[Journal logo]

Volume 69 
Part 9 
Pages o1377-o1378  
September 2013  

Received 2 July 2013
Accepted 28 July 2013
Online 3 August 2013

Key indicators
Single-crystal X-ray study
T = 291 K
Mean [sigma](C-C) = 0.005 Å
R = 0.047
wR = 0.100
Data-to-parameter ratio = 19.1
Details
Open access

1,1'-Methylenebis[3-(2,6-diisopropylphenyl)-3,4,5,6-tetrahydropyrimidin-1-ium] dibromide ethanol monosolvate monohydrate

aCollege of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
Correspondence e-mail: henangongda@yahoo.com

In the title methylene-bridged di(tetrahydropyrimidinium) salt, C33H50N42+·2Br-·C2H5OH·H2O, the two tetrahydropyrimidinium rings have envelope conformations with the central CH2 C atom as the flap. Their mean planes are inclined to one another by 73.31 (13)° and the attached benzene rings are inclined to one another by 67.39 (15)°. The methylene-C-N bond lengths in the tetrahydropyrimidinium rings are 1.314 (3) and 1.304 (3) Å, values typical for C=N double bonds. The distances between the methylene-bridge C atom and the linked tetrahydropyrimidinium N atom are 1.457 (3) and 1.465 (3) Å, values typical for C-N single bonds. The molecules co-crystallized with H2O and EtOH molecules from the solvent. In the crystal, there is a zigzag chain along [010] of water molecules linked by one of the Br- anions via O-H...Br hydrogen bonds. The second Br- anion is hydrogen bonded (O-H...Br) to the ethanol solvent molecule. There are also a number of C-H...Br and C-H...O hydrogen bonds present, leading to the formation of a two-dimensional network lying parallel to the bc plane.

Related literature

For the synthesis of the precursor bis(3-(2,6-diisopropyl-phenyl)-hexahydropyrimidinyl)methane, see: Bisceglia et al. (2004[Bisceglia, J. Á., García, M. B., Massa, R., Magri, M. L., Zani, M., Gutkind, G. O. & Orelli, L. R. (2004). J. Heterocycl. Chem. 41, 85-90.]). For metal complexes of substituted 1,4,5,6-tetrahydropyrimidines, see: Mao et al. (2012[Mao, P., Yang, L., Xiao, Y., Yuan, J. & Song, M. (2012). J. Organomet. Chem. 705, 39-43.]).

[Scheme 1]

Experimental

Crystal data
  • C33H50N42+·2Br-·C2H6O·H2O

  • Mr = 726.67

  • Monoclinic, P 21 /c

  • a = 13.6267 (4) Å

  • b = 10.3769 (2) Å

  • c = 26.9387 (6) Å

  • [beta] = 91.361 (2)°

  • V = 3808.13 (16) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 2.16 mm-1

  • T = 291 K

  • 0.40 × 0.35 × 0.30 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]) Tmin = 0.825, Tmax = 1.000

  • 20153 measured reflections

  • 7763 independent reflections

  • 5411 reflections with I > 2[sigma](I)

  • Rint = 0.037

Refinement
  • R[F2 > 2[sigma](F2)] = 0.047

  • wR(F2) = 0.100

  • S = 1.03

  • 7763 reflections

  • 406 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.53 e Å-3

  • [Delta][rho]min = -0.40 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
O2-H2A...Br1 0.92 (2) 2.41 (3) 3.324 (4) 172 (10)
O2-H2B...Br1i 0.93 (2) 2.42 (2) 3.339 (4) 170 (5)
O1-H1...Br2 0.82 2.45 3.262 (3) 171
C3-H3B...Br1 0.97 2.83 3.660 (3) 144
C4-H4...Br2ii 0.93 2.85 3.733 (2) 158
C5-H5A...O1 0.97 2.50 3.383 (4) 151
C5-H5B...Br2ii 0.97 2.73 3.670 (3) 163
C6-H6B...Br1 0.97 2.89 3.741 (3) 147
C9-H9...O1 0.93 2.30 3.197 (4) 161
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2619 ).


Acknowledgements

The authors thank Ms Y. Zhu for technical assistance. This research was supported by the National Nature Science Foundation of P. R. China (No. 21172055) and the High-Level Talents Foundation of Henan University of Technology.

References

Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.
Bisceglia, J. Á., García, M. B., Massa, R., Magri, M. L., Zani, M., Gutkind, G. O. & Orelli, L. R. (2004). J. Heterocycl. Chem. 41, 85-90.  [CrossRef] [ChemPort]
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.  [ISI] [CrossRef] [ChemPort] [details]
Mao, P., Yang, L., Xiao, Y., Yuan, J. & Song, M. (2012). J. Organomet. Chem. 705, 39-43.  [CrossRef] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [details]


Acta Cryst (2013). E69, o1377-o1378   [ doi:10.1107/S1600536813021004 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.