organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1380-o1381

(4S*)-2-Methyl­amino-3-nitro-4-(4-nitro­phen­yl)-5,6,7,8-tetra­hydro-4H-chromen-5-one

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 23 July 2013; accepted 30 July 2013; online 3 August 2013)

The title compound, C16H15N3O6, is asymmetric with a chiral centre located in the pyran ring and crystallizes as a racemate. The six-membered carbocyclic ring adopts an envelope conformation with the central CH2 C atom as the flap. The amine N atom deviates from the mean plane of the pyran ring by 0.1365 (15) Å. The nitro­phenyl ring is almost orthogonal to the pyran ring and the mean plane of the six-membered carbocyclic ring, the dihedral angle between their mean planes being 88.30 (7) and 87.61 (8)°, respectively. The mol­ecular structure is stabilized by an intra­molecular N—H⋯O hydrogen bond, which generates an S(6) ring motif. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, forming infinite bands lying parallel to (-110) and composed of alternate R22(24) and R24(12) graph-set ring motifs. The crystal structure is further stabilized by C—H⋯π inter­actions, forming a three-dimensional structure.

Related literature

For the uses and biological importance of chromene, see: Ercole et al. (2009[Ercole, F., Davis, T. P. & Evans, R. A. (2009). Macromolecules, 42, 1500-1511.]); Geen et al. (1996[Geen, G. R., Evans, J. M. & Vong, A. K. (1996). Comprehensive Heterocyclic Chemistry, 1st ed., edited by A. R. Katrizky, Vol. 3, pp. 469-500. New York: Pergamon.]); Khan et al. (2010[Khan, K. M., Ambreen, N., Mughal, U. R., Jalil, S., Perveen, S. & Choudhary, M. I. (2010). Eur. J. Med. Chem. 45, 4058-4064.]); Raj et al. (2010[Raj, T., Bhatia, R. K., Kapur, A., Sharma, M., Saxena, A. K. & Ishar, M. P. S. (2010). Eur. J. Med. Chem. 45, 790-794.]). For related structures, see: Narayanan et al. (2013a[Narayanan, P., Kamalraja, J., Perumal, P. T. & Sethusankar, K. (2013a). Acta Cryst. E69, o931-o932.],b[Narayanan, P., Kamalraja, J., Perumal, P. T. & Sethusankar, K. (2013b). Acta Cryst. E69, o1053-o1054.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15N3O6

  • Mr = 345.31

  • Triclinic, [P \overline 1]

  • a = 8.2587 (3) Å

  • b = 8.7679 (4) Å

  • c = 10.9346 (5) Å

  • α = 101.616 (2)°

  • β = 90.426 (2)°

  • γ = 91.930 (2)°

  • V = 775.05 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.977

  • 10840 measured reflections

  • 3161 independent reflections

  • 2633 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.126

  • S = 1.04

  • 3161 reflections

  • 230 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3 0.90 (3) 1.89 (3) 2.601 (2) 134 (2)
C11—H11A⋯O6i 0.97 2.54 3.352 (2) 141
C11—H11B⋯O5ii 0.97 2.54 3.186 (2) 124
C10—H10ACg1iii 0.97 2.90 3.515 (2) 135
C16—H16BCg1iv 0.96 2.90 3.577 (3) 142
Symmetry codes: (i) -x+1, -y+2, -z; (ii) x-1, y-1, z; (iii) -x, -y+2, -z; (iv) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chromene derivatives are very important heterocyclic compounds that have a variety of industrial, biological and chemical synthesis applications (Geen et al., 1996; Ercole et al., 2009). They exhibit a number of pharmacological activities such as anti-HIV, anti-inflammatory, anti-bacterial, anti-allergic, anti-cancer (Khan et al., 2010; Raj et al., 2010). Against this background, the X-ray analysis of the title compound has been carried out to study its structural aspects.

The title compound, Fig. 1, consists of a chromene moiety attached to a nitrophenyl ring, a nitro group and a methylamine group. The molecular structure is stabilized by an intra molecular N1—H1A···O3 interaction, which generates an S(6) ring motif (Table 1 and Fig. 1). The pyran ring (C7/C8/C13-C15/O1) mean plane is almost orthogonal to the nitrophenyl ring (C1–C6), with a dihedral angle of 88.30 (7) °.

The pyran ring is almost coplanar with the mean plane of the nitro group (N2/O3/O4), with a dihedral angle of 3.99 (11)°. The mean plane of the six membered carbocyclic ring (C8–C13) makes a dihedral angle of 87.61 (8) ° with the nitrophenyl ring (C1–C6), again they are almost perpendicular to each other.

The six membered carbocyclic rings (C8–C13) of the chromene moiety adopts an envelope conformation on atom C11 with puckering parameters (Cremer & Pople, 1975): Q2 = 0.4018 (17) Å, Q3 = -0.2465 (18) Å and ϕ2 = 358.1 (3). Atom C11 deviates from the mean plane of the rest of the ring atoms by 0.3325 (18) Å. The amine group nitrogen atom N1 deviates by -0.1365 (15) Å from the mean plane of the pyran ring. The title compound exhibits structural similarities with already reported related structures (Narayanan et al., 2013a,b).

In the crystal, molecules are linked via C-H···O hydrogen bonds (Table 1 and Fig. 2), which form infinite bands lying parallel to plane (-1 1 0), and which enclose alternate R22(24) and R24(12) graph-set ring motifs (Bernstein et al., 1995). The crystal structure is further stabilized by C-H···\p interactions (Table 1) forming a three-dimensional structure.

Related literature top

For the uses and biological importance of chromene, see: Ercole et al. (2009); Geen et al. (1996); Khan et al. (2010); Raj et al. (2010). For related structures, see: Narayanan et al. (2013a,b). For graph-set notation, see: Bernstein et al. (1995). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A solution of the requisite aldehyde (0.151 g, 1.0 mmol), cyclic 1,3-dicarbonyl compound (0.112 g, 1.0 mmol), NMSM (0.148 g, 1.0 mmol) and piperidine (0.2 equiv) in EtOH (2 ml) was stirred for 1.5 hrs. After the reaction was complete as indicated by TLC, the product was filtered and washed with EtOH (2 ml) to remove the excess base and other impurities. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethanol at room temperature.

Refinement top

Positions of the hydrogen atoms were localized from difference electron density maps. The H-atoms of the amine group were refined with distance restraints of N—H = 0.90 (1) Å with Uiso(H) = 1.2Ueq(N). The C-bound H atoms were treated as riding atoms: C-H = 0.93, 0.97, 0.98 and 0.96 Å for CH(aromatic), CH2, CH and CH3 H atoms, respectively, with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms. The rotation angles for methyl groups were optimized by least squares.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. The displacement ellipsoids are drawn at the 30% probability level. The intramolecular N-H···O hydrogen bond, which generates an S(6) ring motif, is shown as a dashed line (see Table 1 for details).
[Figure 2] Fig. 2. The crystal packing of the title compound, with the C-H···O hydrogen bonds shown as dashed lines (see Table 1 for details; symmetry codes: (i) -x+1, -y+2, -z; (ii) x-1, y-1, z).
(4S*)-2-Methylamino-3-nitro-4-(4-nitrophenyl)-5,6,7,8-tetrahydro-4H-chromen-5-one top
Crystal data top
C16H15N3O6Z = 2
Mr = 345.31F(000) = 360
Triclinic, P1Dx = 1.480 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2587 (3) ÅCell parameters from 2633 reflections
b = 8.7679 (4) Åθ = 1.9–26.4°
c = 10.9346 (5) ŵ = 0.12 mm1
α = 101.616 (2)°T = 296 K
β = 90.426 (2)°Block, colourless
γ = 91.930 (2)°0.30 × 0.25 × 0.20 mm
V = 775.05 (6) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3161 independent reflections
Radiation source: fine-focus sealed tube2633 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and ϕ scansθmax = 26.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.966, Tmax = 0.977k = 1010
10840 measured reflectionsl = 1113
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0616P)2 + 0.2861P]
where P = (Fo2 + 2Fc2)/3
3161 reflections(Δ/σ)max = 0.001
230 parametersΔρmax = 0.24 e Å3
1 restraintΔρmin = 0.31 e Å3
Crystal data top
C16H15N3O6γ = 91.930 (2)°
Mr = 345.31V = 775.05 (6) Å3
Triclinic, P1Z = 2
a = 8.2587 (3) ÅMo Kα radiation
b = 8.7679 (4) ŵ = 0.12 mm1
c = 10.9346 (5) ÅT = 296 K
α = 101.616 (2)°0.30 × 0.25 × 0.20 mm
β = 90.426 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3161 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2633 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.977Rint = 0.026
10840 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.24 e Å3
3161 reflectionsΔρmin = 0.31 e Å3
230 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2531 (2)1.32368 (19)0.26884 (15)0.0403 (4)
H10.17101.38340.30940.048*
C20.3654 (2)1.3910 (2)0.20151 (16)0.0453 (4)
H20.36261.49610.19830.054*
C30.48192 (19)1.2977 (2)0.13907 (15)0.0427 (4)
C40.49206 (19)1.1433 (2)0.14415 (16)0.0431 (4)
H40.57191.08310.10080.052*
C50.38164 (18)1.07952 (19)0.21467 (15)0.0373 (4)
H50.38830.97560.22060.045*
C60.26034 (17)1.16853 (17)0.27713 (13)0.0317 (3)
C70.13772 (17)1.09405 (17)0.35343 (14)0.0326 (3)
H70.06021.17240.38940.039*
C80.04677 (17)0.96034 (18)0.27041 (13)0.0330 (3)
C90.07332 (18)0.9969 (2)0.18054 (15)0.0386 (4)
C100.1554 (2)0.8623 (2)0.09238 (16)0.0456 (4)
H10A0.17770.89340.01380.055*
H10B0.25830.83730.12710.055*
C110.0557 (2)0.7178 (2)0.06734 (15)0.0446 (4)
H11A0.04000.73690.02100.054*
H11B0.11880.63220.01700.054*
C120.0052 (2)0.6741 (2)0.18949 (15)0.0434 (4)
H12A0.09920.63580.22840.052*
H12B0.07200.59180.17320.052*
C130.06922 (18)0.81242 (18)0.27499 (14)0.0349 (3)
C140.23414 (18)0.87924 (18)0.45824 (14)0.0337 (3)
C150.21916 (18)1.03614 (17)0.45763 (13)0.0336 (3)
C160.3124 (3)0.6535 (2)0.5443 (2)0.0685 (6)
H16A0.20410.60940.54070.103*
H16B0.36550.63970.61950.103*
H16C0.37140.60230.47330.103*
N10.30687 (19)0.81832 (17)0.54344 (13)0.0445 (4)
N20.28580 (17)1.14864 (16)0.55398 (12)0.0405 (3)
N30.5987 (2)1.3655 (3)0.06260 (18)0.0627 (5)
O10.16935 (14)0.76920 (13)0.36371 (10)0.0414 (3)
O20.10506 (16)1.13167 (16)0.18180 (13)0.0544 (4)
O30.36526 (17)1.11096 (15)0.64145 (11)0.0535 (3)
O40.26560 (19)1.28774 (14)0.55197 (12)0.0579 (4)
O50.6313 (2)1.5047 (2)0.09323 (18)0.0934 (6)
O60.6534 (2)1.2794 (2)0.02896 (18)0.0874 (6)
H1A0.349 (4)0.891 (3)0.607 (2)0.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0438 (9)0.0379 (8)0.0401 (8)0.0039 (7)0.0024 (7)0.0098 (7)
C20.0522 (10)0.0400 (9)0.0465 (9)0.0063 (7)0.0046 (8)0.0169 (7)
C30.0304 (8)0.0616 (11)0.0399 (9)0.0091 (7)0.0057 (6)0.0211 (8)
C40.0287 (7)0.0606 (11)0.0427 (9)0.0075 (7)0.0012 (6)0.0160 (8)
C50.0337 (8)0.0403 (8)0.0403 (8)0.0053 (6)0.0028 (6)0.0130 (7)
C60.0303 (7)0.0371 (8)0.0286 (7)0.0006 (6)0.0050 (5)0.0092 (6)
C70.0314 (7)0.0348 (8)0.0330 (7)0.0036 (6)0.0009 (6)0.0098 (6)
C80.0266 (7)0.0424 (8)0.0315 (7)0.0011 (6)0.0005 (6)0.0118 (6)
C90.0273 (7)0.0544 (10)0.0384 (8)0.0018 (6)0.0008 (6)0.0195 (7)
C100.0316 (8)0.0687 (12)0.0383 (9)0.0011 (7)0.0075 (7)0.0161 (8)
C110.0370 (8)0.0606 (11)0.0343 (8)0.0054 (7)0.0050 (6)0.0064 (7)
C120.0449 (9)0.0439 (9)0.0401 (9)0.0054 (7)0.0076 (7)0.0071 (7)
C130.0308 (7)0.0435 (9)0.0315 (7)0.0017 (6)0.0045 (6)0.0109 (6)
C140.0327 (7)0.0401 (8)0.0289 (7)0.0003 (6)0.0026 (6)0.0086 (6)
C150.0346 (7)0.0383 (8)0.0281 (7)0.0011 (6)0.0003 (6)0.0077 (6)
C160.0977 (17)0.0461 (11)0.0639 (13)0.0088 (11)0.0315 (12)0.0169 (9)
N10.0549 (9)0.0423 (8)0.0374 (7)0.0031 (6)0.0136 (6)0.0110 (6)
N20.0481 (8)0.0424 (8)0.0307 (7)0.0034 (6)0.0006 (6)0.0073 (5)
N30.0397 (8)0.0917 (14)0.0665 (11)0.0157 (9)0.0052 (8)0.0423 (10)
O10.0487 (7)0.0369 (6)0.0386 (6)0.0019 (5)0.0142 (5)0.0083 (5)
O20.0471 (7)0.0585 (8)0.0637 (8)0.0068 (6)0.0117 (6)0.0261 (6)
O30.0675 (8)0.0560 (8)0.0356 (6)0.0060 (6)0.0162 (6)0.0079 (5)
O40.0883 (10)0.0372 (7)0.0461 (7)0.0028 (6)0.0066 (7)0.0044 (5)
O50.0823 (12)0.1065 (14)0.0976 (13)0.0536 (11)0.0110 (10)0.0455 (11)
O60.0651 (10)0.1239 (16)0.0858 (12)0.0141 (10)0.0369 (9)0.0481 (11)
Geometric parameters (Å, º) top
C1—C21.378 (2)C10—H10B0.9700
C1—C61.385 (2)C11—C121.521 (2)
C1—H10.9300C11—H11A0.9700
C2—C31.379 (3)C11—H11B0.9700
C2—H20.9300C12—C131.486 (2)
C3—C41.371 (3)C12—H12A0.9700
C3—N31.469 (2)C12—H12B0.9700
C4—C51.374 (2)C13—O11.3877 (18)
C4—H40.9300C14—N11.314 (2)
C5—C61.388 (2)C14—O11.3569 (18)
C5—H50.9300C14—C151.387 (2)
C6—C71.528 (2)C15—N21.386 (2)
C7—C151.501 (2)C16—N11.449 (2)
C7—C81.505 (2)C16—H16A0.9600
C7—H70.9800C16—H16B0.9600
C8—C131.327 (2)C16—H16C0.9600
C8—C91.479 (2)N1—H1A0.906 (10)
C9—O21.216 (2)N2—O41.2411 (18)
C9—C101.504 (2)N2—O31.2598 (18)
C10—C111.514 (3)N3—O51.219 (3)
C10—H10A0.9700N3—O61.226 (3)
C2—C1—C6121.08 (15)C10—C11—H11A109.6
C2—C1—H1119.5C12—C11—H11A109.6
C6—C1—H1119.5C10—C11—H11B109.6
C3—C2—C1117.90 (16)C12—C11—H11B109.6
C3—C2—H2121.1H11A—C11—H11B108.1
C1—C2—H2121.1C13—C12—C11109.88 (14)
C4—C3—C2122.65 (15)C13—C12—H12A109.7
C4—C3—N3118.58 (17)C11—C12—H12A109.7
C2—C3—N3118.77 (17)C13—C12—H12B109.7
C3—C4—C5118.53 (15)C11—C12—H12B109.7
C3—C4—H4120.7H12A—C12—H12B108.2
C5—C4—H4120.7C8—C13—O1122.42 (13)
C4—C5—C6120.72 (15)C8—C13—C12126.12 (14)
C4—C5—H5119.6O1—C13—C12111.46 (13)
C6—C5—H5119.6N1—C14—O1112.44 (13)
C1—C6—C5119.08 (14)N1—C14—C15127.25 (14)
C1—C6—C7121.28 (13)O1—C14—C15120.30 (13)
C5—C6—C7119.64 (13)N2—C15—C14120.33 (13)
C15—C7—C8109.22 (12)N2—C15—C7116.49 (13)
C15—C7—C6111.43 (12)C14—C15—C7123.14 (13)
C8—C7—C6110.03 (12)N1—C16—H16A109.5
C15—C7—H7108.7N1—C16—H16B109.5
C8—C7—H7108.7H16A—C16—H16B109.5
C6—C7—H7108.7N1—C16—H16C109.5
C13—C8—C9119.05 (14)H16A—C16—H16C109.5
C13—C8—C7122.96 (13)H16B—C16—H16C109.5
C9—C8—C7117.99 (13)C14—N1—C16125.65 (15)
O2—C9—C8120.00 (15)C14—N1—H1A112.9 (19)
O2—C9—C10122.51 (14)C16—N1—H1A121.4 (19)
C8—C9—C10117.46 (14)O4—N2—O3120.65 (13)
C9—C10—C11113.25 (13)O4—N2—C15118.39 (14)
C9—C10—H10A108.9O3—N2—C15120.96 (14)
C11—C10—H10A108.9O5—N3—O6124.64 (19)
C9—C10—H10B108.9O5—N3—C3117.5 (2)
C11—C10—H10B108.9O6—N3—C3117.88 (19)
H10A—C10—H10B107.7C14—O1—C13119.94 (12)
C10—C11—C12110.42 (14)
C6—C1—C2—C32.2 (2)C7—C8—C13—O15.2 (2)
C1—C2—C3—C41.6 (3)C9—C8—C13—C125.8 (2)
C1—C2—C3—N3177.53 (15)C7—C8—C13—C12174.55 (15)
C2—C3—C4—C50.2 (2)C11—C12—C13—C822.5 (2)
N3—C3—C4—C5179.32 (15)C11—C12—C13—O1157.33 (14)
C3—C4—C5—C61.4 (2)N1—C14—C15—N20.4 (2)
C2—C1—C6—C51.0 (2)O1—C14—C15—N2179.78 (13)
C2—C1—C6—C7178.99 (14)N1—C14—C15—C7178.06 (15)
C4—C5—C6—C10.8 (2)O1—C14—C15—C72.1 (2)
C4—C5—C6—C7179.15 (14)C8—C7—C15—N2169.66 (12)
C1—C6—C7—C15118.64 (15)C6—C7—C15—N268.58 (17)
C5—C6—C7—C1561.39 (18)C8—C7—C15—C1412.6 (2)
C1—C6—C7—C8120.07 (15)C6—C7—C15—C14109.17 (16)
C5—C6—C7—C859.91 (17)O1—C14—N1—C163.4 (3)
C15—C7—C8—C1314.1 (2)C15—C14—N1—C16176.41 (19)
C6—C7—C8—C13108.47 (16)C14—C15—N2—O4177.86 (14)
C15—C7—C8—C9165.53 (12)C7—C15—N2—O44.3 (2)
C6—C7—C8—C971.87 (16)C14—C15—N2—O32.3 (2)
C13—C8—C9—O2174.08 (15)C7—C15—N2—O3175.54 (14)
C7—C8—C9—O25.6 (2)C4—C3—N3—O5152.56 (18)
C13—C8—C9—C104.3 (2)C2—C3—N3—O528.3 (2)
C7—C8—C9—C10176.08 (13)C4—C3—N3—O629.2 (2)
O2—C9—C10—C11155.85 (16)C2—C3—N3—O6150.02 (19)
C8—C9—C10—C1125.9 (2)N1—C14—O1—C13171.08 (13)
C9—C10—C11—C1253.46 (19)C15—C14—O1—C138.8 (2)
C10—C11—C12—C1350.56 (19)C8—C13—O1—C147.4 (2)
C9—C8—C13—O1174.42 (13)C12—C13—O1—C14172.82 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.90 (3)1.89 (3)2.601 (2)134 (2)
C11—H11A···O6i0.972.543.352 (2)141
C11—H11B···O5ii0.972.543.186 (2)124
C10—H10A···Cg1iii0.972.903.515 (2)135
C16—H16B···Cg1iv0.962.903.577 (3)142
Symmetry codes: (i) x+1, y+2, z; (ii) x1, y1, z; (iii) x, y+2, z; (iv) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.90 (3)1.89 (3)2.601 (2)134 (2)
C11—H11A···O6i0.972.543.352 (2)141
C11—H11B···O5ii0.972.543.186 (2)124
C10—H10A···Cg1iii0.972.903.515 (2)135
C16—H16B···Cg1iv0.962.903.577 (3)142
Symmetry codes: (i) x+1, y+2, z; (ii) x1, y1, z; (iii) x, y+2, z; (iv) x+1, y+2, z+1.
 

Acknowledgements

The authors thank Mr T. Srinivasan and Dr D. Velmurugan, Head of the CAS in Crystallography and Biophysics, University of Madras, Chennai, India, for the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science
First citationErcole, F., Davis, T. P. & Evans, R. A. (2009). Macromolecules, 42, 1500–1511.  Web of Science CrossRef CAS
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationGeen, G. R., Evans, J. M. & Vong, A. K. (1996). Comprehensive Heterocyclic Chemistry, 1st ed., edited by A. R. Katrizky, Vol. 3, pp. 469–500. New York: Pergamon.
First citationKhan, K. M., Ambreen, N., Mughal, U. R., Jalil, S., Perveen, S. & Choudhary, M. I. (2010). Eur. J. Med. Chem. 45, 4058–4064.  Web of Science CrossRef CAS PubMed
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals
First citationNarayanan, P., Kamalraja, J., Perumal, P. T. & Sethusankar, K. (2013a). Acta Cryst. E69, o931–o932.  CSD CrossRef CAS IUCr Journals
First citationNarayanan, P., Kamalraja, J., Perumal, P. T. & Sethusankar, K. (2013b). Acta Cryst. E69, o1053–o1054.  CSD CrossRef CAS IUCr Journals
First citationRaj, T., Bhatia, R. K., Kapur, A., Sharma, M., Saxena, A. K. & Ishar, M. P. S. (2010). Eur. J. Med. Chem. 45, 790–794.  Web of Science CrossRef PubMed CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1380-o1381
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds