03700.83510.44610.020*0.798 (3)
C13A0.11699 (19)0.92194 (15)0.45651 (13)0.0174 (4)0.798 (3)
H13A0.13320.91040.50330.021*0.798 (3)
H13B0.05280.97000.45380.021*0.798 (3)
C18A0.36942 (19)0.89084 (13)0.44175 (10)0.0194 (4)0.798 (3)
H18A0.34860.83260.42660.029*0.798 (3)
H18B0.38230.89020.48910.029*0.798 (3)
H18C0.45060.91090.42050.029*0.798 (3)
C19A0.28024 (18)1.04439 (18)0.45227 (13)0.0197 (4)0.798 (3)
H19A0.21761.08550.43330.030*0.798 (3)
H19B0.37091.06170.44140.030*0.798 (3)
H19C0.26951.04360.49970.030*0.798 (3)
C12B0.1244 (7)0.8194 (4)0.4320 (3)0.0164 (3)0.202 (3)
H12B0.20630.78340.42950.020*0.202 (3)
C13B0.1485 (10)0.9088 (8)0.4616 (6)0.0174 (4)0.202 (3)
H13C0.06580.94300.46020.021*0.202 (3)
H13D0.17590.90310.50770.021*0.202 (3)
C18B0.3963 (9)0.9160 (6)0.4462 (5)0.0194 (4)0.202 (3)
H18D0.46510.95750.43420.029*0.202 (3)
H18E0.41320.86120.42410.029*0.202 (3)
H18F0.39750.90720.49340.029*0.202 (3)
C19B0.2419 (10)1.0488 (9)0.4550 (7)0.0197 (4)0.202 (3)
H19D0.15511.07330.44460.030*0.202 (3)
H19E0.31151.08520.43650.030*0.202 (3)
H19F0.25261.04580.50240.030*0.202 (3)
O1W0.28541 (14)0.24213 (8)0.57159 (6)0.0341 (3)
H1O40.239 (3)0.9598 (17)0.1248 (14)0.057 (8)*
H1O10.654 (2)1.1869 (15)0.3967 (11)0.037 (6)*
H2W10.307 (2)0.1986 (15)0.5874 (11)0.032 (5)*
H1W10.316 (3)0.2464 (17)0.5304 (14)0.053 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0202 (4)0.0208 (4)0.0132 (4)0.0044 (3)0.0025 (3)0.0005 (3)
O20.0139 (4)0.0180 (4)0.0115 (4)0.0039 (3)0.0002 (3)0.0012 (3)
O30.0252 (5)0.0249 (5)0.0114 (4)0.0025 (4)0.0014 (3)0.0001 (3)
O40.0225 (5)0.0230 (4)0.0148 (4)0.0026 (4)0.0040 (3)0.0032 (3)
O5A0.0150 (7)0.0206 (6)0.0127 (7)0.0041 (5)0.0042 (4)0.0038 (4)
O6A0.0239 (6)0.0134 (5)0.0232 (6)0.0028 (4)0.0061 (5)0.0020 (4)
O5B0.0150 (7)0.0206 (6)0.0127 (7)0.0041 (5)0.0042 (4)0.0038 (4)
O6B0.067 (6)0.103 (7)0.046 (4)0.054 (5)0.018 (4)0.041 (5)
C10.0124 (5)0.0137 (5)0.0128 (5)0.0005 (4)0.0012 (4)0.0012 (4)
C20.0142 (5)0.0139 (5)0.0151 (5)0.0014 (4)0.0001 (4)0.0005 (4)
C30.0158 (5)0.0139 (5)0.0191 (5)0.0016 (4)0.0007 (4)0.0000 (4)
C40.0189 (5)0.0166 (5)0.0181 (5)0.0014 (4)0.0043 (4)0.0026 (4)
C50.0187 (5)0.0175 (5)0.0147 (5)0.0005 (4)0.0026 (4)0.0017 (4)
C60.0143 (5)0.0150 (5)0.0126 (5)0.0009 (4)0.0007 (4)0.0005 (4)
C70.0155 (5)0.0157 (5)0.0132 (5)0.0020 (4)0.0004 (4)0.0001 (4)
C80.0131 (5)0.0145 (5)0.0127 (5)0.0010 (4)0.0008 (4)0.0004 (4)
C90.0148 (5)0.0148 (5)0.0149 (5)0.0024 (4)0.0026 (4)0.0022 (4)
C100.0147 (5)0.0148 (5)0.0201 (6)0.0007 (4)0.0005 (4)0.0033 (4)
C110.0167 (5)0.0134 (5)0.0191 (6)0.0004 (4)0.0034 (4)0.0008 (4)
C140.0193 (5)0.0190 (5)0.0137 (5)0.0008 (4)0.0034 (4)0.0033 (4)
C150.0151 (5)0.0130 (5)0.0145 (5)0.0009 (4)0.0017 (4)0.0002 (4)
C160.0116 (5)0.0125 (4)0.0133 (5)0.0005 (4)0.0007 (4)0.0001 (4)
C12A0.0149 (6)0.0202 (7)0.0142 (6)0.0004 (5)0.0013 (5)0.0024 (5)
C13A0.0145 (11)0.0199 (9)0.0178 (7)0.0005 (7)0.0024 (8)0.0019 (6)
C18A0.0179 (9)0.0230 (10)0.0172 (7)0.0029 (6)0.0011 (6)0.0038 (7)
C19A0.0226 (11)0.0229 (7)0.0137 (6)0.0067 (11)0.0018 (10)0.0021 (5)
C12B0.0149 (6)0.0202 (7)0.0142 (6)0.0004 (5)0.0013 (5)0.0024 (5)
C13B0.0145 (11)0.0199 (9)0.0178 (7)0.0005 (7)0.0024 (8)0.0019 (6)
C18B0.0179 (9)0.0230 (10)0.0172 (7)0.0029 (6)0.0011 (6)0.0038 (7)
C19B0.0226 (11)0.0229 (7)0.0137 (6)0.0067 (11)0.0018 (10)0.0021 (5)
O1W0.0452 (7)0.0290 (6)0.0280 (6)0.0157 (5)0.0178 (5)0.0078 (5)
Geometric parameters (Å, º) top
O1—C21.3635 (15)C11—C151.4065 (17)
O1—H1O10.86 (2)C14—C13B1.439 (12)
O2—C11.3665 (14)C14—C151.5279 (17)
O2—C161.3681 (14)C14—C19A1.531 (3)
O3—C71.2543 (15)C14—C18A1.531 (2)
O4—C91.3557 (15)C14—C13A1.563 (3)
O4—H1O40.92 (3)C14—C18B1.589 (10)
O5A—C111.3627 (18)C14—C19B1.593 (14)
O5A—C12A1.4383 (19)C15—C161.4041 (16)
O6A—C12A1.4233 (19)C12A—C13A1.502 (3)
O6A—H6A0.82 (3)C12A—H12A0.9800
O5B—C111.421 (7)C13A—H13A0.9700
O5B—C12B1.432 (8)C13A—H13B0.9700
O6B—C12B1.391 (10)C18A—H18A0.9600
O6B—H6B0.8200C18A—H18B0.9600
C1—C61.3951 (15)C18A—H18C0.9600
C1—C21.4043 (16)C19A—H19A0.9600
C2—C31.3852 (16)C19A—H19B0.9600
C3—C41.4001 (17)C19A—H19C0.9600
C3—H3A0.9300C12B—C13B1.506 (14)
C4—C51.3791 (18)C12B—H12B0.9800
C4—H4A0.9300C13B—H13C0.9700
C5—C61.4037 (16)C13B—H13D0.9700
C5—H5A0.9300C18B—H18D0.9600
C6—C71.4579 (17)C18B—H18E0.9600
C7—C81.4432 (16)C18B—H18F0.9600
C8—C161.4068 (16)C19B—H19D0.9600
C8—C91.4192 (16)C19B—H19E0.9600
C9—C101.3723 (17)C19B—H19F0.9600
C10—C111.4007 (17)O1W—H2W10.76 (2)
C10—H10A0.9300O1W—H1W10.88 (3)
C2—O1—H1O1106.5 (15)C15—C14—C19B113.5 (5)
C1—O2—C16120.22 (9)C18A—C14—C19B121.8 (4)
C9—O4—H1O4103.5 (17)C13A—C14—C19B93.3 (4)
C11—O5A—C12A118.35 (12)C18B—C14—C19B106.0 (5)
C12A—O6A—H6A105.8 (19)C16—C15—C11114.76 (11)
C11—O5B—C12B124.3 (5)C16—C15—C14124.61 (11)
C12B—O6B—H6A65.6 (13)C11—C15—C14120.58 (11)
C12B—O6B—H6B109.5O2—C16—C15116.35 (10)
O2—C1—C6123.31 (10)O2—C16—C8120.19 (10)
O2—C1—C2116.24 (10)C15—C16—C8123.45 (11)
C6—C1—C2120.46 (11)O6A—C12A—O5A108.92 (13)
O1—C2—C3123.52 (11)O6A—C12A—C13A112.50 (13)
O1—C2—C1117.70 (10)O5A—C12A—C13A111.81 (15)
C3—C2—C1118.78 (11)O6A—C12A—H12A107.8
C2—C3—C4120.95 (11)O5A—C12A—H12A107.8
C2—C3—H3A119.5C13A—C12A—H12A107.8
C4—C3—H3A119.5C12A—C13A—C14115.99 (17)
C5—C4—C3120.25 (11)C12A—C13A—H13A108.3
C5—C4—H4A119.9C14—C13A—H13A108.3
C3—C4—H4A119.9C12A—C13A—H13B108.3
C4—C5—C6119.62 (11)C14—C13A—H13B108.3
C4—C5—H5A120.2H13A—C13A—H13B107.4
C6—C5—H5A120.2C14—C18A—H18A109.5
C1—C6—C5119.93 (11)C14—C18A—H18B109.5
C1—C6—C7118.58 (11)C14—C18A—H18C109.5
C5—C6—C7121.48 (11)C14—C19A—H19A109.5
O3—C7—C8122.25 (11)C14—C19A—H19B109.5
O3—C7—C6121.51 (11)C14—C19A—H19C109.5
C8—C7—C6116.23 (10)O6B—C12B—O5B108.8 (6)
C16—C8—C9118.31 (11)O6B—C12B—C13B104.9 (8)
C16—C8—C7121.35 (10)O5B—C12B—C13B102.5 (7)
C9—C8—C7120.33 (10)O6B—C12B—H6A58.2 (11)
O4—C9—C10120.09 (11)O5B—C12B—H6A90.9 (11)
O4—C9—C8119.61 (11)C13B—C12B—H6A161.6 (12)
C10—C9—C8120.30 (11)O6B—C12B—H12B113.3
C9—C10—C11119.15 (11)O5B—C12B—H12B113.3
C9—C10—H10A120.4C13B—C12B—H12B113.3
C11—C10—H10A120.4H6A—C12B—H12B71.7
O5A—C11—C10110.63 (11)C14—C13B—C12B109.1 (8)
O5A—C11—C15125.32 (12)C14—C13B—H13C109.9
C10—C11—C15123.96 (11)C12B—C13B—H13C109.9
C10—C11—O5B122.0 (3)C14—C13B—H13D109.9
C15—C11—O5B113.0 (3)C12B—C13B—H13D109.9
C13B—C14—C15114.1 (5)H13C—C13B—H13D108.3
C13B—C14—C19A111.1 (5)C14—C18B—H18D109.5
C15—C14—C19A114.34 (14)C14—C18B—H18E109.5
C13B—C14—C18A97.8 (4)H18D—C18B—H18E109.5
C15—C14—C18A108.17 (12)C14—C18B—H18F109.5
C19A—C14—C18A110.04 (14)H18D—C18B—H18F109.5
C15—C14—C13A106.70 (13)H18E—C18B—H18F109.5
C19A—C14—C13A105.91 (13)C14—C19B—H19D109.5
C18A—C14—C13A111.67 (12)C14—C19B—H19E109.5
C13B—C14—C18B109.5 (5)H19D—C19B—H19E109.5
C15—C14—C18B112.6 (4)C14—C19B—H19F109.5
C19A—C14—C18B93.4 (3)H19D—C19B—H19F109.5
C13A—C14—C18B123.3 (3)H19E—C19B—H19F109.5
C13B—C14—C19B100.2 (6)H2W1—O1W—H1W1111 (2)
C16—O2—C1—C61.71 (17)O5B—C11—C15—C146.8 (3)
C16—O2—C1—C2178.53 (10)C13B—C14—C15—C16172.2 (5)
O2—C1—C2—O11.42 (16)C19A—C14—C15—C1642.85 (17)
C6—C1—C2—O1178.81 (10)C18A—C14—C15—C1680.14 (15)
O2—C1—C2—C3178.89 (10)C13A—C14—C15—C16159.59 (13)
C6—C1—C2—C30.87 (17)C18B—C14—C15—C1662.2 (4)
O1—C2—C3—C4178.60 (11)C19B—C14—C15—C1658.3 (4)
C1—C2—C3—C41.06 (18)C13B—C14—C15—C1110.3 (5)
C2—C3—C4—C50.05 (19)C19A—C14—C15—C11139.67 (13)
C3—C4—C5—C61.34 (19)C18A—C14—C15—C1197.34 (14)
O2—C1—C6—C5179.85 (11)C13A—C14—C15—C1122.94 (16)
C2—C1—C6—C50.40 (18)C18B—C14—C15—C11115.3 (3)
O2—C1—C6—C71.39 (17)C19B—C14—C15—C11124.2 (4)
C2—C1—C6—C7178.36 (10)C1—O2—C16—C15176.75 (10)
C4—C5—C6—C11.51 (18)C1—O2—C16—C83.63 (16)
C4—C5—C6—C7177.21 (11)C11—C15—C16—O2179.21 (10)
C1—C6—C7—O3177.90 (11)C14—C15—C16—O23.18 (17)
C5—C6—C7—O30.84 (18)C11—C15—C16—C81.18 (17)
C1—C6—C7—C82.41 (16)C14—C15—C16—C8176.43 (11)
C5—C6—C7—C8178.85 (11)C9—C8—C16—O2178.52 (10)
O3—C7—C8—C16179.76 (11)C7—C8—C16—O22.47 (17)
C6—C7—C8—C160.56 (16)C9—C8—C16—C151.07 (17)
O3—C7—C8—C91.26 (18)C7—C8—C16—C15177.93 (11)
C6—C7—C8—C9178.42 (10)C11—O5A—C12A—O6A90.38 (16)
C16—C8—C9—O4177.83 (10)C11—O5A—C12A—C13A34.57 (19)
C7—C8—C9—O43.16 (17)O6A—C12A—C13A—C1470.0 (2)
C16—C8—C9—C102.57 (17)O5A—C12A—C13A—C1452.97 (19)
C7—C8—C9—C10176.45 (11)C13B—C14—C13A—C12A79 (2)
O4—C9—C10—C11178.68 (11)C15—C14—C13A—C12A45.45 (18)
C8—C9—C10—C111.72 (18)C19A—C14—C13A—C12A167.66 (16)
C12A—O5A—C11—C10169.91 (13)C18A—C14—C13A—C12A72.56 (19)
C12A—O5A—C11—C1513.5 (2)C18B—C14—C13A—C12A87.2 (4)
C12A—O5A—C11—O5B37.4 (11)C19B—C14—C13A—C12A161.2 (5)
C9—C10—C11—O5A175.95 (12)C11—O5B—C12B—O6B165.2 (8)
C9—C10—C11—C150.73 (19)C11—O5B—C12B—C13B54.5 (9)
C9—C10—C11—O5B168.5 (3)C15—C14—C13B—C12B48.6 (7)
C12B—O5B—C11—O5A154.9 (17)C19A—C14—C13B—C12B179.6 (5)
C12B—O5B—C11—C10150.7 (5)C18A—C14—C13B—C12B65.3 (6)
C12B—O5B—C11—C1518.3 (8)C13A—C14—C13B—C12B109 (3)
O5A—C11—C15—C16174.07 (12)C18B—C14—C13B—C12B78.6 (8)
C10—C11—C15—C162.13 (17)C19B—C14—C13B—C12B170.3 (7)
O5B—C11—C15—C16170.9 (3)O6B—C12B—C13B—C14179.8 (7)
O5A—C11—C15—C148.22 (19)O5B—C12B—C13B—C1466.7 (7)
C10—C11—C15—C14175.59 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1O4···O30.92 (3)1.67 (3)2.5337 (14)156 (3)
O1—H1O1···O1Wi0.86 (2)1.81 (2)2.6599 (16)172.5 (19)
O1W—H2W1···O4ii0.77 (2)2.13 (2)2.8756 (16)166 (2)
O1W—H1W1···O6Aiii0.88 (3)1.93 (3)2.8078 (17)175 (3)
O6A—H6A···O1iii0.82 (3)2.10 (3)2.8838 (16)160 (3)
C18A—H18A···O6A0.962.443.078 (2)124
C18A—H18C···O4iv0.962.603.530 (2)164
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y+1, z+1/2; (iii) x+1/2, y1/2, z; (iv) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1O4···O30.92 (3)1.67 (3)2.5337 (14)156 (3)
O1—H1O1···O1Wi0.86 (2)1.81 (2)2.6599 (16)172.5 (19)
O1W—H2W1···O4ii0.77 (2)2.13 (2)2.8756 (16)166 (2)
O1W—H1W1···O6Aiii0.88 (3)1.93 (3)2.8078 (17)175 (3)
O6A—H6A···O1iii0.82 (3)2.10 (3)2.8838 (16)160 (3)
C18A—H18A···O6A0.962.443.078 (2)124
C18A—H18C···O4iv0.962.603.530 (2)164
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y+1, z+1/2; (iii) x+1/2, y1/2, z; (iv) x+1/2, y, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Prince of Songkla University for generous support. The authors extend their appreciation to the Deanship of Scientific Research at the King Saud University and the Universiti Sains Malaysia for the APEX DE2012 grant No. 1002/PFIZIK/910323.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoonnak, N., Chantrapromma, S. & Fun, H.-K. (2006). Acta Cryst. E62, o2034–o2036.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBoonnak, N., Chantrapromma, S., Fun, H.-K. & Karalai, C. (2010). Acta Cryst. E66, o817–o818.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBoonnak, N., Karalai, C., Chantrapromma, S., Ponglimanont, C., Kanjana-Opas, A., Chantrapromma, K. & Kato, S. (2010). Chem. Pharm. Bull. 58, 386–389.  CrossRef CAS PubMed Google Scholar
First citationBoonnak, N., Khamthip, A., Karalai, C., Chantrapromma, S., Ponglimanont, C., Kanjana-Opas, A., Tewtrakul, S., Chantrapromma, K., Fun, H.-K. & Kato, S. (2010). Aust. J. Chem.. 63, 1550–1556.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGopalakrishnan, G., Banumathi, B. & Suresh, G. (1997). J. Nat. Prod. 60, 519–524.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHo, C. K., Huang, Y. L. & Chen, C. C. (2002). Planta Med. 68, 975–979.  Web of Science CrossRef PubMed CAS Google Scholar
First citationObolskiy, D., Pischel, I., Siriwatanametanon, N. & Heinrich, M. (2009). Phytother. Res. 23, 1047–1065.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1456-o1457
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds