organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Benzhydryl-1,3,4-thia­diazole-2(3H)-thione

aStrategic Research Centre for Biotechnology, Chemistry and Systems Biology, Deakin University, Vic 3216, Australia, bQueensland Micro and Nanotechnology Centre, Griffith University, Brisbane 4111, Australia, and cSchool of Chemistry, Physics & Mechanical Engineering, Queensland University of Technology, Brisbane 4001, Australia
*Correspondence e-mail: P.Healy@griffith.edu.au

(Received 5 August 2013; accepted 5 August 2013; online 10 August 2013)

In the title compound, C15H12N2S2, the two phenyl rings and the planar (r.m.s. deviation = 0.002 Å) thia­diazole ring adopt a propeller conformation about the central C—H axis with H—C—C—C(phen­yl) torsion angles of 44 and 42° and an H—C—N—C(thia­diazole) torsion angle of 28°. Intra­molecular C—H⋯S and C—H⋯N contacts are observed. In the crystal, centrosymmetrically related mol­ecules associate through C—H⋯π inter­actions. These are connected into a supra­molecular chain along [101] by C—H⋯N inter­actions.

Related literature

For details of the use of 1,3,4-thia­diazo­les in the synthesis of crown ethers, see: Pappalardo et al. (1987[Pappalardo, S., Bottino, F. & Tringali, C. (1987). J. Org. Chem. 52, 3409-3413.]). For their uses as scaffolds in potential pharmaceuticals, see; Aggarwal et al. (2012[Aggarwal, N., Kumar, R., Dureja, P. & Khurana, J. M. (2012). Chem. Biol. Drug Des. 79, 384-397.]); Bhole & Bhusari (2011[Bhole, R. P. & Bhusari, K. P. (2011). Med. Chem. Res. 20, 695-704.]); Ghani & Ullah (2010[Ghani, U. & Ullah, N. (2010). Bioorg. Med. Chem. 18, 4042-4048.]); Kadi et al. (2010[Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006-5011.]); Zhan et al. (2009[Zhan, P., Liu, X., Fang, Z., Li, Z., Pannecouque, C. & De Clercq, E. (2009). Eur. J. Med. Chem. 44, 4648-4653.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12N2S2

  • Mr = 284.41

  • Monoclinic, P 21 /n

  • a = 9.1198 (4) Å

  • b = 15.4226 (5) Å

  • c = 10.7584 (4) Å

  • β = 108.546 (5)°

  • V = 1434.60 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 223 K

  • 0.44 × 0.29 × 0.18 mm

Data collection
  • Oxford-Diffraction GEMINI S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.859, Tmax = 0.938

  • 5244 measured reflections

  • 2524 independent reflections

  • 2144 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.108

  • S = 1.13

  • 2524 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C21–C26 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯S2 0.95 2.76 3.181 (2) 108
C16—H16⋯N3 0.95 2.58 2.897 (3) 100
C5—H5⋯Cg2i 0.95 2.74 3.670 (3) 157
C13—H13⋯N4ii 0.95 2.60 3.495 (3) 157
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: TEXSAN (Molecular Structure Corporation, 2001[Molecular Structure Corporation. (2001). TEXSAN for Windows. MSC, The Woodlands, Texas, USA.]) and SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: TEXSAN and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The structure of the title compound, (I), was determined as part of an ongoing project developing diphenylmethyl (DPM) thioethers which may be used to access sulfur-based heterocycles or as a protecting group in organic chemistry. This compound was the result of a side reaction in the synthesis of DPM thioethers, whereby the 1,3,4-thiadiazole compound is formed. The 1,3,4-thiadiazole core of the title compound is a central component of key compounds which have been used in the synthesis of crown ethers (Pappalardo et al., 1987), as well as included in potential pharmacological compounds, including anti-microbials (Aggarwal et al., 2012), anti-tumor compounds (Bhole & Bhusari, 2011), tyrosinase inhibitors (Ghani & Ullah, 2010), anti-inflammatory compounds (Kadi et al., 2010), and HIV-1 reverse transcriptase inhibitors (Zhan et al., 2009).

In (I) the two phenyl rings and the planar thiadiazole ring adopt a propeller conformation about the central C—H axis with the torsion angles H1—C1—C2—C3 = 42°, H1—C1—C8—C9 = 44° and H1—C1—N1—C2 = 28° (Fig. 1). Intra-molecular C—H···S and and both intra- and inter molecular C—H···N contacts are observed (Table 1). In the crystal lattice, centrosymmetrically related molecules associate through C—H···π inter-molecular interactions between C5—H5 and phenyl ring 2 (Table 1, Fig. 2).

Related literature top

For details of the use of 1,3,4-thiadiazoles in the synthesis of crown ethers, see: Pappalardo et al. (1987). For their uses as scaffolds in potential pharmaceuticals, see; Aggarwal et al. (2012); Bhole & Bhusari (2011); Ghani & Ullah (2010); Kadi et al. (2010); Zhan et al. (2009).

Experimental top

Diphenylmethanol (100 mg) was placed into a microwave reactor vessel charged with 2-mercapto-1,3,4-thiadiazole (0.1 ml) and stirred with acid-doped triethylamine:methanesulfonic acid (TeaMs, 0.25 ml). The vessel was then heated to 100°C for 20 minutes. The solution was then diluted with water and diethyl ether, 5 ml of NaOH (2M solution) was added and the aqueous phase extracted 3 times with diethyl ether. The combined organic phases were then dried (MgSO4), filtered and the solvent removed in vacuo to give a clear oil. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in toluene. 1H NMR (400 MHz, CDCl3): δ = 8.24 (1H, s, thiadiazole CH), 7.71 (1H, s, CHPh2), 7.42–7.22 (10H, m, 2 × Ph). 13C NMR (100 MHz, CDCl3): δ = 185.8, 143.7, 143.5, 137.8, 129.0–128.0 (10 × C), 65.8, 65.6. M.Pt: 402.2–403.2 K. HRMS, m/z calcd for (C15H13N2S2) 285.0514, found 285.0532.

Refinement top

The carbon-bound H atoms were constrained as riding atoms with C—H = 0.95 Å. Uiso(H) values were set at 1.2Ueq of the parent C atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: TEXSAN (Molecular Structure Corporation, 2001) and SIR97 (Altomare et al., 1999); program(s) used to refine structure: TEXSAN (Molecular Structure Corporation, 2001) and SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labelling and displacement ellipsoids for non-H atoms drawn at the 40% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Centrosymmetrically related molecules of (I) through C—H···π inter-molecular interactions between C5—H5 and phenyl ring 2.
3-Benzhydryl-1,3,4-thiadiazole-2(3H)-thione top
Crystal data top
C15H12N2S2F(000) = 592
Mr = 284.41Dx = 1.317 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ynCell parameters from 2095 reflections
a = 9.1198 (4) Åθ = 3.3–30.4°
b = 15.4226 (5) ŵ = 0.36 mm1
c = 10.7584 (4) ÅT = 223 K
β = 108.546 (5)°Block, colourless
V = 1434.60 (10) Å30.44 × 0.29 × 0.18 mm
Z = 4
Data collection top
Oxford-Diffraction GEMINI S Ultra
diffractometer
2524 independent reflections
Radiation source: Enhance (Mo) X-ray Source2144 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 16.0774 pixels mm-1θmax = 25.0°, θmin = 3.3°
ω and ϕ scansh = 910
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1518
Tmin = 0.859, Tmax = 0.938l = 128
5244 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0518P)2 + 0.4906P]
where P = (Fo2 + 2Fc2)/3
2524 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
C15H12N2S2V = 1434.60 (10) Å3
Mr = 284.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.1198 (4) ŵ = 0.36 mm1
b = 15.4226 (5) ÅT = 223 K
c = 10.7584 (4) Å0.44 × 0.29 × 0.18 mm
β = 108.546 (5)°
Data collection top
Oxford-Diffraction GEMINI S Ultra
diffractometer
2524 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2144 reflections with I > 2σ(I)
Tmin = 0.859, Tmax = 0.938Rint = 0.023
5244 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.13Δρmax = 0.24 e Å3
2524 reflectionsΔρmin = 0.53 e Å3
172 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.14225 (8)0.60316 (4)0.93721 (6)0.0449 (2)
S20.07408 (7)0.55846 (4)0.66718 (7)0.0443 (2)
N30.18984 (19)0.47793 (10)0.80719 (16)0.0252 (5)
N40.3130 (2)0.47539 (12)0.92075 (18)0.0356 (6)
C10.1813 (2)0.41149 (13)0.70617 (19)0.0243 (6)
C20.0829 (2)0.54127 (13)0.7940 (2)0.0286 (7)
C50.3017 (3)0.53775 (16)0.9967 (2)0.0413 (8)
C110.0918 (2)0.33159 (13)0.7227 (2)0.0258 (6)
C120.0312 (3)0.27892 (15)0.6142 (2)0.0389 (8)
C130.0465 (3)0.20345 (16)0.6232 (3)0.0495 (9)
C140.0660 (3)0.18047 (15)0.7410 (3)0.0500 (9)
C150.0069 (3)0.23250 (17)0.8493 (3)0.0463 (9)
C160.0723 (3)0.30800 (15)0.8406 (2)0.0358 (7)
C210.3436 (2)0.39221 (12)0.70245 (19)0.0238 (6)
C220.4181 (3)0.45525 (14)0.6523 (2)0.0312 (7)
C230.5672 (3)0.44091 (15)0.6484 (2)0.0361 (7)
C240.6424 (3)0.36380 (16)0.6942 (2)0.0365 (8)
C250.5692 (3)0.30087 (14)0.7442 (2)0.0363 (7)
C260.4200 (2)0.31507 (13)0.7485 (2)0.0307 (7)
H10.125700.436500.624000.0290*
H50.376500.547001.080200.0500*
H120.043100.294900.532600.0470*
H130.086400.167400.548400.0590*
H140.120000.128900.747300.0600*
H150.020400.216700.930300.0560*
H160.113200.343600.915800.0430*
H220.367000.508300.620500.0370*
H230.617600.484300.614100.0430*
H240.744100.354200.691300.0440*
H250.620600.247800.775600.0440*
H260.370100.271600.783300.0370*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0499 (4)0.0387 (4)0.0422 (4)0.0092 (3)0.0090 (3)0.0159 (3)
S20.0313 (3)0.0448 (4)0.0473 (4)0.0123 (3)0.0008 (3)0.0057 (3)
N30.0253 (9)0.0241 (9)0.0232 (9)0.0009 (7)0.0035 (7)0.0041 (7)
N40.0382 (11)0.0352 (10)0.0241 (10)0.0063 (8)0.0033 (8)0.0048 (8)
C10.0250 (10)0.0234 (10)0.0218 (10)0.0005 (8)0.0036 (8)0.0037 (8)
C20.0291 (11)0.0247 (11)0.0327 (12)0.0003 (8)0.0109 (10)0.0023 (9)
C50.0474 (15)0.0391 (13)0.0294 (13)0.0047 (11)0.0009 (11)0.0089 (10)
C110.0200 (10)0.0256 (11)0.0305 (11)0.0015 (8)0.0063 (9)0.0012 (8)
C120.0386 (13)0.0395 (13)0.0384 (13)0.0091 (11)0.0119 (11)0.0108 (11)
C130.0440 (15)0.0361 (14)0.0647 (18)0.0127 (11)0.0120 (13)0.0172 (13)
C140.0388 (14)0.0298 (13)0.081 (2)0.0030 (11)0.0184 (14)0.0075 (13)
C150.0426 (15)0.0446 (15)0.0529 (16)0.0011 (11)0.0171 (13)0.0166 (12)
C160.0327 (12)0.0386 (13)0.0352 (13)0.0014 (10)0.0094 (10)0.0007 (10)
C210.0246 (10)0.0249 (10)0.0197 (10)0.0011 (8)0.0040 (8)0.0044 (8)
C220.0337 (12)0.0317 (12)0.0267 (12)0.0004 (9)0.0076 (10)0.0053 (9)
C230.0338 (13)0.0442 (13)0.0314 (12)0.0069 (10)0.0120 (10)0.0030 (10)
C240.0269 (12)0.0476 (14)0.0356 (13)0.0003 (10)0.0108 (10)0.0067 (11)
C250.0327 (12)0.0303 (12)0.0441 (14)0.0061 (10)0.0096 (10)0.0025 (10)
C260.0289 (12)0.0259 (11)0.0377 (12)0.0000 (9)0.0110 (10)0.0003 (9)
Geometric parameters (Å, º) top
S1—C21.746 (2)C22—C231.391 (4)
S1—C51.718 (3)C23—C241.383 (3)
S2—C21.655 (2)C24—C251.380 (4)
N3—N41.372 (3)C25—C261.393 (3)
N3—C11.478 (3)C1—H10.9500
N3—C21.356 (3)C5—H50.9500
N4—C51.287 (3)C12—H120.9500
C1—C111.519 (3)C13—H130.9500
C1—C211.523 (3)C14—H140.9500
C11—C121.385 (3)C15—H150.9500
C11—C161.384 (3)C16—H160.9500
C12—C131.382 (4)C22—H220.9500
C13—C141.381 (4)C23—H230.9500
C14—C151.376 (4)C24—H240.9500
C15—C161.389 (4)C25—H250.9500
C21—C221.390 (3)C26—H260.9500
C21—C261.388 (3)
S1···N42.552 (2)C23···H23vi3.0200
S2···C23i3.689 (3)C23···H5iv2.8100
S2···H12.7600C24···H5iv2.8400
S2···H23i2.9200C24···H15viii3.0200
S2···H25ii3.0400C25···H5iv2.9500
S2···H1iii3.0200C26···H5iv3.0300
S2···H12iii3.1900H1···S22.7600
N3···S12.5023 (17)H1···H122.4200
N4···C223.334 (3)H1···H222.4700
N4···S12.552 (2)H1···S2iii3.0200
N4···C163.320 (3)H5···N4iv2.8600
N4···C5iv3.345 (3)H5···C21iv3.0100
N4···C263.413 (3)H5···C22iv2.8900
N3···H162.5800H5···C23iv2.8100
N4···H162.7200H5···C24iv2.8400
N4···H5iv2.8600H5···C25iv2.9500
N4···H13v2.6000H5···C26iv3.0300
C5···N4iv3.345 (3)H12···H12.4200
C5···C24iv3.542 (3)H12···S2iii3.1900
C12···C263.422 (3)H13···N4ix2.6000
C16···N43.320 (3)H14···C23x3.0900
C22···N43.334 (3)H15···C24xi3.0200
C23···C23vi3.540 (3)H16···N32.5800
C23···S2vii3.689 (3)H16···N42.7200
C24···C5iv3.542 (3)H22···H12.4700
C26···C123.422 (3)H22···H23vi2.5700
C26···N43.413 (3)H23···S2vii2.9200
C11···H262.5800H23···C22vi2.9300
C11···H24i3.1000H23···C23vi3.0200
C12···H263.0500H23···H22vi2.5700
C15···H24i3.0200H24···C11vii3.1000
C16···H263.0200H24···C15vii3.0200
C16···H24i3.0000H24···C16vii3.0000
C21···H5iv3.0100H25···S2x3.0400
C22···H23vi2.9300H26···C112.5800
C22···H5iv2.8900H26···C123.0500
C23···H14ii3.0900H26···C163.0200
C2—S1—C589.76 (10)C21—C26—C25120.50 (19)
N4—N3—C1118.15 (16)N3—C1—H1107.00
N4—N3—C2118.15 (16)C11—C1—H1107.00
C1—N3—C2123.70 (17)C21—C1—H1107.00
N3—N4—C5109.62 (19)S1—C5—H5122.00
N3—C1—C11112.39 (16)N4—C5—H5122.00
N3—C1—C21109.30 (16)C11—C12—H12120.00
C11—C1—C21114.05 (16)C13—C12—H12120.00
S1—C2—S2125.74 (12)C12—C13—H13120.00
S1—C2—N3106.91 (14)C14—C13—H13120.00
S2—C2—N3127.35 (16)C13—C14—H14120.00
S1—C5—N4115.57 (17)C15—C14—H14120.00
C1—C11—C12117.54 (18)C14—C15—H15120.00
C1—C11—C16123.42 (19)C16—C15—H15120.00
C12—C11—C16119.0 (2)C11—C16—H16120.00
C11—C12—C13120.7 (2)C15—C16—H16120.00
C12—C13—C14119.9 (2)C21—C22—H22120.00
C13—C14—C15119.8 (2)C23—C22—H22120.00
C14—C15—C16120.3 (3)C22—C23—H23120.00
C11—C16—C15120.2 (2)C24—C23—H23120.00
C1—C21—C22118.23 (18)C23—C24—H24120.00
C1—C21—C26122.67 (17)C25—C24—H24120.00
C22—C21—C26119.10 (19)C24—C25—H25120.00
C21—C22—C23120.2 (2)C26—C25—H25120.00
C22—C23—C24120.3 (2)C21—C26—H26120.00
C23—C24—C25119.8 (3)C25—C26—H26120.00
C24—C25—C26120.1 (2)
C5—S1—C2—S2179.44 (16)C21—C1—C11—C1276.1 (2)
C5—S1—C2—N30.18 (16)C21—C1—C11—C16101.9 (2)
C2—S1—C5—N40.3 (2)N3—C1—C21—C26108.4 (2)
C1—N3—N4—C5179.84 (19)C1—C11—C12—C13177.6 (2)
N4—N3—C1—C1190.8 (2)C12—C11—C16—C150.1 (4)
N4—N3—C1—C2136.9 (2)C16—C11—C12—C130.6 (4)
C2—N3—N4—C50.1 (3)C1—C11—C16—C15178.0 (2)
C2—N3—C1—C21143.07 (18)C11—C12—C13—C140.8 (4)
N4—N3—C2—S10.1 (2)C12—C13—C14—C150.5 (4)
N4—N3—C2—S2179.55 (16)C13—C14—C15—C160.0 (4)
C1—N3—C2—S1179.96 (14)C14—C15—C16—C110.3 (4)
C1—N3—C2—S20.4 (3)C1—C21—C22—C23179.23 (18)
C2—N3—C1—C1189.3 (2)C26—C21—C22—C230.1 (3)
N3—N4—C5—S10.3 (3)C1—C21—C26—C25179.32 (18)
N3—C1—C11—C12158.78 (19)C22—C21—C26—C250.2 (3)
N3—C1—C11—C1623.2 (3)C21—C22—C23—C240.1 (3)
C11—C1—C21—C22162.48 (18)C22—C23—C24—C250.1 (3)
C11—C1—C21—C2618.4 (3)C23—C24—C25—C260.0 (3)
N3—C1—C21—C2270.8 (2)C24—C25—C26—C210.2 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z+3/2; (iii) x, y+1, z+1; (iv) x+1, y+1, z+2; (v) x+1/2, y+1/2, z+1/2; (vi) x+1, y+1, z+1; (vii) x+1, y, z; (viii) x+1/2, y+1/2, z1/2; (ix) x1/2, y+1/2, z1/2; (x) x+1/2, y1/2, z+3/2; (xi) x1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C21–C26 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···S20.952.763.181 (2)108
C16—H16···N30.952.582.897 (3)100
C5—H5···Cg2iv0.952.743.670 (3)157
C13—H13···N4ix0.952.603.495 (3)157
Symmetry codes: (iv) x+1, y+1, z+2; (ix) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C21–C26 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···S20.952.763.181 (2)108
C16—H16···N30.952.582.897 (3)100
C5—H5···Cg2i0.952.743.670 (3)157
C13—H13···N4ii0.952.603.495 (3)157
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1/2, y+1/2, z1/2.
 

Acknowledgements

We acknowledge support of this work by the Micro and Nanotechnology Centre, Griffith University, the Central Analytical Research Facility, Queensland University of Technology, and the Strategic Research Centre for Biotechnology, Chemistry and Systems Biology, Deakin University.

References

First citationAggarwal, N., Kumar, R., Dureja, P. & Khurana, J. M. (2012). Chem. Biol. Drug Des. 79, 384–397.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBhole, R. P. & Bhusari, K. P. (2011). Med. Chem. Res. 20, 695–704.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhani, U. & Ullah, N. (2010). Bioorg. Med. Chem. 18, 4042–4048.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMolecular Structure Corporation. (2001). TEXSAN for Windows. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationPappalardo, S., Bottino, F. & Tringali, C. (1987). J. Org. Chem. 52, 3409–3413.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhan, P., Liu, X., Fang, Z., Li, Z., Pannecouque, C. & De Clercq, E. (2009). Eur. J. Med. Chem. 44, 4648–4653.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds